Studi Komparatif Tahanan Gesek Tiang Tertimbun dan Tiang Pancang pada Pasir Pantai

Sito Ismanti

Abstract


The position of foundation pile caps of monument constructed on coastline changed from below to above the soil surface. Therefore, the piles were driven in a free-standing condition and then covered with beach sand soil. This research aims to analyze the frictional resistance of buried pile, then compare it with the frictional resistance of ordinary piles.Practical analysis methods and finite element methods using RS Pile software are compared to obtain a representative method. The comparison results show that the Meyerhof method has the closest soil bearing capacity behavior to the field test results. Based on the results, the skin friction of buried piles is 52% - 57% lower than ordinary piles. This decrease occurred because the assumed value of the angle of friction in the soil was lower because the soil around the pile was not as dense as in ordinary conditions which compacted during the driving process.

Keywords


Buried pile frictional resistance; Driven pile; Beach sand soil; Bearing capacity

Full Text:

PDF

References


SNI 8460:2017, Persyaratan Perancangan Geoteknik. Jakarta: Badan Standardisasi Nasional, 2017.

H. Maizir, R. Suryanita, and H. Jingga, “Estimation of Pile Bearing Capacity of Single Driven Pile in Sandy Soil using Finite Elementand Artificial Neural Network Methods,” in International Conference onEngineering & Technology, Computer, Basic & Applied Sciences ECBA, 2016, pp. 2–12. doi: 10.13140/RG.2.1.4009.7520.

M. A. Prayogo, H. Wahyudi, and I. B. Mochtar, “Comparison Between the Results of the Pile Bearing Capacity Analysis Based on Empirical Method and Finite Element Method Using the Results of Dynamic Analysis on the Field,” J. Civ. Eng., vol. 36, no. 1, p. 10, 2021, doi: 10.12962/j20861206.v36i1.8777.

W. K. Leong, N. A. Yusoff, A. N. A. Aziz, and Z. A. Talib, “Theoretical and Actual Bearing Capacity of Driven Piles Using Model Piles in Sand,” Appl. Mech. Mater., vol. 773, pp. 1453–1459, 2015, doi: 10.4028/www.scientific.net/amm.773-774.1453.

A. A. Rahman, F. Hariati, N. Chayati, and F. M. L. Taqwa, “Korelasi Nilai Daya Dukung Ultimit Tiang Bor Hasil Analisis Dengan Hasil Pengujian Pda Test (Studi Kasus: Pembangunan Jalan Tol Bogor Ring Road Seksi Iii a Ruas Simpang Yasmin - Simpang Salabenda),” J. Komposit, vol. 4, no. 2, p. 43, 2022, doi:10.32832/komposit.v4i2.3468.

G. G. Meyerhof, “Bearing Capacity and Settlement of Pile Foundations,” ASCE J Geotech Eng Div, vol. 102, no. 3, pp. 195–228, 1976, doi: 10.1061/ajgeb6.0000243.

N. Hataf and A. Shafaghat, “Optimizing the Bearing Capacity of Tapered Piles in Realistic Scale Using 3D Finite Element Method,” Geotech. Geol. Eng., vol. 33, pp. 1465–1473, 2015, doi: 10.1007/s10706-015-9912-6.

B. Ozturk, A. Kodsy, Y. Bazi, and M. G. Iskander, “Efficacy of Several Design Methods for Predicting the Axial Compressive Capacity of Piles,” Transp. Res. Rec., pp. 1–17, 2023, doi: 10.1177/03611981231158335.

H. G. Poulos and E. H. Davis, Pile Foundation Analysis and Design. New York: John Wiley & Sons, 1980.

D. D. C. Nguyen, S.-B. Jo, and D.-S. Kim, “Design Method of Piled-raft Foundations Under Vertical Load Considering Interaction Effects,” Comput. Geotech., vol. 47, no. 1, pp. 16–27, 2013, doi: 10.1016/j.compgeo.2012.06.007.

H. Nagai, “Shaft Resistance of Piles Close to Backfilled Sand Columns,” Int. J. GEOMATE, vol. 21, no. 84, pp. 121–128, 2021, doi: 10.21660/2021.84.j2170.

I. M. Dirgayusa, S. Ismanti, and A. Rifa’i, “Evaluasi Kapasitas Dukung Sistem Fondasi Tiang pada Tanah Pasir dengan Berbagai Metode Pemancangan pada Bangunan Monumental,” Universitas Gadjah Mada, 2023.

H. Nagai and K. Nakamura, “Shaft Resistance Mechanism for Piles Close to Backfilled Sand and Its Evaluation,” Int. J. GEOMATE, vol. 23, no. 98, pp. 84–91, 2022, doi: 10.21660/2022.98.3461.

H. Rattez, Y. Shi, A. Sac-Morane, T. Klaeyle, B. Mielniczuk, and M. Veveakis, “Effect of grain size distribution on the shear band thickness evolution in sand,” Géotechnique, vol. 72, no. 4, pp. 350–363, Apr. 2022, doi: 10.1680/jgeot.20.P.120.

M. Nitka and A. Grabowski, “Shear band evolution phenomena in direct shear test modelled with DEM,” Powder Technol., vol. 391, pp. 369–384, 2021, doi: 10.1016/j.powtec.2021.06.025.

X. Gu, M. Huang, and J. Qian, “Discrete element modeling of shear band in granular materials,” Theor. Appl. Fract. Mech., vol. 72, no. 1, pp. 37–49, 2014, doi: 10.1016/j.tafmec.2014.06.008.

R. Kawamoto, E. Andò, G. Viggiani, and J. E. Andrade, “All you need is shape: Predicting shear banding in sand with LS-DEM,” J. Mech. Phys. Solids, vol. 111, pp. 375–392, 2018, doi: 10.1016/j.jmps.2017.10.003.

G. Likins and F. Rausche, “What Constitutes a Good PDA Test?,” Proc. Eighth Int. Conf. Appl. Stress Wave Theory to Piles, pp. 403–407, 2008.




DOI: http://dx.doi.org/10.12962%2Fj2579-891X.v23i4.21607

Refbacks

  • There are currently no refbacks.


Jumlah Kunjungan:Web
Analytics

Creative Commons License
Jurnal Aplikasi Teknik Sipil by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Based on work at https://iptek.its.ac.id/index.php/jats

POSTOTO787

POSTOTO787

slot88

slot88

slot777

slot gacor

slot dana

slot gacor

slot qris

slot qris

slot thailand

slot thailand

slot88 terpercaya

slot88