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INTRODUCTION 

Reinforced concrete (RC) structures are popular due to 

their stability, ductility, and material availability [1]. One 

issue with RC structures is their low strength-to-weight 

ratio [2]. The weight imposes extra loads on the columns 
and foundations, leading to larger sections [3]. 

One way of reducing the weight of an RC member is 

to embed lightweight materials in it. The lightweight 

materials create voids in the member and change its 

sectional properties. This subsequently affects the 

member’s structural performance. Concrete removal can 

reduce a member's stiffness, load capacity, and ductility [4] 

– [6]. It also quickens the formation and growth of cracks 

[3], [7] and reduces the shear resistance of the member [8]. 

Nonetheless, by incorporating lightweight materials, 

concrete's efficiency can be increased [9], [10]. 
To reduce the negative effects on the member's 

performance, lightweight materials should be strategically 

placed, concrete removal should be limited, and 

appropriate shapes should be used. Lightweight materials 

were suggested to be placed in the tension zone of a 

bending member, which is the low-stressed zone [11]. In 

previous studies, the concrete replacement in beams and 

slabs barely exceeded 20% and 30% respectively [12]. 

Sharp edges and pointed corners should be avoided to 

prevent stress concentration in the member [9], [13], [14]. 

Table 1 summarises previous studies on reducing the 

weight of RC members. There were two methods 

identified: creating voids or embedding lightweight 

materials. These materials were larger than the aggregates 

used in the concrete mix [12]. Some common shapes were 

spheres, cubes, and ellipsoids. There have been studies on 

individual beams and slabs, but none on beam-and-slab 
systems. 

In this study, polystyrene spheres were used as 

lightweight materials to be embedded in RC members 

comprising beams and slabs. The members' behaviour and 

the effects of polystyrene spheres were investigated. The 

members were later evaluated for feasibility based on a set 

of criteria. 

Table 1: Materials used to reduce the weight of RC 

members 

Methods Beam Slab 

Creating 
voids in a 
member 

PVC pipe [15] - 
[23] 

High-density 
polyethylene (HDPE) 
[24] - [26] 

Plastic ball or void 

former [27] - [31] 

Plastic [32] - [37] 

Plastic bottle [38], 
[39] 

Glass fiber plastic 
[32] 

Seeding tray [40] recycled plastic [34], 
[41] 

 Paper tube [42] 

Embedding 
lightweight 
in a member 

Polystyrene spheres 
[4], [43] 

Styropor / polystyrene 
[7], [12], [33], [44], 
[45] 
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Table 1: Materials used to reduce the weight of RC 

members 

 
Methods Beam Slab 

 Polystyrene block 
[10], [13], [46], [47] 

Industrial sponge [48] 

Foamed concrete 

infill [49] 

 

Polypropylene 
Plastic Sheet [50] 

 

 

METHODS AND MATERIALS 

A. SPECIMENS 

Four specimens were fabricated. Each specimen was made 

up of two beams and a slab (Figure 1). Polystyrene spheres 

were put in the beams and the slabs in various combinations 
(Table 2). The details are given in Table 3. The spacings 

between polystyrene spheres in the beam and the slab were 

10 mm and 50 mm, respectively.  

The specifications of the materials are as follows: 

• Concrete: C20/25 grade, designed slump = 100 mm to 

180 mm 

• Reinforcements: nominal yield strength for T10 and 

T12 steel bars = 500 N/mm2, nominal yield strength for 

R6 shear links = 250 N/mm2 

The specimens were cast in timber formworks (Figure 

2). Steel reinforcements and polystyrene spheres were 
prepared and properly arranged in the formwork. Ready-

mixed concrete was used to cast the specimens. For curing, 

water was sprayed on the specimens before covering them 

with plastic sheets. The specimens were tested after the 

28th day of casting. 

 

 

 

Figure 2 Details of the specimen (dimensions in mm) 

Table 3: Details of specimens’ parts 

 Beam Slab 

Dimension 175 mm x 300 mm 200 mm x 400 mm 

Concrete cover 25 mm 20 mm 

Reinforcements 2T10 (top),  
2T12 (bottom),  

R8-150 (stirrup) 

4T10 
(longitudinal),  

T10-200 
(transverse) 

Sphere diameter 100 mm 125 mm 

Sphere location Centroid of section 40 mm from soffit 

Spacing 
between spheres 

10 mm 50 mm 

Nos. of sphere 14 units x 2 rows 9 units x 2 rows 

 
B. TEST SETUP 

Each specimen was tested under a four-point load setup 

(Figure 3). At a clear span of 1500 mm, the specimen was 

simply supported. An incremental load was applied to the 

specimen using a hydraulic jack. The load acted on the 

specimen at two points, spaced at 260 mm. To measure the 

load and displacement, a load cell and three Linear 

Variable Differential Transformers (LVDT) were 

employed (Table 4). These devices were linked to a data 
logger to collect data.  

 

Figure 1 Details of the specimen (dimensions in mm) 

Table 2: Configuration of the specimens 

 

Specimen 

Beam Slab 

Description 

Diameter of 

polystyrene 

spheres, dp,b 

(mm) 

Nos. of 

polystyrene 

spheres, np,b 

(units) Description 

Diameter of 

polystyrene 

spheres, dp,s 

(mm) 

Nos. of 

polystyrene 

spheres, np,s 

(units) 

CBS1 Solid 0 0 Solid 0 0 

CBS2 Lightweight 100 28 Solid 0 0 

CBS3 Solid 0 0 Lightweight 125 18 

CBS4 Lightweight 100 28 Lightweight 125 18 

 

 
 

 

 

 

Formworks 

Polystyrene 

sphere  

Reinforcement  
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Figure 3 Test setup 

 

 Table 4: Test equipment and instrument 

Equipment 
/ instrument 

Model Capacity Accuracy 

Hydraulic 
Jack 

Enerpac RR-
10018 

933 kN 
load 

- 

Hydraulic 
Pump 

Enerpac P-462, 
Two-Speed Steel 

Hand Pump 

700 bar 
operating 
pressure 

- 

LVDT TML CDP-100 100 mm 
stroke 

± 0.01 mm 

Load Cell THL CLJ-

300KNB 

Capacity 

300kN 

± 0.1 kN 

Data logger TML TDS-630 50 
Channels 

0.1s 
measurement 

speed 

 

C. TEST PROCEDURE 

Before the test, a preload of roughly 10% of the specimen's 

estimated load capacity was applied to the specimen twice. 

The load was held for 5 minutes before being released. The 

specimen was rested for 1 minute before the next preload. 

This process was done as a safety measure to check the test 
setup and the measuring devices. 

The test began by setting all readings to zero. The load 

was gradually raised at 5 kN or 0.5 mm intervals, 

whichever occurred first. The load was held for 1 minute 

before readings were taken. The load-displacement 

response and the surface cracks of the specimen were 

monitored during the test. The test was stopped after 

several consecutive drops in the load capacity. 

 

 

RESULTS AND DISCUSSIONS  

A. MATERIALS PROPERTIES 

Table 5 and Table 6 present the material properties of the 

specimens. The concrete strength was higher than the 

designed cube strength of 25 N/mm2. The reinforcements 

and shear links also met their nominal strengths of 500 
N/mm2 and 250 N/mm2, respectively. The material quality 

was considered acceptable. 

 

Table 5: Compressive strength of concrete 

 
Specimen 

Compressive Strength 
(N/mm2) 

Average Compressive 
Strength, fcu (N/mm2) 

Cube 1 Cube 2 

CBS 1 25.3 25.7 25.5 
CBS 2 25.0 25.2 25.1 
CBS 3 26.9 26.6 26.8 
CBS 4 26.3 26.5 26.4 

 

Table 6: Yield strength of reinforcements 

Bar 
Diameter 

(mm) 

Yield Strength (N/mm2) Average Yield 
Strength,  

fy (N/mm2) 
S1 S2 S3 

6 290 279 285 284.7 
10 640 635 638 637.7 
12 670 660 650 660.0 

Note: S1, S2, and S3 represented three reinforcement bar 

samples 

 

B. GEOMETRICAL PROPERTIES 

Embedding polystyrene spheres in the specimen altered its 

geometrical properties. This is represented by the 

following ratios:  
a. The effective area ratio, Ra, depicts the effective 

concrete area of the specimen’s cross-section (Eqn. 

(1)). 

    𝑅𝑎 =
𝐴𝑐−𝐴𝑝

𝐴𝑐
   (1) 

Where Ac is the cross-sectional area of the entire 

section, mm2, and Ap is the total cross-sectional area of 

polystyrene spheres in the section, mm2. 

b. The effective volume ratio, Rv, represented the 

effective concrete volume of the entire specimen  

(Eqn. (2)). 

    𝑅𝑣 =
𝑉𝑐−𝑉𝑝

𝑉𝑐
    (2) 

Where Vc is the volume of the entire specimen, mm3, 

and Vp is the total volume of polystyrene spheres in the 
specimen, mm3. 

c. The effective moment of inertia ratio, Ri, is  

   𝑅𝑖 =
𝐼𝑝

𝐼𝑐
     (3) 

Where Ic is the moment of inertia of the section, mm4, 

and Ip is the moment of inertia of the specimen with 

polystyrene spheres, mm4. 

The moments of inertia of rectangular and circular sections 

are expressed in Eqn. (4) and Eqn. (5), respectively. 

    𝐼 =
𝑏ℎ3

12
     (4) 

    𝐼 =
𝜋𝑑2

64
     (5) 

 Where b is the width of a rectangular section, mm, h 
is the height of a rectangular section, mm, and d is the 

diameter of a circular section, mm. 

Specimen 

Hydraulic 

jack 
Load cell 

LVDT 
Hydraulic 

pump 

Data 

logger 

Suppor

t 

(b) Actual setup 

Load 

Load cell 

Steel roller 

Distribution 

beam 

Steel rocker LVDTs 

260 mm 

670 mm 260 mm 670 mm 

Specimen 

Effective span = 1500 mm 

(a) Schematic setup 
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 The moment of inertia of a section about an axis, Ii, 

can be determined by using Eqn. (6).  

   𝐼𝑖 = 𝐼 + 𝐴𝑑𝑦
2
    (6) 

 Where I is the local moment of inertia of a section, 
mm4, A is the area of a section, mm2, and dy is the distance 

between the centroid of a section with an axis, mm. 

 The moment of inertia of the entire specimen, Ip, is 

calculated by using Eqn. (7). 

  𝐼𝑝 = 2(𝐼𝑏 − 𝐼𝑝,𝑏) + (𝐼𝑠 − 𝐼𝑝,𝑠)   (7) 

 Where Ib is the moment of inertia of a solid beam, 

mm4, Is is the moment of inertia of a solid slab, mm4, Ip,b is 

the moment of inertia of polystyrene sphere in the beam, 

mm4, and Ip,s is the moment of inertia of polystyrene sphere 

in the slab, mm4. 

 These ratios (i.e., Ra, Rv, and Ri) were computed based 

on the following assumptions: 

• The polystyrene spheres were perfectly spherical and 

uniform in size. In this study, the polystyrene spheres 

were produced manually. 

• The polystyrene sphere centroids in the beams and slab 

were nicely aligned in a single sectional plane. This 

may not be the case if the spacing between the 

polystyrene spheres in the beam and the slab was 

uneven.  

• The concrete was homogenous. Thus, the effective 

volume ratio, Rv, may also be used to represent the 

specimen's effective weight. 

• The specimen's bending axis was located in the middle 

of the beam section. Therefore, the moment of inertia 

was calculated based on the axis. 
 From Table 7, the polystyrene spheres (a) occupied 

8% to 15% of the specimens’ cross-sections, (b) replaced 

5% to 11% of the concrete volume, and (c) lowered 1% to 

4% of the section's moment of inertia. Polystyrene spheres 

replaced a significant portion of the concrete, with no 

discernible reduction in the moment of inertia. 

 

C. LOAD-DISPLACEMENT RESPONSE 

The load-displacement responses of the specimens are 

shown in Figure 4. There were three major stages: pre-

yield, post-yield, and failure stages. The pre-yield and post-

yield stages represented the behaviour of the specimens 

before and after the yield point. The pre-yield stage can be 
further divided into the uncracked and cracked stages. The 

first crack marked the beginning of the cracked stage.  

The specimens’ stiffness was represented by the 

gradient of the load-displacement curves. The stiffness was 

the highest at the uncracked stage. It decreased slightly 

after the first crack and degraded further near the yield 

point. Before the yield point, the displacement was about 

proportionate to the load applied. The specimens reached 

their ultimate state as the load-displacement curve peaked. 

The beams sustained more tensile strain than the slab 

while bending. This can be seen from the crack pattern on 
the specimens. Cracks formed as the concrete’s strain limit 

was exceeded [15]. The first crack appeared at the mid-

span of the beam. It began at the soffit and then propagated 

deeper into the beam and extended to the slab. More cracks 

developed as the load was increased. The cracks were 

mostly flexural (Figure 5). The cracks narrowed down the 

uncracked section and weakened the bond between the 

concrete and the reinforcements. This subsequently 

deteriorated the specimen's stiffness. Excessive cracks 

capped the specimens' load capacity 

Table 7: Ratios representing the geometrical properties of specimens 

Specimen 

Area of 

polystyrene 

spheres, Ap 

(mm2) 

Effective 

area ratio, 

Ra 

Volume of 

polystyrene 

spheres, Vp (mm3) 

Effective 

volume ratio, 

Rv 

Effective 

moment of 

inertia of 

section, Ip 

(mm4) 

Effective 

moment of 

inertia ratio, Ri 

Ref.  Eq. 1  Eq. 2 Table 8 Eq. 3 

CBS1 0 1.00 0 1.00 1,254,166,667 1.00 

CBS2 15,708 0.92 14,660,766 0.95 1,244,349,190 0.99 

CBS3 12,272 0.93 18,407,769 0.94 1,208,358,166 0.96 

CBS4 27,980 0.85 33,068,535 0.89 1,198,540,689 0.96 

*Note: beam size = 175 x 300 mm2, slab size = 400 x 200 mm2, Cross section area of solid specimen, Ac = 185,000 

mm2, Volume of solid specimen, Vc = 296,000,000 mm3, Moment of inertia of solid specimen, Ic = 1,254,166,667 
mm4 

 

Table 8: Effective moment of inertia of specimen 

Specimen 

Moment of 

inertia of 

solid beam, 

Ib (mm4) 

Moment of 

inertia of 

solid slab, Is 

(mm4) 

Moment of inertia 

of polystyrene 

sphere in beam, 

Ip,b (mm4) 

Moment of inertia 

of polystyrene 

sphere in slab, Ip,s 

(mm4) 

Moment of 

inertia of 

section, Ip 

(mm4) 

Moment of 

inertia of solid 

specimen, Ic 

(mm4) 

Ref. Eq. 6 Eq. 6 Eq. 6 Eq. 6 Eq. 7 Eq. 7 

CBS1 393,750,000 466,666,667 0 0 1,254,166,667 1,254,166,667 

CBS2 393,750,000 466,666,667 4,908,739 0 1,244,349,190 1,254,166,667 

CBS3 393,750,000 466,666,667 0 45,808,501 1,208,358,166 1,254,166,667 

CBS4 393,750,000 466,666,667 4,908,739 45,808,501 1,198,540,689 1,254,166,667 
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Figure 4 Load-displacement response 

Figure 5 Crack pattern of specimens 

 

CBS1 CBS2 

CBS3 CBS4 

(a) Specimen CBS1 (b) Specimen CBS2 

(c) Specimen CBS3 (d) Specimen CBS4 

Table 9 Test results 

Specimen 

First crack 
load, Pcr 

(kN) 

First crack 
displacement, 

δcr (mm) 

Secant 
stiffness, S 
(kN/mm) 

Yield 
load, Py 

(kN) 

Yield 
displacement, 

δy (mm) 

Ultimate 
load, Pu 

(kN) 

Ultimate 
displacement, 

δu (mm) 
Ductility 
ratio, Δ 

CBS1 79.2 1.35 47.0 262.9 6.34 298.0 9.88 1.56 
CBS2 69.0 1.84 35.6 251.3 7.82 278.4 10.42 1.33 
CBS3 71.3 1.38 36.4 253.5 8.05 292.9 12.00 1.49 
CBS4 75.4 1.64 36.8 229.0 6.95 255.9 9.93 1.43 
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The effects of polystyrene spheres can be seen by 

comparing CBS2, CBS3, and CBS4 to CBS1. These 

specimens had polystyrene spheres in various parts, 

whereas CBS1 was completely solid. They had a lower first 

crack load and stiffness than CBS1. CBS2 (i.e., lightweight 

beams and solid slab) was the most affected specimen of 

all. Its first crack load and stiffness were reduced by 13% 

and 24%, respectively. The polystyrene spheres removed 

the concrete, which subsequently reduced the specimens' 
ability to resist deformation. This accelerated the tensile 

strain and quickly initiated the crack. 
 Among the specimens, CBS1 was the strongest. This 

was followed by CBS3, CBS2, and CBS4. This can be 

observed from the yield and ultimate loads of the 

specimens (Table 9). As a solid section, CBS1 had the 

greatest moment of inertia (Table 8). This improved its 

load-bearing capacity. Conversely, CBS4 (i.e., lightweight 

beams and slab) had the largest area occupied by 

polystyrene spheres (Ra = 0.85, Table 7). The moment of 

inertia was consequently reduced. As a result, it had the 
lowest yield and ultimate load of all. 

CBS2 (i.e., lightweight beams and solid slab) was 

weaker than CBS3 (i.e., solid beams and lightweight slab) 

despite having a greater moment of inertia. Its polystyrene 

spheres were embedded in the beams, whereas CBS3's 

were in the slab. According to [11], the beams with 

embedded polystyrene spheres were less effective than the 

slabs. This was also due to CBS2's smaller spacing between 

polystyrene spheres than CBS3. This spacing formed the 

ribs in the specimen. They helped distribute stress in the 

specimen [33]. The smaller ribs in CBS2 were ineffective 
at spreading stress from the high-stress regions. This, to 

some extent, affected the specimen's load capacity. 

 

FEASIBILITY EVALUATION 

The specimens were evaluated for feasibility in various 

aspects. The preferred states of specimens are outlined as 

follows:  

a. C1: The cocrete volume governs its weight, whereas 

the moment of inertia influences bending resistance. 

The weight decrease imposed by the polystyrene 

spheres should, ideally, have no substantial effect on 

the bending resistance. On this basis, the effective 

moment of inertia ratio, Ri, should be greater than the 

effective volume ratio, Rv. Thus, the geometry ratio, 

Rg, should be greater than 1.0. 

 𝑅𝑔 =
𝑅𝑖

𝑅𝑣
> 1.0    (8) 

Where, Ri is the effective moment of inertia ratio of the 
specimen, and Rv is the effective volume ratio of the 

specimen. 

b. C2: The polystyrene spheres should increase the 

material's efficiency in the specimen. The specimens 

should have a higher strength per unit of concrete than 

the solid specimen. Hence, the efficiency ratio, Re, 

should be at least 1.0.  

   𝑅𝑒 =
𝐸𝑖

𝐸𝑐
≥ 1.0    (9) 

Where Ei is the strength per unit concrete volume of 

the specimen, kN/mm3, Ec is the strength per unit 

concrete volume of the solid specimen, kN/mm3. 

c. C3: The specimens with polystyrene spheres should 

have a comparable strength to the solid specimen. 

Their load capabilities should be higher than the solid 

specimen's. Therefore, the strength ratio, Rs, should be 
greater than 1.0.  

   𝑅𝑠 =
𝑃𝑢,𝑖

𝑃𝑢,𝑐
≥ 1.0    (10) 

Where Pu,i is the ultimate load of the specimen, kN, 

and Pu,c is the ultimate load of the solid specimen, kN. 

d. C4: The yield point defines the service load of a 

specimen. The service load should not be too low 

compared with the load capacity. It governs the 

specimen's design strength. To minimised the non-

usable strength, the serviceability ratio, Rsv, should be 

at least 0.75 [52], [53].  

   𝑅𝑠𝑣 =
𝑃𝑦

𝑃𝑢
≥ 0.75    (11) 

Where Py is the yield load of the specimen, kN, and Pu 

is the ultimate load of the solid specimen, kN. 

e. C5: The specimen should exhibit ductile behaviour for 
survival purposes. For structural application in low to 

moderate seismic zones, the ductility ratio, Δ, should 

be at least 4.0 [4], [52], [54] - [56]. 

   Δ =
𝛿𝑢

𝛿𝑦
≥ 4.0    (12) 

Where δu is the ultimate displacement of the specimen, 

mm, and δy is the yield displacement of the specimen, 

mm  

Table 11 evaluates the specimens against Criteria C1 to 
C5. None of the specimens met all the requirements. CBS1 

performed the best overall. It fulfilled four out of five 

criteria. Its ductility was inadequate. However, this 

specimen was entirely solid, and it offered no weight 

reduction. 

CBS3 was the second-best option. It met three out of 

the five criteria. The specimen had polystyrene spheres 

embedded in slabs. Concrete was the most efficiently used. 

The efficiency ratio, Re, was the highest of all. Its strength 

ratio, Rs, was the closest to 1.0. Although the ductility ratio 

was slightly lower than the solid specimen, CBS3’s 
ultimate displacement was the largest of all (Table 9). 

Nevertheless, the ductility was still insufficient. 

CBS2 and CBS4 performed poorly. They only met two 

of the criteria. Polystyrene spheres reduced the weight and 

Table 10 Description of the test results 

Results   Description 

First crack load, 
Pcr 

The load when the first crack was 
noticed (Figure 5).  

First crack 

displacement, δcr 

The slab’s deflection upon the first 

crack (Figure 4).  
Secant stiffness, 
Ss 

The stiffness representing the pre-yield 
response of the specimen. It was taken 
as the slope of the line intercepting the 
point 0.75Pu (Figure 4). 

Yield point (Py, 
δy) 

The point marks the end of elastic 
deformation. It was determined using 
the 0.75Pu line following Park (1988) 
[51] (Figure 4). 

Ultimate load, Pu The largest load sustained by the 
specimen (Figure 4). 

Ultimate 
displacement, δu 

The deflection of the specimen at 
ultimate state (Figure 4). 

Ductility ratio, Δ  An index quantifying the ductility of 
the specimen. It was computed by 
dividing the ultimate displacement, δu, 
by the yield displacement, δy.  
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load capacity of CBS4 by 11% and 14%, respectively. The 

efficiency ratio, Re, was less than 1.0. Polystyrene spheres 

were ineffective in the beams of CBS2. The specimen had 
an efficiency ratio of less than 1.0. It was also 7% weaker 

than the solid specimen. 
 

CONCLUSIONS 

In this study, polystyrene spheres were used to replace 5% 

to 11% of the concrete in an RC system comprising beams 

and slab. Polystyrene spheres worked well in the slab but 

not in the beams. Embedding polystyrene spheres in the 

slab increased its effectiveness by 5%. When polystyrene 

spheres were placed in the beams or in the beams and slab, 

the performance dropped. The material's efficiency 

declined by 2% to 4%, and the load capacity decreased by 

7% to 14%. 

The specimens' feasibility was evaluated using five 
criteria. None of the specimens met all of the requirements. 

The specimens lacked ductility. Despite its superior 

efficiency, embedding polystyrene spheres in the slab was 

the second-best option after the solid specimen. 

Polystyrene spheres appeared to inevitably reduce the 

specimen’s strength in the current design. The shape and 

dimension of the polystyrene in the specimen could be 

modified to see if the structural performance can be further 

improved. The slab's span could be expanded to further 

improve system efficiency. 
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