Metode Pemantauan Pekerjaan Konstruksi Menggunakan Point Clouds Berbasis Drone dan LiDAR Iphone

Sakti Aulia Sulistyo, Akhmad Aminullah, Ashar Saputra

Abstract


Kepentingan industri konstruksi untuk informasi yang tepat waktu dan akurat tentang kemajuan proyek konstruksi semakin meningkat. Informasi yang diperlukan untuk mengukur progres proyek konstruksi tidak dapat dengan mudah dikumpulkan dikarenakan terus berubah. Pada sebagian besar lokasi proyek konstruksi, perolehan data bergantung pada pencatatan informasi secara manual di atas kertas, penggunaan foto dan dokumen yang menyebabkan banyak kendala dalam ruang dan waktu. Penelitian ini mengusulkan pemantauan pekerjaan berbasis BIM menggunakan foto udara Drone dan LiDAR Iphone yang diproses menjadi point clouds. Data point clouds berbasis LiDAR Iphone memenuhi persyaratan General Service Administration (GSA) untuk proyek desain arsitektural dengan kesalahan rata-rata dimensi 0,011 m. Data pengamatan terakhir menunjukkan proyek mengalami keterlambatan sebesar 240,10 m3, data ini memungkinkan manajer proyek untuk menilai kemajuan dan mengelola proyek secara komprehensif. Visualisasi 4 dimensi memudahkan manajer proyek untuk mengambil keputusan dengan cepat berdasar informasi aktual sehingga dapat mengurangi waktu pekerjaan dan pembengkakan biaya.

Keywords


pemantauan pekerjaan; point clouds; BIM

Full Text:

PDF

References


M. Kopsida, I. Brilakis, & P. Vela, A Review of Automated Construction Progress and Inspection Methods. Proc. 32nd CIB W78 Conf. Constr. IT (2015) 421-431.

S. Alizadehsalehi, & I. Yitmen, The Impact of Field Data Capturing Technologies on Automated Construction Project Progress Monitoring. Procedia Eng. (2016) 97-103.

M. Golpavar-fard, F. Pena-mora, & S. Savarese, Monitoring of Construction Performance using Daily Progress Photograph Logs and 4D As-planned Models. University of Illinois, Urbana-Champaign (2015) 53-63.

Y. Olawale, & M. Sun, PCIM: Project Control and Inhibiting Factors Management Model. J. Manage. Eng. (2013) 60–70.

T. Omar, & M.L. Nehdi, Data Acquisition Technologies for Construction Progress Tracking. Autom. Constr. 70 (2016) 143-155.

M. Bueno, F. Bosche, Gonzalez-jorge, Martinez-sanchez, & P. Arias, 4-Plane Congruent Sets for Automatic Registration of as-is 3D Point Clouds with 3D BIM Models. Autom. Constr. (2018) 120–134.

K.C. Yong, Automated Schedule Updates using As-Built Data and a 4D Building Information Model. ASCE Journal of Management in Engineering, Korea, 2017.

Zoran Pučko, Nataša Šuman, & Danijel Rebolj, Automated Continuous Construction Progress Monitoring using Multiple Workplace Real Time 3D Scans. University of Maribor, Slovenia, 2018.

S. Azhar, M. Khalfan, & T. Masqod, Building Information Modelling (BIM): Now and Beyond Australasian Journal of Construction, Economics and Building (2012) 12, 15-28.

S.V.T. Tran, N. Khan, D. Lee, & C. Park, A Hazard Identification Approach of Integrating 4D BIM and Accident Case Analysis of Spasial-Temporal Exposure Sustainability (2021) 13, 1-19.

A. Braun, S. Tuttas, & A. Borrmann, A Concept for Automated Construction Progress Monitoring using BIM-based Geometric Constraints and Photogrammetric Point Clouds. J. Inf. Techno. Constr. (2015) 20, 68-79.

C. Kim, C. Kim, & H. Son, Fully Automated Registration of 3D Data to 3D CAD Model for Project Progress Monitoring, Autom. Constr. (2013) 35, 587–594.

N. Hyland, S.O. Keeffe, N. Hyland, C. Dore, & S. Brodie, Validation of As-Is and Asgenerated IFC BIMs for Advanced Scan-to-BIM Methods Automatic Validation of As-Is and As-generated IFC BIMs for Advanced Scan-to-BIM Methods (2017).

H. Fathi, F. Dai, & M. Lourakis, Automated As-built 3D Reconstruction of Civil Infrastructure using Computer Vision: Achievements, Opportunities, and Challenges, Adv. Eng. Informatics. (2015) 29, 149–161.

V. Pătrăucean, I. Armeni, M. Nahangi, J. Yeung, I. Brilakis, & C. Haas, State of Research in Automatic As-built Modelling, Adv. Eng. Informatics (2015) 29, 162–171.

K.K. Han, D. Cline, & M. Golparvar-Fard, Formalized Knowledge of Construction Sequencing for Visual Monitoring of Work-in-progress Via Incomplete Point Clouds and Low-LoD 4D BIMs, Adv. Eng. Informatics (2015) 29, 889–901.

F. Bosché, M. Ahmed, Y. Turkan, C.T. Haas, & R. Haas, The Value of Integrating Scan-to-BIM and Scan-vs-BIM Techniques for Construction Monitoring using Laser Scanning and BIM: The Case of Cylindrical MEP Components, Autom. Constr. (2015) 49, 201–213.

R. Supanan, S. Korb, K. Wuttipong, L. Narong, & C. Phatsaphan, Accuracy of 3-D Model Based on Point Cloud: A New Technology for Construction Progress Evaluation. International J. Engineering and Technology, Vol. 12, No. 2, 2020.

Rafaela Bortolini, C.T. Formoso & Daniela D. Viena, Site Logistics Planning and Control for Engineer-to-Order Prefabricated Building Systems using BIM 4D Modelling. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil, 2019.

Seungho Kim, Sangyong Kim & Dong-Eun Lee, Sustainable Application of Hybrid Point Clouds and BIM Method for Tracking Construction Progress. Yeungnam University College, Daegu, Korea, 2020.

M. Golpavar-Fard, F. Peña-Mora, & S. Savarese, Automated Progress Monitoring using Unordered Daily Construction Photographs and IFC-based Building Information Models. J. Comput. Civ. Eng. (2015) 29, 04014025.

C. Kim, & H. Son, Automated Construction Progress Measurement using A 4D Building Information Model and 3D Data. Autom. Constr. (2013) 31, 75–82.

Q. Wang, & M.K. Kim, Applications of 3D Point Cloud Data in The Construction Industry: A Fifteen-year Review from 2004 to 2018. Adv. Eng. Inf. (2019) 39, 306–319.

S. El-Omari, & O. Maselhi, Data Acquisition from Construction Sites for Tracking Purposes. Eng. Constr. Archit. Manag. (2009) 16, 490-503.

Y. Turkan, F. Bosche, C. Haas, & R. Haas, Automated Progress Tracking using 4D Schedule and 3D Sensing Technologies. Autom. Constr. (2012) 22, 414–421.

F. Dai, A. Rashidi, I. Brilakis, & P. Vela, Comparison of Image-based and Time-of-flight-Based Technologies for Three-dimensional Reconstruction of Infrastructure. J. Constr. Eng. Manag. (2013) 139, 69–79.

S. Rankohi & L. Waugh. Review and Analysis of Augmented Reality Literature for Construction Industry. Vis. Eng. (2013) 1, 9.

A. Shirazi, & A.H. Behzadan, Design and Assessment of A Mobile Augmented Reality-based Information Delivery Tool for Construction and Civil Engineering Curriculum. J. Prof. Issues Eng. Ed. Pr. (2015) 141, 04014012.

Kevin K. Han, David Cline & Mani Golparvar-Fard, Formalized Knowledge of Construction Sequencing for Visual Monitoringof Work-in-Progress via Incomplete Point Clouds and Low-LoD 4D BIMs. University of Illnois, Urbana, Amerika Serikat, 2015.

Dong, Z., Liang, F., Yang, B., Xu, Y., Zang, Y., Li, J., Wang, Y., Dai, W., Fan, H., Hyppa, J. & Stilla, U., Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 163 (March), 327-342, 2020.

Rex D. & Stoli, S., Applications of 3D Laser Scanning in a Production Environment. Chalmers University of Technology, 2014.

Danijel Rebolj, Zoran Pučko, Nenad Čuš Babič Marko Bizjak & Domen Mongus, Point Clouds Quality Requirements for Scan vs BIM Based Automated Construction Progress Monitoring. University of Maribor, Slovenia, 2017.

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellming, J. Kolb & A. van der Lee, VCSEL-based Sensors for Distance and Velocity in Vertical-Cavity Surface-Emitting Lasers XX. San Francisco, California, Amerika Serikat, 2016.

J. Gordana, G. Miro & F.A. Taboada, Iphone 13 Pro vs Professional TLS for 3D Indoor Mapping. Proceedings of International Conference on Contemporary Theory and Practice in Construction (2021) 26, 274-283.

M. Apriansyah & Harintaka, Pembuatan Model 3D Bangunan LoD3 Dengan Pemanfaatan Foto Udara dan Fotogrametri Terrestris. Journal of Geodesy and Geomatics (2023) Vol. 18, 243-252.

Si Van-Tien Tran, T.L. Nguyen, Hung-Lin Chi, Doyeop Lee & C. Park, Generative Planning for Construction Safety Surveillance Camera Installation in 4D BIM Environment. The Hong Kong Polytechnic University, Provinsi Otonomi Khusus Hong Kong, 2022.

Alvatara Partogi, Yudo Prasetyo & Bandi Sasmito, Analisis Ketelitian Data Pemodelan 3 Dimensi Dengan Metode Traverse Dan Metode Cloud to Cloud Menggunakan Terrestrial Laser Scanner, Universitas Diponegoro, Indonesia, 2017.

C. Beatriz, Guerra, Fernanda Leite & Kasey Faust, 4D BIM to Enhance Construction Waste Reuse and Recycle Planning: Case Studies on Concrete and Drywall Waste Streams. The University of Texas at Austin, Amerika Serikat, 2020.




DOI: http://dx.doi.org/10.12962/j2579-891X.v21i3.15686

Refbacks

  • There are currently no refbacks.


Jumlah Kunjungan:Web
Analytics

Creative Commons License
Jurnal Aplikasi Teknik Sipil by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Based on work at https://iptek.its.ac.id/index.php/jats