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RELATIONSHIP BETWEEN STATIC AND DYNAMIC DISPLACEMENTS 
OF STRUCTURES 

by Endah Wahyunia 

ABSTRACT 
The relationship between the static and dynamic displacements of a structure is studied and explores the application of the 

relationship. The key parameters are: the static stiffness of the structure, which is a measure of its resistance to an applied 

load; and the dynamic stiffness, which relates to a specific mode of vibration. To illustrate the salient features, two simple 

examples will be considered, first a beam and second a plate.  These may be considered to be simple representations of a 

bridge and a floor respectively. The conclusions of the research are the number of modes considered increases the difference 

between total modal displacement and the static displacement decreases. The first mode dominated the sumof the modal 

displacement. It is therefore apparent that measurements of both static and dynamic stiffness can both provide useful 

information on the elastic behavior of a structure. 
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INTRODUCTION 

This paper derives the relationship between the static 

and dynamic displacements of a structure and explores 

the application of the relationship. Both the displacements 

indicate the capacity of the structure to resist deformation 

from different prospects, they are obtained using different 

methods. The former is calculated by solving the 

equations of equilibrium and the latter can be obtained 

through solving an eigen value problem. The concepts 

need explaining in some detail even to engineers involved 

with testing structures, as the ideas behind this project are 

new. To illustrate the salient features, two simple 

examples will be considered, first a beam and second a 

plate.  These may be considered to be simple 

representations of a bridge and a floor respectively. 

Initially numerical models will be examined. 

The key parameters are: the static stiffness of the 

structure, which is a measure of its resistance to an 

applied load; and the dynamic stiffness, which relates to a 

specific mode of vibration. The relationship between 

these parameters will be examined in the next sections, 

and will also illustrate how some of the factors relate to 

the structural strength. 

FE ANALYSIS OF SIMPLY SUPPORTED BEAMS 

There are many factors that are required in the 

prediction of structural behaviour and the structures static 

stiffness and dynamic characteristics are important.  

However, the combined use of static and dynamic 

characteristics can provide a better understanding of 

structural behaviour.  To illustrate this an analysis of a 

simple beam is used to compare modal and static 

stiffnesses for multi-span systems. 

When considering dynamic characteristics it is useful 

to be aware of some basic relationships.  The frequency of 

a mode of vibration of a structure is related to the modal 

stiffness and mass by the following equation that is 

reasonably accurate for systems with low damping (ie 

most structures). 
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Where f is the natural frequency and k and m are the 

modal stiffness and modal mass respectively.  The modal 

mass, m is related to the actual mass by the mode shape 

factor ². 

The static stiffness can be defined in many ways.  In 

this report point stiffness will be considered, which can be 

defined as the inverse of the displacement in the load 

direction at a position where a unit load is applied. 
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Where ks is the static stiffness, P is the applied load,  

is the displacement of the structure. 

The point stiffness relates to a unit force that is a 

function of position and direction; in other words, the 

point stiffnesses at different positions and directions are 

different.  However, it is usual to apply the point load at 

the position and direction where it will yield the largest 

displacement, ie for a plate it would be applied at the 

centre and normal to the plate. 

SIMPLY SUPPORTED BEAMS 

Consider a simply supported beam, which has a half-

sine mode shape for its fundamental mode.  Here the 

modal mass is easy to determine and the system is easy to 

visualise. The slender beam is 10 m long, of steel 

construction, and a standard hollow section of  

Area  = 0.1420E-3 m² 

I   = 0.7590E-8 m
4
 

density   = 7800 kg/m
3
 

E   = 2.09E11 N/m² 

Total mass = 11.076 kg 
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Support conditions are pinned at one end and simply 

supported at the other. From standard texts
1
 the formula 

for the frequencies of the first three modes are: 

 

1 42

EI
f

mL
 with 

2 14f f and 
3 19f f  (3) 

 

m (mass per unit length) is Area x  = 1.1076 thus f1 = 

0.5945 Hz and the mode shape is a half-sine wave. 

   

f2 = 2.3786 Hz   

f3 = 5.350 Hz 

 

FE Dynamic Analysis of A Simply Supported Beam 
Setting up this type of analysis on a finite element 

package is relatively easy.  For this work the FE package 

LUSAS was used.  The beam length is 10 m, and the 

supports are defined at positions 0,0 and 10,0.  The model 

uses a beam element with 10 divisions, assigned as a 

standard SHS steel section, with appropriate boundary 

conditions.  This gives the lowest three frequencies 0.594, 

2.378, 5.352 Hz which align with the results from the 

standard formula as expected. 

Given the deflected values of the mode shape for each 

element node, these can be normalised.  For ² it is 

necessary to take the sum of the square of the deflection 

at each node (including the end nodes) and divided by the 

number of nodes, with end points having ½ weighting.  

Then multiply by the total mass and find modal stiffness 

using the frequency.  Using equation (1), this gives a 

modal stiffness for the fundamental mode of 

 

2
2 11.076 x(0.4998 (2 xpx 0.594)²)

 77.11 N / m

k m f

 

(4) 

 

Obviously knowing the mode shape to be half-sine 

wave could be used to simplify this procedure 

significantly.  i.e.  

 
1

2

0

sin ( ) 0.5x dx    (5) 

 

Whereas the numerical approximation gave 0.4998.  

Numerical evaluation is required for more complex mode 

shapes that cannot be defined mathematically. 

 

Fe Static Analysis of A Simply Supported Beam 
Using the same FE model, apply a unit load at the 

centre of beam and determine a displaced shape and the 

maximum displacement.  By definition, the inverse of the 

displacement produced by the unit load is the stiffness, 

which for the load applied at the centre of the beam gives 

76.16 N/m. The displaced shapes for the two static cases 

and the mode shape are given in Figure 1.  It can be 

appreciated that these deflected shapes are similar.  Here 

the normalised mode shape is divided by the modal 

stiffness. 

 

FE Analysis of 2 span simply supported beam 
Continuing with the same structure as before but 

extended it to 2 spans with a 20 m total length.  Support 

conditions are pinned at one end, simply supported at the 

other end and in the centre.  The FE analysis gives the 

same fundamental frequency 0.5945 Hz as for the single 

span beam with a sinusoidal mode shape.   

 
a. Displaced shape 

 
b. First mode shape 

 
Figure 1. Single span simply supported beam 

 

 
a. Displaced shape 

 
b. First mode shape 

 
Figure 2. Two-span simply supported beam 
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a. Displaced shape for load on end span 

 
b. Displaced shape for load on centre span 

 
c. First mode shape 

 

Figure 3. Four-span simply supported beam 

 

 

 
Figure 4. The mode shapes of two span beam 
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This, however, has twice the modal mass of the single 

beam and hence its stiffness is 144.22 N/m.  Higher 

natural frequency modes occur at 0.929, 2.38, 3.01, 5.35 

Hz. 

For the case of unity load at the centre of one span the 

stiffness is 105.93 N/m, which is significantly smaller 

than the modal stiffness unlike the one span system. The 

displaced shapes for the point load and the mode shape 

are given in Figure 2.  Again the normalised mode shape 

is divided by the modal stiffness.  It can be seen that the 

similarities between mode shape and static displacement 

are now being lost. 

 

FE Analysis of 4 span simply supported beam 
Finally the analysis is repeated for a 4 span beam 

(40m).  The analysis gives the same fundamental 

frequency of 0.5945 Hz and again a sinusoidal mode 

shape.  The modal stiffness will be twice that of a 2 span 

system i.e. 288.44 N/m.  Higher order modes get more 

complex with frequencies 0.694, 0.929, 1.999, 2.378 Hz.  

Note that the some natural frequencies are common 

between single and multi-span systems. 

For the point load, consider two cases, one the centre 

of an end span and second the centre of a central span.  

These give point stiffnesses of 108.98 and 141.54 N/m 

respectively, both being much smaller than the 

fundamental modal stiffness.  The displaced shapes for 

the two cases and the mode shape are given in Figure 3. 

  

Key factors illustrated by the beam example 
This beam model has been used to emphasise some 

important factors, the example being selected because the 

deflected shapes are simple to visualise.  For the one span 

example, the deflected shapes for the mode shape and the 

point load are all somewhat similar.  This is the reason 

why the static deflected shapes can be used as a 

substitution for the mode shape in many dynamic 

calculations, and also why the static displacement can be 

used to determine natural frequency.  

However, this does not apply to multi-bay systems, 

because although the same natural frequencies may be 

encountered, the stiffness changes considerably with 

number of bays, and the mode shape and displacements 

due to static loads no longer correspond.  Nevertheless, 

this does suggest that as part of structural testing, 

measurements of the point stiffness can supplement 

modal stiffness characteristics for system identification. 

ON THE COMPOSITION OF STATIC 
DISPLACEMENTS 

Single Span Beam 
It is worth emphasising the links between static and 

dynamic displacement, as this is fundamental to this 

programme of work.  Returning to the single span simply 

supported beam, which is the easiest system to visualise. 

The stiffness determined using the FE model was 76.16 

N/m that equates to a central displacement of 0.01313 m 

under a unity point load.   

This displacement could also have been determined 

using the formula  

 
3

0.0131332
48

L

EI
 (6) 

 

Alternatively this displacement could have been 

derived from the dynamic stiffness.  Figure 4 shows the 

mode shapes for the first five modes of the simply 

supported beam, which are all sine waves with different 

wavelengths.  Thus in all cases the modal value ² equals 

0.5.  For a point load in the centre of the beam, there will 

be no displacement in the even numbered modes as the 

centre point is a node.  For the odd numbered modes the 

central displacement due to a central load is the maximum 

modal value (ie unity).  The static displacement is 

equivalent to the sum of the displacement of all of the 

modes. 

The modal stiffness for each mode is 11.076 x 0.5 (2 x 

 x f)² hence the modal displacement is 1/(11.076 x 0.5 (2 

x  x f)²).  The summation of the modal displacements for 

the odd modes is given in Table 1 along with modes 

considered. 

From the table it can be seen that as the number of 

modes considered increases so the difference between 

total modal displacement and the static displacement 

decreases.  The modal displacement for unit force is also 

known as flexibility.  Hence the static displacement 

relates to the sum of the flexibility of each mode, but here 

it is dominated by the first mode.  The effective difference 

between the flexibility of the first mode and the sum of 

the flexibilities of the remaining modes (which will be 

defined as the residual flexibility) is important in the 

developments given later in this project. 

 

 

Table 1. The relationship between modal and static displacement 

Modes considered Total modal displacement 

 

Static displacement 

(point load) 
 

1 0.0129432 0.0131332 

1+3 0.0131030 0.0131332 

1+3+5 0.0131237 0.0131332 

1+3+5+7 0.0131291 0.0131332 

1+3+5+7+9 0.0131311 0.0131332 

1+3+5+7+9+11 0.0131320 0.0131332 

1+3+5+7+9+11+13 0.0131324 0.0131332 

1+3+5+7+9+11+13+15 0.0131327 0.0131332 
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Two-Span Beam 
Following the method given in the previous section, 

consider a 2 span beam of length 20m.  This has twice the 

modal mass of the single span beam and hence its modal 

stiffness is 144.22 N/m, which equates to a central 

displacement of 0.006934 m under a unity modal load.  

For the case of unity load at the centre of one span the 

stiffness derived from the FE model is 105.93 N/m, which 

equates to a central displacement of 0.009440 m of the 

loaded span.  Hence there is a much bigger difference 

between the static displacement and the fundamental 

modal displacement than for the single span beam.  At the 

risk of being repetitive this will again be explained as it is 

central to some of the ideas developed later which will be 

concerned with measurement of static and dynamic 

stiffnesses.  

Figure 4 shows the mode shapes of several modes.  

With the load position at the centre of one span, this will 

give a maximum modal load for some modes, but no 

modal load for those modes which have a node at this 

load position.  Hence of the five modes shown, two can 

be neglected for this load case.  In fact in this 

representation, several key modes have been omitted 

since these have a point of contra-flections at the centre 

support point, which complicates the simple calculation 

techniques given here.  The first ten modes are given in 

Table 3 with a description of the mode shapes.  

 

The five modes shown in the Figure, are modes 1, 3, 

5, 7 and 9 in Table 2.  Of these five modes, modes 3 and 7 

have a nodal point at the load position, hence they have 

no response to the load.  Modes 4 and 8 also have nodes 

at the load position.  

The modal displacement is calculated using 1/(22.152 

x 0.5 (2 x  x f)²), albeit this is only an approximation for 

modes 2, 6 and 10.  The mass of 22.152 is twice that of 

the single span beam.  The values for the displacement at 

the load position are given in Table 3. 

Again it can be seen how the combination of modes 

builds up towards the static displacement, but note the 

significance of the modes derived from the FE analysis, 

especially the second mode in this 2 span example.  The 

slight mis-match between modal and static displacement 

is due to the approximate calculations for modes 2, 6 and 

10.  It is also of interest to determine the displacement at 

the centre point of the other half of the beam.  These are 

given in Table 4, noting that in this case modes, 2, 6 and 

10 will be in anti-phase.   

 

Discussion on items covered in sections of 
static displacements 

The examples given above show how the static 

displacement is the summation of the modal 

displacements, and this is fundamental to structural 

analysis and, effectively, a different mathematical 

analysis of the same equations, i.e. the stiffness matrix for 

the structure, albeit the modal calculations include the 

mass of the structure.  The significant point is that, for the 

first time, it is possible to take a relatively simple 

measurement of a point stiffness for a large structure, 

using the laser system.  It is also possible to measure 

dynamic stiffness, using the methods developed at BRE 

over a number of years.  The question is how can this 

information be used to help understand structural 

behaviour. 

 

Table 2.  The first ten modes of the two span beam 

Mode 

number 

Mode frequency 

(Hz) 
Shape 

1 0.5944 
Sine wave – one central node  

(ie asymmetric about centre node) 

2 0.9287 
Approx. sine wave – one node – centre contra-flexure 

(ie symmetric about centre node) 

3 2.3778 Sine wave – three nodes 

4 3.0094 Approx. sine wave – three nodes – centre contra-flexure 

5 5.3501 Sine wave – five nodes 

6 6.2789 Approx. sine wave – five nodes – centre contra-flexure 

7 9.5112 Sine wave – seven nodes 

8 10.7373 Approx. sine wave – seven nodes – centre contra-flexure 

9 14.8615 Sine wave – nine nodes 

10 16.3850 Approx. sine wave – nine nodes – centre contra-flexure 

 
Table 3. The relationship between modal and static displacement for various mode combinations for the two span beam 

Modes considered Total modal displacement Static displacement 

1 0.006481 0.009440 

1+2 0.009136 0.009440 

1+2+5 0.009216 0.009440 

1+2+5+6 0.009274 0.009440 

1+2+5+6+9 0.009284 0.009440 

1+2+5+6+9+10 0.009293 0.009440 
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MODELLING OF PLATES / FLOORS 

Having examined the behaviour of simple beams, the 

concepts will be expanded to include another dimension 

and plates (or floors) will now be considered.  For the 

following calculations consider a floor of the concrete in-

situ building at Cardington.  The whole floor area was 4 

by 3 bays based on supporting columns in a 7.5m x 7.5 m 

grid.  The basic properties of the floors were: 

Panel (bay) length and width  a = 7.5 m  

Young’s Modulus for concrete  E = 35.5 x 10
9
 

thickness of floor (plate)  h = 0.25 

Mass per unit area   = 2400 x 0.25  

Poisson's ratio   = 0.2 

Number of half waves along horizontal axis  i = 1 

Number of half waves along vertical axis j = 1 

(i = j = 1 defines the fundamental mode) 

On this floor the lowest measured frequency was   8.54Hz. 

Measured frequencies of the central bays were   11.96Hz 

 

Consider a 7.5 x 7.5 m plate with various support 

arrangements.  The frequency determined using the 

Cardington data is evaluated using theoretical formula 

[2]. 

The natural frequency of plate with corner supports:  

 

3

2 2

7.12

2 12 (1 )

Eh
f

a
 (7) 

f = 5.707 Hz 

 

The natural frequency of plate with simple supports 

 

2
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(8) 

 = 4.443 

 

2 3

2 22 12 (1 )
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f
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(9) 

f = 15.822 Hz 

 

The natural frequency of equivalent fully clamped plate is 

 

3

2 2

35.99

2 12 (1 )
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f
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(10) 

f = 28.847 Hz 

 

It can be seen that the lowest measured frequency 

(8.54 Hz) is between that of a plate with corner supports 

and a simple supported plate.  This is not unreasonable 

given the fact that the measured frequency is mainly 

motion of a corner section of the floor which may be 

considered to have four corner supports plus one simply 

supported edge (where it is attached to the rest of the floor 

area).  The centre bays have predominant frequencies of 

11.96 Hz, which is nearer to the frequency of the simply 

supported plate.   

However, the main point to be gained from these 

simple examples is the importance of the boundary 

conditions, which have an enormous influence on the 

frequencies (and stiffness) and hence the floors response 

to dynamic loads.  It will be shown later that the boundary 

conditions also have an enormous influence on strength.  

These are just simple plates; the situation becomes more 

complicated for the multi-bay flooring systems commonly 

used for modern office floors. 

 

Table 5.  The frequencies of the 8 lowest frequency modes of the various plates 

 1 2 3 4 5 6 7 8 

Plate 1 5.681 13.113 13.113 16.503 31.217 36.231 41.387 41.387 

Plate 2 15.653 39.031 39.478 62.568 78.483 78.897 101.211 102.397 

Plate 3 28.845 58.805 58.805 86.759 105.466 105.929 132.361 132.361 

Plate 4 6.618 13.285 14.896 30.335 33.373 39.676 49.233 58.446 

Plate 5 6.432 6.619 13.286 13.857 14.896 15.573 20.760 30.335 

Plate 6 6.411 6.619 7.503 13.342 14.076 14.436 14.452 16.920 

Plate 7 7.055 7.055 7.810 8.323 14.106 14.106 14.48 16.060 

Plate 8 7.254 7.265 7.629 7.679 7.898 7.923 8.769 8.843 

 

Table 6.  Static and dynamic stiffnesses for various plates 

Plate 
‘A’ Point stiffness 

x 10
6 
N/m 

‘B’ Modal stiffness 

x 10
6 
N/m 

A/B 

1. One bay + corner supports             21.28           24.81 0.858 

2. One bay + simple supports             74.07           79.68 0.930 

3. One bay + encastré supports           153.14         182.5 0.839 

4. Two bay + plus Z restraints 

    on the inner two columns  
27.47 61.41 0.447 
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FE analysis of plates 
Following a similar approach to that adopted with the 

simple beam, consider an FE model of the same floor.  

Here the FEA program LUSAS is used and in this 

example thin plate elements are used in the modelling, 

with the plate being divided into 100 elements.  The 

following plates were considered. 

Plate 1, One bay plate (7.5. x 7.5 m) corner supports only, 

one pinned, one YZ restraint, one XZ restraint, one Z 

restraint. 

Plate 2, One bay, corner supports, & 4 sides simply 

supported. 

Plate 3, One bay, corner supports & 4 sides encastré 

Plate 4. One bay, corner supports + one side simply 

supported. 

Plate 5.  Two bay plate (15m x 7.5m) corner supports plus 

Z restraints on the inner two columns  

Plate 6.  Three x one bay plate (22.5m x 7.5m) corner 

supports plus intermediate Z restraints 

Plate 7. Two x two bay plate (15m x 7.5m) corner 

supports plus intermediate Z restraints 

Plate 8. Four x three bay plate (30m x 22.5m) corner 

supports plus intermediate Z restraints 

The frequencies were derived for the 8 lowest 

frequency modes in each example and these are given in 

Table 5. 

From Table 5 it can be appreciated that the 

fundamental modes of the single bay plates align with the 

calculations using the simple formula.  The multi-bay 

examples show far more complex behaviour, with ‘bands’ 

of modes being present, ie the single bay has a distinct 

fundamental frequency, the two bay system has a second 

mode at a frequency close to the fundamental, the three 

bay system has three modes in this band etc. 

 

STATIC AND MODAL STIFFNESSES OF PLATES 

Following the development adopted with the beam 

example, consider both static and dynamic stiffnesses of 

some of the above examples. 

Plate 1, One bay plate with corner supports 

Static point stiffness is 21.28 x 10
6
,  UDL stiffness is 

33.22 x 10
6
 

From FE modelling ²= 0.577, hence the modal mass of 

the plate/floor is 7.5 x 7.5 x 2400 x 0.25 x 0.577 = 

19473.75.  Thus given the frequency of 5.681 Hz, the 

modal stiffness is 19473.75 x (2 x  x 5.681)² = 24.81 x 

10
6
 N/m,  

Plate 2, One bay plate with corner supports + simple 

supports on 4 sides 

Static point stiffness is 74.07 x 10
6
,  UDL stiffness is  

241.13 x 10
6
 

With the simply supported case the mode shape is well 

defined hence ² 

 
1 1

2 2 2

0 0

sin .sin . . 0.25x y dy dx

 

(11) 

 

Hence the modal mass of the plate/floor is 7.5 x 7.5 x 

2400 x 0.25 x 0.25 = 8237.5.  Thus, given the frequency 

of 15.653 Hz, the modal stiffness is 8237.5 x (2 x  x 

15.653)² =79.68 x 10
6
 N/m,  

From the FE model, and quick evaluation of the modal 

parameter, ²= 0.2534 

Therefore this suggests a similar relationship between 

static and modal stiffness as seen for the simple beam. 

Plate 3, One bay plate with corner supports + encastré 

supports on 4 sides 

Static point stiffness is 153.14 x 10
6
,  UDL stiffness is 

675.68 x 10
6
 

From FE modelling ²=0.1646, hence the modal mass of 

the plate/floor is 7.5 x 7.5 x 2400 x 0.25 x 0.1646 = 

5555.25.  Thus given the frequency of 28.845Hz, the 

modal stiffness is 5555.25x (2 x  x 28.845)² = 182.5 x 

10
6
 N/m, 

Plate 5 Two bay plate corner supports plus Z restraints 

on the inner two columns  

Here is a two panel system 

For the first mode the frequency is 6.432 Hz and ²=0.557 

For the second mode the frequency is 6.619 Hz and ²= 

0.541 

As with the beam, these are acting in the same direction 

on one half of the plate but in opposite directions on the 

other half of the plate. 

 

Evaluating stiffness gives 
Mode 1   k1 = 2 x 7.5 x 7.5 x 2400 x 0.25 x 0.557 x (2 

x  x 6.432)² =  61.41 x 10
6
 N/m, 

Mode 2   k2 = 2 x 7.5 x 7.5 x 2400 x 0.25 x 0.594 x (2 

x  x 6.619)² =  69.35 x 10
6
 N/m, 

Suppose a unit load were applied at the centre of one 

of the bays.  From the above, the displacement where the 

load was applied would be approximately  

1/k1+1/k2 = (1.628 + 1.442) x 10
-8

 = 3.070 x 10
-8

 

And the displacement in the centre of the panel where the 

load was not applied would be approximately  

1/k1-1/k2 = (1.628 - 1.442) x 10
-8

 = 0.186 x 10
-8

 

Calculating the same values with the FE program 

gives 3.64 x 10
-8

 and 0.101 x 10
-8

.  These are not exactly 

the same as the above values; hence some higher modes 

would have to be considered for a better correlation.  The 

point stiffness at the load position is the inverse of the 

displacement that equals 27.47 x 10
6
 N/m. The static 

point and modal stiffnesses for the four plates are 

summarised in Table 6. 

From Table 6 it can be appreciated that although the 

point static stiffness and modal stiffness are similar for 

the single bay system, whatever the boundary conditions, 

for multi-bay system this similitude disappears.  This is a 

similar concept to that demonstrated with the simple 

beam.  

CONCLUSIONS 

The analysis of simply supported beam are as follows: 

The number of modes considered increases the difference 

between total modal displacement and the static 

displacement decreases. 

The first mode dominated the sum of the modal 

displacement. 

The analysis that has been undertaken on the plates 

illustrates two key points. 
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The boundary conditions for the plates have a significant 

effect on the structural stiffness and frequencies.  The 

static and modal stiffnesses are affected equally. 

The number of bays, does not affect the fundamental 

frequency significantly, although it does produces bands 

of modes.  This is reflected in large differences between 

static and dynamic stiffness. 

It is therefore apparent that measurements of both 

static and dynamic stiffness can both provide useful 

information on the elastic behaviour of a structure. 
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