NUMERICAL INVESTIGATION OF GEOPOLYMER REINFORCED CONCRETE BEAMS UNDER FLEXURAL LOADING USING 3DNLFEA
Abstract
Keywords
Full Text:
PDFReferences
J. Lehne and F. Preston, “Making Concrete Change: Innovation in Low-carbon Cement and Concrete,” London, 2018.
J. Davidovits, Geopolymer Cement. 2013.
A. M. Fernández-Jiménez, A. Palomo, and C. López-Hombrados, “Engineering properties of alkali-activated fly ash concrete,” ACI Mater. J., 2006, doi: 10.14359/15261.
K. T. Nguyen, T. A. Le, and K. Lee, “Experimental study on flexural strength of reinforced geopolymer concrete beams,” Int. J. Civ. Environ. Eng., vol. 10, no. 4, pp. 516–520, 2016.
K. T. Nguyen, N. Ahn, T. A. Le, and K. Lee, “Theoretical and experimental study on mechanical properties and flexural strength of fly ash-geopolymer concrete,” Constr. Build. Mater., vol. 106, pp. 65–77, 2016, doi: 10.1016/j.conbuildmat.2015.12.033.
Y. Du, J. Wang, C. Shi, H. J. Hwang, and N. Li, “Flexural behavior of alkali-activated slag-based concrete beams,” Eng. Struct., vol. 229, 2021, doi: 10.1016/j.engstruct.2020.111644.
P. Saranya, P. Nagarajan, and A. P. Shashikala, “Behaviour of GGBS-dolomite geopolymer concrete short column under axial loading,” J. Build. Eng., vol. 30, 2020, doi: 10.1016/j.jobe.2020.101232.
P. Saranya, P. Nagarajan, and A. P. Shashikala, “Behaviour of GGBS-dolomite geopolymer concrete beam-column joints under monotonic loading,” Structures, vol. 25, 2020, doi: 10.1016/j.istruc.2020.02.021.
A. Ataei, M. A. Bradford, and X. Liu, “Experimental study of composite beams having a precast geopolymer concrete slab and deconstructable bolted shear connectors,” Eng. Struct., vol. 114, 2016, doi: 10.1016/j.engstruct.2015.10.041.
Uma, “Experimental investigation and analytical modeling of reinforced Geopolymer concrete beam,” Int. J. Civ. Struct. Eng., vol. 2, no. 3, 2012, doi: 10.6088/ijcser.00202030010.
D. Q. Pham, T. N. Nguyen, S. T. Le, T. T. Pham, and T. D. Ngo, “The structural behaviours of steel reinforced geopolymer concrete beams: An experimental and numerical investigation,” Structures, vol. 33, 2021, doi: 10.1016/j.istruc.2021.04.077.
B. Piscesa, M. M. Attard, A. K. Samani, and S. Tangaramvong, “Plasticity constitutive model for stress-strain relationship of confined concrete,” ACI Mater. J., vol. 114, no. 2, 2017, doi: 10.14359/51689428.
B. Piscesa, M. M. Attard, D. Prasetya, and A. K. Samani, “Modeling cover spalling behavior in high strength reinforced concrete columns using a plasticity-fracture model,” Eng. Struct., vol. 196, 2019, doi: 10.1016/j.engstruct.2019.109336.
B. Piscesa, M. Attard, A. Samani, and P. Suprobo, “Numerical Investigation on The Behavior of Concrete-Filled-Steel-Tube Column under Eccentric Loading,” Third Int. Conf. Civ. Eng. Res., no. August 1st-2nd 2017, 2017.
B. Piscesa, M. M. Attard, and A. K. Samani, “3D Finite element modeling of circular reinforced concrete columns confined with FRP using a plasticity based formulation,” Compos. Struct., vol. 194, 2018, doi: 10.1016/j.compstruct.2018.04.039.
M. M. Attard and S. Setunge, “Stress-strain relationship of confined and unconfined concrete,” ACI Mater. J., vol. 93, no. 5, 1996, doi: 10.14359/9847.
CIBFIP, CEB-FIP model code 1990: design code, no. 213–214. 1990.
Z. P. Bažant and E. Becq-Giraudon, “Statistical prediction of fracture parameters of concrete and implications for choice of testing standard,” Cem. Concr. Res., vol. 32, no. 4, 2002, doi: 10.1016/S0008-8846(01)00723-2.
P. Nath and P. K. Sarker, “Fracture properties of GGBFS-blended fly ash geopolymer concrete cured in ambient temperature,” Mater. Struct. Constr., vol. 50, no. 1, 2017, doi: 10.1617/s11527-016-0893-6.
DOI: http://dx.doi.org/10.12962/j20861206.v37i1.12095
Refbacks
- There are currently no refbacks.
Journal of Civil Engineering is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.