A Bibliometric Overview of Current States and Research Trends in Concrete-Filled Tube Columns
Abstract
Concrete-filled tube (CFT) columns have gained prominence in structural engineering for their exceptional load-bearing capacity and efficiency. This study conducts a bibliometric analysis of 1,154 publications from 2014 to August 2024, using data from the Scopus database and VOSviewer, to map research trends and key developments in CFT studies. Citation, co-citation, and co-authorship analyses identify influential publications, journals, authors, countries, and institutions. Findings highlight significant growth in research output and increasing focus on advanced modelling techniques, including machine learning. Emerging themes include integrating alternative materials such as Fiber-Reinforced Polymer (FRP), stainless steel, High-Performance Concrete (HPC), Recycled Aggregate Concrete (RAC), and Seawater Sea Sand Concrete (SWSSC), showcasing the potential of multi-material innovations. This analysis offers insights into current research directions and identifies gaps, suggesting that future work explore novel material combinations and advanced modelling approaches to enhance performance and drive innovation in CFT column studies.
Keywords
Full Text:
PDFReferences
Zhao, X.-L., & Han, L.-H. (2006). Double skin composite construction. Progress in Structural Engineering and Materials, 8(3), 93–102. https://doi.org/10.1002/pse.216
He, L., Zhao, Y., & Lin, S. (2018). Experimental study on axially compressed circular CFST columns with improved confinement effect. Journal of Constructional Steel Research, 140, 74–81. https://doi.org/10.1016/j.jcsr.2017.10.025
Omoregie, A. I., Ouahbi, T., Ong, D. E. L., & others. (2024). Perspective of hydrodynamics in microbial-induced carbonate precipitation: A bibliometric analysis and review of research evolution. Hydrology, 11(5), 61. https://doi.org/10.3390/hydrology11050061
Wang, Z.-B., Tao, Z., Han, L.-H., & others. (2017). Strength, stiffness and ductility of concrete-filled steel columns under axial compression. Engineering Structures, 135, 209–221. https://doi.org/10.1016/j.engstruct.2016.12.049
Tao, Z., Song, T.-Y., Uy, B., & others. (2016). Bond behavior in concrete-filled steel tubes. Journal of Constructional Steel Research, 120, 81–93. https://doi.org/10.1016/j.jcsr.2015.12.030
Lai, M. H., Song, W., Ou, X. L., & others. (2020). A path dependent stress-strain model for concrete-filled-steel-tube column. Engineering Structures, 211, 110312. https://doi.org/10.1016/j.engstruct.2020.110312
Wang, Y., Chen, J., & Geng, Y. (2015). Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns. Engineering Structures, 86, 192–212. https://doi.org/10.1016/j.engstruct.2015.01.007
Lai, M. H., & Ho, J. C. M. (2016). A theoretical axial stress-strain model for circular concrete-filled-steel-tube columns. Engineering Structures, 125, 124–143. https://doi.org/10.1016/j.engstruct.2016.06.048
Lai, M. H., & Ho, J. C. M. (2014). Confinement effect of ring-confined concrete-filled-steel-tube columns under uni-axial load. Engineering Structures, 67, 123–141. https://doi.org/10.1016/j.engstruct.2014.02.013
Sarir, P., Chen, J., Asteris, P. G., & others. (2021). Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Engineering with Computers, 37(1), 1–19. https://doi.org/10.1007/s00366-019-00808-y
Dong, C. X., Kwan, A. K. H., & Ho, J. C. M. (2015). A constitutive model for predicting the lateral strain of confined concrete. Engineering Structures, 91, 155–166. https://doi.org/10.1016/j.engstruct.2015.02.014
Li, Y. L., Zhao, X. L., Singh, R. K. R., & others. (2016). Experimental study on seawater and sea sand concrete filled GFRP and stainless steel tubular stub columns. Thin-Walled Structures, 106, 390–406. https://doi.org/10.1016/j.tws.2016.05.014
Ho, J. C. M., Ou, X. L., Chen, M. T., & others. (2020). A path dependent constitutive model for CFFT column. Engineering Structures, 210, 110367. https://doi.org/10.1016/j.engstruct.2020.110367
Gao, S., Zhao, G., Guo, L., & others. (2021). Utilization of coal gangue as coarse aggregates in structural concrete. Construction and Building Materials, 268, 121212. https://doi.org/10.1016/j.conbuildmat.2020.121212
ANSI/AISC 360-16 Specification for structural steel buildings. American Institute of Steel Construction.
ANSI/AISC 360-10 Specification for structural steel buildings. American Institute of Steel Construction.
GB 50936-2014 Technical code for concrete filled steel tubular structures. Architecture & Building Press (CABP), Beijing, China.
ANSI/AISC 360-22 Specification for structural steel buildings. American Institute of Steel Construction.
Han, L.-H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 211–228. https://doi.org/10.1016/j.jcsr.2014.04.016
Tao, Z., Wang, Z.-B., & Yu, Q. (2013). Finite element modelling of concrete-filled steel stub columns under axial compression. Journal of Constructional Steel Research, 89, 121–131. https://doi.org/10.1016/j.jcsr.2013.07.001
Giakoumelis, G., & Lam, D. (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60(7), 1049–1068. https://doi.org/10.1016/j.jcsr.2003.10.001
Han, L.-H., Yao, G.-H., & Tao, Z. (2007). Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Structures, 45(1), 24–36. https://doi.org/10.1016/j.tws.2007.01.008
Sakino, K., Nakahara, H., Morino, S., & others. (2004). Behavior of centrally loaded concrete-filled steel-tube short columns. Journal of Structural Engineering, 130(2), 180–188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
Schneider, S. P. (1998). Axially loaded concrete-filled steel tubes. Journal of Structural Engineering, 124(10), 1125–1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress‐strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804–1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
Huang, D., Lin, C., Liu, Z., & others. (2024). Compressive behaviors of steel fiber‐reinforced geopolymer recycled aggregate concrete‐filled GFRP tube columns. Structures, 66, 106829. https://doi.org/10.1016/j.istruc.2024.106829
Huang, D., Liu, Z., Ma, W., & others. (2023). Steel fiber-reinforced recycled aggregate concrete-filled GFRP tube columns: Axial compression performance. Construction and Building Materials, 403, 133143. https://doi.org/10.1016/j.conbuildmat.2023.133143
Lu, Y., Liu, Z., Li, S., & others. (2018). Bond behavior of steel fibers reinforced self-stressing and self-compacting concrete filled steel tube columns. Construction and Building Materials, 158, 894–909. https://doi.org/10.1016/j.conbuildmat.2017.10.085
Li, N., Lu, Y., Li, S., & others. (2020). Axial compressive behaviour of steel fibre reinforced self-stressing and self-compacting concrete-filled steel tube columns. Engineering Structures, 222, 111108. https://doi.org/10.1016/j.engstruct.2020.111108
Zhao, P., Huang, Y., Lu, Y., & others. (2022). Eccentric behaviour of square CFST columns strengthened using square steel tube and high-performance concrete jackets. Engineering Structures, 253, 113772. https://doi.org/10.1016/j.engstruct.2021.113772
Yan, Y., Lu, Y., Zong, S., & others. (2023). Numerical simulation and load-bearing capacity of concrete-filled steel tubes strengthened with CFRP grid-reinforced ECC under axial compression. Structures, 57, 105320. https://doi.org/10.1016/j.istruc.2023.105320
Liu, Z., Lu, Y., Li, N., & others. (2022). Experimental investigation and computational simulation of slender self-stressing concrete-filled steel tube columns. Journal of Building Engineering, 48, 103893. https://doi.org/10.1016/j.jobe.2021.103893
Huang, Y., Lu, Y., Li, S., & others. (2024). Experimental and analytical investigation on eccentric performance of circular CFST columns jacketed by concrete-filled square tube. Engineering Structures, 307, 117881. https://doi.org/10.1016/j.engstruct.2024.117881
Li, W., Liang, H., Li, S., & others. (2022). Analytical solution for predicting the interaction stress of axially loaded concrete-filled double-tube columns. Thin-Walled Structures, 179, 109579. https://doi.org/10.1016/j.tws.2022.109579
Jakab, M., Kittl, E., & Kiesslich, T. (2024). How many authors are (too) many? A retrospective, descriptive analysis of authorship in biomedical publications. Scientometrics, 129(3), 1299–1328. https://doi.org/10.1007/s11192-024-04928-1
Aboukhalil, R. (2014). The rising trend in authorship. The Winnower. https://doi.org/10.15200/winn.141832.26907
Choueiry, G. (2024). Does the number of authors matter? Data from 101,580 research papers. Quantifying Health. Available: https://quantifyinghealth.com/number-of-authors-of-research-papers/. Accessed: Aug. 8, 2024.
Hosseini, M., Lewis, J., Zwart, H., & others. (2022). An ethical exploration of increased average number of authors per publication. Science and Engineering Ethics, 28(3), 25. https://doi.org/10.1007/s11948-021-00352-3
Jang, H., Kim, K., Huh, S., & others. (2016). Increasing number of authors per paper in Korean science and technology papers. Science Editing, 3(2), 80–89. https://doi.org/10.6087/kcse.70
Ioannidis, J.P.A., Klavans, R., & Boyack, K.W. (2018). Thousands of scientists publish a paper every five days. Nature, 561, 167–169. https://doi.org/10.1038/d41586-018-06185-8
Papatheodorou, S.I., Trikalinos, T.A., & Ioannidis, J.P.A. (2008). Inflated numbers of authors over time have not been just due to increasing research complexity. Journal of Clinical Epidemiology, 61(6), 546–551. https://doi.org/10.1016/j.jclinepi.2007.07.017
Zou, P.X.W., & Wong, A. (2008). Breaking into China's design and construction market. Journal of Technology Management in China, 3(3), 279–291. https://doi.org/10.1108/17468770810916186
Fakharifar, M., & Chen, G. (2017). FRP-confined concrete filled PVC tubes: A new design concept for ductile column construction in seismic regions. Construction and Building Materials, 130, 1–10. https://doi.org/10.1016/j.conbuildmat.2016.11.056
Cao, V.V., Le, Q.D., & Nguyen, P.T. (2020). Experimental behaviour of concrete-filled steel tubes under cyclic axial compression. Advances in Structural Engineering, 23(1), 74–88. https://doi.org/10.1177/1369433219866107
Zheng, J., & Wang, J. (2018). Concrete-filled steel tube arch bridges in China. Engineering, 4(1), 143–155. https://doi.org/10.1016/j.eng.2017.12.003
Li, L. (2018). China's manufacturing locus in 2025: With a comparison of “Made-in-China 2025” and “Industry 4.0”. Technological Forecasting and Social Change, 135, 66–74. https://doi.org/10.1016/j.techfore.2017.05.028
ACI 318-19 Building code requirements for structural concrete.
British Standards Institution. EN 1994-1-1 Eurocode 4: Design of composite steel and concrete structures Part 1-1: General rules and rules for building.
Li, Y.L., Teng, J.G., Zhao, X.L., et al. (2018). Theoretical model for seawater and sea sand concrete-filled circular FRP tubular stub columns under axial compression. Engineering Structures, 160, 71–84. https://doi.org/10.1016/j.engstruct.2018.01.017
Wei, Y., Bai, J., Zhang, Y., et al. (2021). Compressive performance of high-strength seawater and sea sand concrete-filled circular FRP-steel composite tube columns. Engineering Structures, 240, 112357. https://doi.org/10.1016/j.engstruct.2021.112357
Lu, Y., Li, N., & Li, S. (2014). Behavior of FRP-confined concrete-filled steel tube columns. Polymers, 6(5), 1333–1349. https://doi.org/10.3390/polym6051333
Yu, T., Zhang, S., Huang, L., et al. (2017). Compressive behavior of hybrid double-skin tubular columns with a large rupture strain FRP tube. Composite Structures, 171, 10–18. https://doi.org/10.1016/j.compstruct.2017.03.013
Zhao, J. L., Yu, T., & Teng, J. G. (2015). Stress-strain behavior of FRP-confined recycled aggregate concrete. Journal of Composites for Construction, 19(3), 04014054. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000513
Ding, F.-x., Lu, D.-r., Bai, Y., et al. (2018). Behaviour of CFRP-confined concrete-filled circular steel tube stub columns under axial loading. Thin-Walled Structures, 125, 107-118. https://doi.org/10.1016/j.tws.2018.01.015
Teng, J.G., Zhao, J.L., Yu, T., et al. (2016). Behavior of FRP-Confined Compound Concrete Containing Recycled Concrete Lumps. Journal of Composites for Construction, 20(1), 04015038. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000602
Zhang, B., Teng, J.G., & Yu, T. (2017). Compressive Behavior of Double-Skin Tubular Columns with High-Strength Concrete and a Filament-Wound FRP Tube. Journal of Composites for Construction, 21(5), 04017029. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000800
Tam, V.W.Y., Wang, Z.-B., & Tao, Z. (2014). Behaviour of Recycled Aggregate Concrete Filled Stainless Steel Stub Columns. Materials and Structures, 47(1), 293-310. https://doi.org/10.1617/s11527-013-0061-1
Wang, F.-C., Han, L.-H., & Li, W. (2018). Analytical behavior of CFDST stub columns with external stainless steel tubes under axial compression. Thin-Walled Structures, 127, 756-768. https://doi.org/10.1016/j.tws.2018.02.021
Hassanein, M. F., & Kharoob, O. F. (2014). Analysis of circular concrete-filled double skin tubular slender columns with external stainless steel tubes. Thin-Walled Structures, 79, 23-37. https://doi.org/10.1016/j.tws.2014.01.008
Li, Y. L., Zhao, X. L., Singh Raman, R. K., et al. (2018). Axial compression tests on seawater and sea sand concrete-filled double-skin stainless steel circular tubes. Engineering Structures, 176, 426-438. https://doi.org/10.1016/j.engstruct.2018.09.040
Wang, F., Young, B., & Gardner, L. (2019). Experimental study of square and rectangular CFDST sections with stainless steel outer tubes under axial compression. Journal of Structural Engineering, 145(11), 04019139. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002408
Wang, F., Young, B., & Gardner, L. (2020). CFDST sections with square stainless steel outer tubes under axial compression: Experimental investigation, numerical modelling and design. Engineering Structures, 207, 110189. https://doi.org/10.1016/j.engstruct.2020.110189
Guo, L., Liu, Y., Fu, F., et al. (2019). Behavior of axially loaded circular stainless steel tube confined concrete stub columns. Thin-Walled Structures, 139, 66-76. https://doi.org/10.1016/j.tws.2019.02.014
Dai, P., Yang, L., Wang, J., et al. (2020). Compressive strength of concrete-filled stainless steel tube stub columns. Engineering Structures, 205, 110106. https://doi.org/10.1016/j.engstruct.2019.110106
Liao, F.-Y., Hou, C., Zhang, W.-J., et al. (2019). Experimental investigation on sea sand concrete-filled stainless steel tubular stub columns. Journal of Constructional Steel Research, 155, 46-61. https://doi.org/10.1016/j.jcsr.2018.12.009
Askari, S. M., Khaloo, A., Borhani, M. H., et al. (2020). Performance of polypropylene fiber reinforced concrete-filled UPVC tube columns under axial compression. Construction and Building Materials, 231, 117049. https://doi.org/10.1016/j.conbuildmat.2019.117049
Gupta, P. K., & Verma, V. K. (2016). Study of concrete-filled unplasticized poly-vinyl chloride tubes in marine environment. Proc. the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 230(2), 229-240. https://doi.org/10.1177/1475090214560448
Isleem, H. F., Jagadesh, P., Qaidi, S., et al. (2022). Finite element and theoretical investigations on PVC–CFRP confined concrete columns under axial compression. Frontiers in Materials, 9, 1055397. https://doi.org/10.3389/fmats.2022.1055397
Isleem, H. F., P, J., Ahmad, J., et al. (2022). Finite element and analytical modelling of PVC-confined concrete columns under axial compression. Frontiers in Materials, 9, 1011675. https://doi.org/10.3389/fmats.2022.1011675
Su, R., Li, X., & Xu, S.-Y. (2022). Axial behavior of circular CFST encased seawater sea-sand concrete filled PVC/GFRP tube columns. Construction and Building Materials, 353, 129159. https://doi.org/10.1016/j.conbuildmat.2022.129159
Kurtoglu, A. E., Hussein, A. K., Gulsan, M. E., et al. (2018). Mechanical investigation and durability of HDPE-confined SCC columns exposed to severe environment. KSCE Journal of Civil Engineering, 22(12), 5046-5057. https://doi.org/10.1007/s12205-017-1533-6
Bandyopadhyay, A., Samanta, A. K., & Paul, K. M. (2019). Assessment of axial capacity of RC stub column confined with unplasticized polyvinyl chloride pipe. Journal of The Institution of Engineers (India): Series A, 100(4), 535-546. https://doi.org/10.1007/s40030-019-00397-5
Abdulla, N. A. (2020). The behavior of concrete-filled plastic tube specimens under axial load. Jordan Journal of Civil Engineering, 14(1), 69-81
Su, R., Li, X., & Li, Z. (2023). Axial behavior of square CFST encased seawater sea-sand concrete filled PVC/GFRP tube columns. Steel and Composite Structures, 47(6), 781-794. https://doi.org/10.12989/scs.2023.47.6.781
Li, Y., Li, C., Yu, Z., et al. (2022). Behavior of BFRP strips confined PVC tubes with internal fillers under axial compressive load. Journal of Building Engineering, 58, 104999. https://doi.org/10.1016/j.jobe.2022.104999
Xiong, M.-X., Xiong, D.-X., & Liew, J.Y.R. (2017). Behaviour of steel tubular members infilled with ultra high strength concrete. Journal of Constructional Steel Research, 138, 168-183. https://doi.org/10.1016/j.jcsr.2017.07.001
Thai, H.-T., Uy, B., Khan, M., et al. (2014). Numerical modelling of concrete-filled steel box columns incorporating high strength materials. Journal of Constructional Steel Research, 102, 256-265. https://doi.org/10.1016/j.jcsr.2014.07.014
Chen, S., Zhang, R., Jia, L.-J., et al. (2018). Structural behavior of UHPC filled steel tube columns under axial loading. Thin-Walled Structures, 130, 550-563. https://doi.org/10.1016/j.tws.2018.06.016
Lu, Y., Li, N., Li, S., et al. (2015). Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Construction and Building Materials, 95, 74-85. https://doi.org/10.1016/j.conbuildmat.2015.07.114
Kim, C.-S., Park, H.-G., Chung, K.-S., et al. (2014). Eccentric axial load capacity of high-strength steel-concrete composite columns of various sectional shapes. Journal of Structural Engineering, 140(4), 04013091. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000879
Lai, M. H., Chen, M. T., Ren, F. M., et al. (2019). Uni-axial behaviour of externally confined UHSCFST columns. Thin-Walled Structures, 142, 19–36. https://doi.org/10.1016/j.tws.2019.04.047
Wei, J., Xie, Z., Zhang, W., et al. (2021). Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading. Engineering Structures, 230, 111599. https://doi.org/10.1016/j.engstruct.2020.111599
Tran, V.-L., Thai, D.-K., & Nguyen, D.-D. (2020). Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete. Thin-Walled Structures, 151, 106720. https://doi.org/10.1016/j.tws.2020.106720
Zhu, J.-Y., & Chan, T.-M. (2018). Experimental investigation on octagonal concrete filled steel stub columns under uniaxial compression. Journal of Constructional Steel Research, 147, 457–467. https://doi.org/10.1016/j.jcsr.2018.04.030
Nour, A. I., & Güneyisi, E. M. (2019). Prediction model on compressive strength of recycled aggregate concrete filled steel tube columns. Composites Part B: Engineering, 173, 106938. https://doi.org/10.1016/j.compositesb.2019.106938
Chen, Z., Xu, J., Xue, J., et al. (2014). Performance and calculations of recycled aggregate concrete-filled steel tubular (RACFST) short columns under axial compression. International Journal of Steel Structures, 14(1), 31–42. https://doi.org/10.1007/s13296-014-1005-5
He, A., Cai, J., Chen, Q.-J., et al. (2017). Axial compressive behaviour of steel-jacket retrofitted RC columns with recycled aggregate concrete. Construction and Building Materials, 141, 501–516. https://doi.org/10.1016/j.conbuildmat.2017.03.013
Shi, X.-S., Wang, Q.-Y., Zhao, X.-L., et al. (2015). Structural behaviour of geopolymeric recycled concrete filled steel tubular columns under axial loading. Construction and Building Materials, 81, 187–197. https://doi.org/10.1016/j.conbuildmat.2015.02.035
Geng, Y., Wang, Y., & Chen, J. (2015). Time-dependent behavior of recycled aggregate concrete-filled steel tubular columns. Journal of Structural Engineering, 141(10), 04015011. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001241
Lyu, W.-Q., Han, L.-H., & Hou, C. (2021). Axial compressive behaviour and design calculations on recycled aggregate concrete-filled steel tubular (RAC-FST) stub columns. Engineering Structures, 241, 112452. https://doi.org/10.1016/j.engstruct.2021.112452
Li, Y.-L., & Zhao, X.-L. (2020). Hybrid double tube sections utilising seawater and sea sand concrete, FRP and stainless steel. Thin-Walled Structures, 149, 106643. https://doi.org/10.1016/j.tws.2020.106643
Sun, J., Wei, Y., Wang, Z., et al. (2021). A new composite column of FRP-steel-FRP clad tube filled with seawater sea-sand coral aggregate concrete: Concept and compressive behavior. Construction and Building Materials, 301, 124096. https://doi.org/10.1016/j.conbuildmat.2021.124096
Li, P., Zhou, Y., Yang, T., et al. (2021). Axial compressive behavior of seawater sea-sand recycled aggregate concrete-filled double-skin non-corrosive tubular columns with square cross-section. Thin-Walled Structures, 167, 108213. https://doi.org/10.1016/j.tws.2021.108213
Huang, Z., Zheng, K., Wei, Y., et al. (2023). Axial compressive behaviour of SWSSC-filled stainless steel tube columns with in-built CFRP or stainless steel tubes. Journal of Building Engineering, 72, 106543. https://doi.org/10.1016/j.jobe.2023.106543
Miao, K., Wei, Y., Dong, F., et al. (2023). Experimental study on concrete-filled steel tube columns with inner distributed seawater and sea sand concrete-filled fiber-reinforced polymer tubes under axial compression. Composite Structures, 320, 117181. https://doi.org/10.1016/j.compstruct.2023.117181
Liu, Z., Lu, Y., Li, S., et al. (2020). Flexural behavior of steel fiber reinforced self-stressing recycled aggregate concrete-filled steel tube. Journal of Cleaner Production, 274, 122724. https://doi.org/10.1016/j.jclepro.2020.122724
Lu, Y., Liu, Z., Li, S., et al. (2018). Axial compression behavior of hybrid fiber reinforced concrete filled steel tube stub column. Construction and Building Materials, 174, 96–107. https://doi.org/10.1016/j.conbuildmat.2018.04.089
Lu, Y.-Y., Li, N., Li, S., et al. (2015). Experimental investigation of axially loaded steel fiber reinforced high strength concrete-filled steel tube columns. Journal of Central South University, 22(6), 2287-2296. https://doi.org/10.1007/s11771-015-2753-x
Chen, J., Liu, X., Liu, H., et al. (2018). Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber. Steel and Composite Structures, 27(2), 193-200. https://doi.org/10.12989/scs.2018.27.2.193
Hu, H.-S., Yang, Z.-J., Xu, L., et al. (2023). Axial compressive behavior of square concrete-filled steel tube columns with high-strength steel fiber-reinforced concrete. Engineering Structures, 285, 116047. https://doi.org/10.1016/j.engstruct.2023.116047
Hu, J., Huang, Y., Li, W., et al. (2022). Compressive behaviour of UHPC-filled square high-strength steel tube stub columns under eccentric loading. Journal of Constructional Steel Research, 198, 107558. https://doi.org/10.1016/j.jcsr.2022.107558
Naji, A. J., Al-Jelawy, H. M., Hassoon, A., et al. (2022). Axial behavior of concrete filled-steel tube columns reinforced with steel fibers. International Journal of Engineering, 35(9), 1682-1689. https://doi.org/10.5829/ije.2022.35.09c.02
Mahgub, M., Ashour, A., Lam, D., et al. (2017). Tests of self-compacting concrete filled elliptical steel tube columns. Thin-Walled Structures, 110, 27-34. https://doi.org/10.1016/j.tws.2016.10.015
Liao, J., Li, Y.-L., Ouyang, Y., et al. (2021). Axial compression tests on elliptical high strength steel tubes filled with self-compacting concrete of different mix proportions. Journal of Building Engineering, 40, 102678. https://doi.org/10.1016/j.jobe.2021.102678
Qu, X., & Liu, Q. (2017). Bond strength between steel and self-compacting lower expansion concrete in composite columns. Journal of Constructional Steel Research, 139, 176-187. https://doi.org/10.1016/j.jcsr.2017.09.017
Gunawardena, Y., & Aslani, F. (2019). Behaviour and design of concrete-filled spiral-welded stainless-steel tube short columns under concentric and eccentric axial compression loading. Journal of Constructional Steel Research, 158, 522-546. https://doi.org/10.1016/j.jcsr.2019.04.013
Xu, L., Zhou, P., Chi, Y., et al. (2018). Performance of the high-strength self-stressing and self-compacting concrete-filled steel tube columns subjected to the uniaxial compression. International Journal of Civil Engineering, 16(9), 1069-1083. https://doi.org/10.1007/s40999-017-0257-9
Yu, F., Chen, L., Bu, S., et al. (2020). Experimental and theoretical investigations of recycled self-compacting concrete filled steel tubular columns subjected to axial compression. Construction and Building Materials, 248, 118689. https://doi.org/10.1016/j.conbuildmat.2020.118689
Lu, Y., Liu, Z., Li, S., et al. (2018). Bond behavior of steel-fiber-reinforced self-stressing and self-compacting concrete-filled steel tube columns for a period of 2.5 years. Construction and Building Materials, 167, 33-43. https://doi.org/10.1016/j.conbuildmat.2018.01.144
Liang, W., Dong, J. F., Yuan, S. C., et al. (2017). Behavior of self-compacting concrete-filled steel tube columns with inclined stiffener ribs under axial compression. Strength of Materials, 49(1), 125-132. https://doi.org/10.1007/s11223-017-9850-z
Yu, F., Fang, Y., Zhang, Y., et al. (2020). Mechanical behavior of self-stressing steel slag aggregate concrete filled steel tubular stub columns. Structural Concrete, 21(4), 1597-1611. https://doi.org/10.1002/suco.201900363
Xu, L., Pan, J., & Yang, X. (2021). Mechanical performance of self-stressing CFST columns under uniaxial compression. Journal of Building Engineering, 44, 103366. https://doi.org/10.1016/j.jobe.2021.103366
Liu, Z., Huang, D., Li, N., et al. (2022). Mechanical behavior of steel-fiber-reinforced self-stressing concrete filled steel tube columns subjected to eccentric loading. Structures, 45, 932-950. https://doi.org/10.1016/j.istruc.2022.08.118
Fang, H., & Visintin, P. (2022). Structural performance of geopolymer-concrete-filled steel tube members subjected to compression and bending. Journal of Constructional Steel Research, 188, 107026. https://doi.org/10.1016/j.jcsr.2021.107026
Ahmad, J., Yu, T., & Hadi, M. N. S. (2021). Behavior of GFRP bar reinforced geopolymer concrete filled GFRP tube columns under different loading conditions. Structures, 33, 1633-1644. https://doi.org/10.1016/j.istruc.2021.05.023
Ahmad, J., Ali, S., Yu, T., et al. (2021). Analytical investigation on the load-moment interaction behavior of the FRP reinforced geopolymer concrete filled FRP tube circular columns. Journal of Building Engineering, 42, 102818. https://doi.org/10.1016/j.jobe.2021.102818
Lokuge, W., Abousnina, R., & Herath, N. (2019). Behaviour of geopolymer concrete-filled pultruded GFRP short columns. Journal of Composite Materials, 53(18), 2555-2567. https://doi.org/10.1177/0021998319833447
Zheng, Y., Xiao, Y., Wang, C., et al. (2023). Behavior of square geopolymer recycled brick aggregate concrete filled steel tubular stub columns under axial compression. Construction and Building Materials, 363, 129823. https://doi.org/10.1016/j.conbuildmat.2022.129823
Liu, R., Wu, J., Yan, G., et al. (2023). Axial compressive behavior of geopolymer recycled brick aggregate concrete-filled steel tubular slender columns. Construction and Building Materials, 364, 130013. https://doi.org/10.1016/j.conbuildmat.2022.130013
Lu, S., Yang, J., Wang, J., et al. (2024). Analysis-oriented stress-strain model for concrete in steel tubed geopolymer concrete (STGC) columns. Journal of Building Engineering, 91, 109569. https://doi.org/10.1016/j.jobe.2024.109569
Kanwal, S., Khan, Q. S., Sheikh, M. N., et al. (2023). Axial compressive behaviour of GPC filled FRP tubes: Experimental and analytical investigations. Structures, 55, 650-663. https://doi.org/10.1016/j.istruc.2023.06.034
Alein, J. S., Reddy, Y. P. K., Vasugi, K., et al. (2018). Comparative study on crushing load of stainless steel tube infilled stub column. ARPN Journal of Engineering and Applied Sciences, 13(18), 4850-4859
Naser, M. Z., Thai, S., & Thai, H.-T. (2021). Evaluating structural response of concrete-filled steel tubular columns through machine learning. Journal of Building Engineering, 34, 101888. https://doi.org/10.1016/j.jobe.2020.101888
Nguyen, H. Q., Ly, H.-B., Tran, V. Q., et al. (2020). Optimization of artificial intelligence system by evolutionary algorithm for prediction of axial capacity of rectangular concrete filled steel tubes under compression. Materials, 13(5), 1205. https://doi.org/10.3390/ma13051205
Bardhan, A., Biswas, R., Kardani, N., et al. (2022). A novel integrated approach of augmented grey wolf optimizer and ANN for estimating axial load carrying-capacity of concrete-filled steel tube columns. Construction and Building Materials, 337, 127454. https://doi.org/10.1016/j.conbuildmat.2022.127454
Le, T.-T., Asteris, P. G., & Lemonis, M. E. (2022). Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques. Engineering with Computers, 38(4), 3283-3316. https://doi.org/10.1007/s00366-021-01461-0
Tran, V.-L., & Kim, S.-E. (2020). Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns. Thin-Walled Structures, 152, 106744. https://doi.org/10.1016/j.tws.2020.106744
Asteris, P. G., Lemonis, M. E., Le, T.-T., et al. (2021). Evaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modeling. Engineering Structures, 248, 113297. https://doi.org/10.1016/j.engstruct.2021.113297
Hou, C., & Zhou, X.-G. (2022). Strength prediction of circular CFST columns through advanced machine learning methods. Journal of Building Engineering, 51, 104289. https://doi.org/10.1016/j.jobe.2022.104289
Nguyen, M.-S., Thai, D.-K., & Kim, S.-E. (2020). Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network. Steel and Composite Structures, 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415
Duong, H. T., Phan, H. C., Le, T.-T., et al. (2020). Optimization design of rectangular concrete-filled steel tube short columns with Balancing Composite Motion Optimization and data-driven model. Structures, 28, 757-765. https://doi.org/10.1016/j.istruc.2020.09.013
Li, W., Wang, D., & Han, L.-H. (2017). Behaviour of grout-filled double skin steel tubes under compression and bending: Experiments. Thin-Walled Structures, 116, 307-319. https://doi.org/10.1016/j.tws.2017.02.029
Liang, H., Li, W., Huang, Y., et al. (2020). Axial behaviour of CFST stub columns strengthened with steel tube and sandwiched concrete jackets. Thin-Walled Structures, 155, 106942
DOI: http://dx.doi.org/10.12962%2Fj20861206.v40i2.22784
Refbacks
- There are currently no refbacks.
Journal of Civil Engineering is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.