Pengaruh Tipe Screen Printing dengan Teknik Double Cycle pada Lapisan TiO₂ sebagai Elektroda Kerja Dye Sensitized Solar Cell (DSSC)

Lutfi Furqoni,* Agus Supriyanto, dan Fahru Nurrosyid

Jurusan Fisika, FMIPA Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36 A, Surakarta 57126

Intisari

Dye Sensitized Solar Cell (DSSC) merupakan sel surya yang berpotensi besar di masa depan karena biaya fabrikasinya murah dan bahan dasarnya ramah lingkungan. Penelitian ini bertujuan untuk mengetahui pengaruh tipe *screen* pada lapisan TiO₂ sebagai elektroda kerja DSSC. Elektroda kerja DSSC berbasis TiO₂ difabrikasi dengan metode *screen printing double cycle. Screen* yang digunakan dalam deposisi TiO₂ memiliki tipe: T-49, T-55 dan T-61. Lapisan TiO₂ disintering pada temperatur 500°C. Struktur DSSC tersusun dari semikonduktor TiO₂ tersensitasi dye Ruthenium, larutan elektrolit dan counter elektroda platina. Lapisan TiO₂ diuji morfologinya dengan *Digital Camera Microscopy* (DCM), ketebalannya dengan *Scanning Electron Microscopy* (SEM), absorbansinya diuji dengan UV-Vis Spectrophotometer dan sifat listrik DSSC diuji dengan I-V Keithley Measurenment. Berdasarkan karakterisasi I-V diperoleh efisiensi terbesar pada sampel yang dideposisi dengan screen T-49 sebesar 0,47%.

Abstract

Dye sensitized Solar Cell (DSSC) is solar cell candidate having great potential in the future because low fabrication costs and basic material is good environmentally. This study aims to determine the effect of the type of screen on the TiO₂ layer as the working electrode DSSC. The working electrode in the TiO₂ based DSSC fabricated by the method of screen printing double layer. Screen used in the deposition of TiO₂ has the type: T-49, T-55 and T-61. TiO₂ layer in the sintering at a temperature of 500° C. DSSC structure composed of semiconductor TiO₂ tersensitasi Ruthenium dye and a platinum counter electrode. TiO₂ layer was tested morphology with Digital Camera Microscopy (DCM) and thickness with Scanning Electron Microscopy (SEM), while absorbance tested with UV-Vis Spectrophotometer and the electrical properties of DSSC tested with Keithley I-V Measurenment. Based on the characterization I-V obtained the greatest efficiency in the samples deposited by screen T - 49 was 0.47%.

KATA KUNCI: DSSC, TiO2, screen printing type

I. PENDAHULUAN

Matahari merupakan sumber energi yang belum optimal dimanfaatkan di Indonesia. Padahal Indonesia termasuk negara yang memiliki intensitas penyinaran yang cukup tinggi, karena Indonesia dilewati oleh garis khatulistiwa, oleh karena itu penting sekali pengkajian lebih mendalam mengenai sel surya (photovoltaic/solar cell). Sel surya merupakan piranti yang mampu mengkonversi energi matahari secara langsung menjadi energi listrik tanpa menghasilkan emisi gas buang apapun. Sel surya dalam perkembangannya di dunia telah mencapai 3 generasi, diantaranya sel surya semikonduktor berbahan silicon [1], sel surya lapisan tipis [2], dan sel surya berbasis Dye-Sensitized [3–5].

DSSC merupakan sel surya yang terdiri dari lapisan nanokristal berpori sebagai fotoanoda, pewarna dye sebagai penangkap sinar (fotosensitizer), cairan elektrolit redoks dan elektroda lawan (katoda) yang diberi lapisan katalis [5, 6]. Komponen DSSC yang berperan sebagai tempat menempelnya dye adalah bahan semikonduktor. Umumnya bahan semikonduktor yang dipergunakan adalah titanium dioxide (TiO₂). TiO₂ mempunyai *band gap* lebar yaitu sebesar 3,2 eV (energi celah) dengan rentang -1,2 eV - 2,0 eV. TiO₂ banyak digunakan karena memiliki karakteristik tidak mudah bereaksi (inert), tidak beracun, mudah diperoleh dan memiliki karakteristik optik yang baik [7]. Namun untuk aplikasinya dalam DSSC, TiO₂ harus memiliki permukaan yang luas sehingga dye yang teradsorbsi lebih banyak sehingga arus yang dihasilkan dapat meningkat [8–10].

Berbagai upaya telah dilakukan untuk meningkatkan efesiensi DSSC berbasis semikonduktor TiO_2 , misalnya penelitian yang dilakukan Yulika [11] bahwa metode deposisi lapisan TiO_2 dengan metode spin coating mampu menghasilkan efesiensi terbesar, dibandingkan dengan *slip casting*, *screen printing* dan spray. Hal ini disebabkan hasil deposisi dari spin coating tidak menimbulkan retakan yang besar. Setiap metode memiliki keunggulan dan kelemahan, misalnya metode screen printing meski efisiensi yang dihasilkan tidak sebesar metode spin coating, namun metode *screen printing* memilki beberapa keunggulan, diantaranya in-

^{*}E-MAIL: lutfipoenya99@gmail.com

vestasi peralatan yang terjangkau, proses fabrikasinya sederhana dan mampu digunakan untuk pembuatan DSSC dalam skala pabrik [12]. Tingkat ke efektifan metode *screen printing* ditentukan oleh ukuran lubang (mesh) pada *screen*, karena menentukkan banyaknya partikel TiO₂ yang dapat terdeposisi pada substrat. Hasil efesiensi diperoleh dengan menggunakan persamaan berikut:

$$\eta = \frac{P_{maks}}{P_{cahaya}} \times 100\% \tag{1}$$

dengan η adalah efisiensi (%), P_{maks} dan P_{cahaya} masingmasing daya maksimum dan daya input.

II. METODOLOGI

Penelitian ini menggunakan substrat kaca FTO merek Dyesol yang memiliki ketebalan 2 mm dan resistansi 7 Ω /sq. Substrat kaca FTO terlebih dahulu dibersihkan dengan ultrasonic cleaner selama 12 menit. Larutan yang digunakan untuk mencuci substrat diantaranya: DI water, acetone dan ethanol. Pasta TiO₂ dibuat dengan mencampurkan serbuk TiO₂ nanopartikel sebanyak 0,25 gram dan 1 ml ethanol ke dalam magnetic stirrer selama 60 menit agar terbentuk pasta TiO_2 dengan sifat homogen. Proses pelapisan TiO_2 ke substrat dilakukan dengan metode screen printing double layer. Pelapisan pasta TiO₂ dilakukan sebanyak 2 kali, sehingga diperoleh hasil lebih tebal tanpa retakan yang lebar [13]. Screen yang digunakan divariasi menjadi T-49, T-55 dan T-61. Pengelompokan tipe screen tersebut didasarkan pada klasifikasi mesh nya. Ukuran mesh pada screen menjadi penentu banyaknya partikel TiO2 yang dapat dideposisikan pada substrat. Screen T-49 memiliki diameter mesh sebesar 73 μ m sedangkan pada T-55 dan T-61 berturut- turut sebesar 65 μ m dan 64 μ m . Luas sel aktif TiO₂ sebesar 1 cm². Lapisan TiO₂ yang telah dideposisikan ke atas substrat, kemudian disintering dengan 500°C selama 10 menit. Proses sintering bertujuan agar molekul oksida dapat berikatan dengan sempurna membentuk gugus kimia yang nantinya digunakan untuk berikatan dengan molekul dye, selain itu proses sintering bertujuan agar molekul pelarut dapat menguap sehingga membentuk nanopori yang berfungsi sebagai tempat molekul dye berikatan dengan molekul TiO₂.

Proses pewarnaan dilakukan dengan merendam substrat terlapisi TiO₂ ke dalam dye Ruthenium N719 selama 24 jam. Elektroda lawan difabrikasi dengan menggunakan substrat kaca FTO yang dilapisi larutan katalis CELS *Counter Electrode Solution* merek Dyesol. Proses deposisi katalis dilakukan dengan metode tetesan, larutan katalis diteteskan ke substrat seluas 1 cm² dengan jarum suntik. Setelah terdeposisi, elektroda lawan disintering pada temperatur 420°C selama 10 menit. Struktur sandwich DSSC tersusun atas elektroda kerja TiO₂ tersensitisasi dye dan elektroda lawan. Ruang antar elektroda diinjeksikan larutan elektolit yang berfungsi sebagai recharge electron melalui reaksi redoks. Lapisan TiO₂ hasil deposisi kemudian diuji morfologinya dengan *Digital Camera Microscopy* (DCM) merek Nikon

Gambar 1: Hasil DCM lapisan TiO_2 dari (a) screen T-49, (b) screen T-55, (c) screen T61.

E200, ketebalannya diuji dengan *Scanning Electron Microscopy* (SEM), sedangkan absorbansinya diuji dengan UV-Vis Spectrophotometer Lambda25. Adapun sifat listrik DSSC diuji dengan I-V Keithley Measurenment.

III. HASIL DAN PEMBAHASAN

Pengujian Morfologi

Lapisan TiO₂ yang telah difabrikasi dengan metode screen printing, kemudian diuji morfologinya. Morfologi lapisan TiO₂ diperoleh dengan menggunakan *Digital Camera Microscopy* (DCM). Sampel yang diuji ada 3 macam. Setiap sampel divariasikan metode deposisinya, yaitu dengan screen: T-49, T-55 dan T-61. Hasil morfologi lapisan TiO₂ ditunjukkan pada Gambar 1.

Berdasarkan data yang diperoleh, lapisan TiO₂ yang di fabrikasi dengan screen tipe T-49 memiliki sisi warna yang lebih gelap dibandingkan yang lain. Warna gelap terjadi karena adanya penumpukan material TiO₂, sehingga membuat sebagian besar cahaya dari lampu microscopy terserap dan hanya sedikit yang diteruskan. Penumpukan material menunjukkan ketebalan dari suatu lapisan. Berdasarkan hasil uji SEM, lapisan TiO₂ yang dideposisi dengan screen T-49 memiliki ketebalan sebesar $(5,4 \pm 0,42) \times 10 \ \mu m$ sedangkan screen T-55 dan T-61 berturut-turut menghasilkan ketebalan $(2,34 \pm 0,270) \times 10 \ \mu m$ dan $(1,59 \pm 0,197) \times 10 \ \mu m$.

Ketebalan lapisan berkaitan dengan banyaknya partikel TiO_2 yang terdeposisi [13]. Semakin banyak partikel TiO_2 yang terdeposisi, maka semakin banyak molekul dye yang teradsorbsi. Molekul dye berfungsi sebagai donor elektron saat permukaan DSSC dikenai foton, dengan demikian diharap energi listrik yang dihasilkan akan semakin besar, seiring dengan banyaknya elektron yang tereksitasi saat dye menyerap foton [14].

Gambar 2: Hasil *cross section* SEM lapisan TiO₂ dengan screen T-49 (250X).

Gambar 3: Kurva absorbansi lapisan TiO₂ tersensitasi dye.

Pengujian Absorbansi

Pengujian absorbansi bertujuan untuk menentukan puncak serapan gelombang UV-Vis pada elektroda kerja yang telah tersensitasi dye. Pengujian dilakukan dengan menggunakan UV-Vis Spectrophotometre Lambda25 dengan spektrum absorbansi dari panjang gelombang 300-700 nm. Lapisan TiO₂ yang telah dideposisi dengan screen T-49, T-51 dan T-61, kemudian direndam dalam dye Ruthenium N719 selama 24 jam. Kurva absorbansi lapisan TiO₂ ditunjukkan pada Gambar 2.

Berdasarkan pengujian UV-Vis, absorbansi tertinggi terdapat pada lapisan TiO_2 yang terdeposisi dengan screen T-49. Besarnya absorbansi gelombang UV-Vis dipengaruhi oleh ketebalan lapisan TiO_2 [15], hal ini menunjukkan bahwa lapisan tersebut memiliki konsentrasi yang tinggi, semakin tinggi konsentrasi maka semakin banyak molekul TiO_2 dan dye yang berikatan. Besarnya absorbansi diharap dapat menghasilkan elektron yang lebih banyak saat permukaan DSSC menyerap energi foton.

Karakterisasi I-V

TABEL I: Nilai karakteristik I-V DSSC.

Karakteristik		Screen	
	T-49	T-55	T-61
$V_{oc}(V)$	0,64	0,56	0,38
$I_{sc}(A)$	$2,6 \times 10^{-3}$	$1,2 \times 10^{-3}$	1×10^{-3}
$V_{maks}(V)$	0,36	0,34	0,26
I_{maks} (A)	$1,3 \times 10^{-3}$	$6,6 \times 10^{-4}$	$7,4 \times 10^{-4}$
$P_{maks}(W)$	$4,5 \times 10^{-4}$	$2,2 \times 10^{-4}$	$1,9 \times 10^{-4}$
Efisiensi (%)	0,47	0,22	0,19

Karakteristik sifat listrik DSSC diuji dengan alat I-V Keithley Measurenment. Pengujian ini dilakukan pada sampel DSSC dengan luas sel aktif masing-masing 1 cm² dan intensitas cahaya yang digunakan sebesar 1000 W/m². Hasil pengujian diperoleh data berupa V_{oc} , I_{sc} , I_{max} , V_{max} , P_{max} dan efesiensi. Sampel yang diuji ada 3 variasi. Sampel tersebut telah divariasi dengan screen tipe: T-49, T-55 dan T-61. Gambar 3 menunjukkan kurva I-V yang diperoleh dari masingmasing sampel.

Hasil pengujian menunjukkan kurva I-V (Gambar 4) berbentuk diode ideal, hal ini menunjukkan bahwa bahan yang digunakan berasal dari bahan semikonduktor. Kurva I-V yang dihasilkan memiliki pergeseran arus dan tegangan yang berbeda. DSSC yang difabrikasi dengan menggunakan screen T-49 memeiliki pergeseran arus-tegangan yang paling tinggi. Kurva I-V tersebut dapat digunakan untuk menghitung besaran listrik, seperti: V_{oc} , I_{sc} , V_{maks} , I_{maks} , P_{maks} dan efisiensi. Hasil perhitungan ditunjukkan pada Tabel I.

Hasil perhitungan menunjukkan bahwa efisiensi terbesar diperoleh dengan menggunakan screen T-49. Besar efisiensi yang dihasilkan yaitu 0,47%, nilai tersebut lebih besar dibanding dengan screen T-55 (0,22%) dan screen T-61 (0,19%). Hal ini disebabkan ukuran diameter mesh screen T-49 yang besar, sehingga mengakibatkan volume pasta TiO₂ yang terdistribusi pada substrat semakin banyak dan membuat lapisan TiO₂ semakin tebal. Lapisan yang tebal membuat absorbansi gelombang UV-Vis meningkat. Besarnya absorbansi mempengaruhi banyaknya elektron yang tereksitasi dari dye saat permukaan DSSC dikenai foton [14]. Banyaknya elektron yang tereksitasi menyebabkan besarnya efisiensi dari DSSC.

IV. SIMPULAN

Berdasarkan penelitian ini bahwa tipe screen mempengaruhi ketebalan dan besarnya serapan gelombang UV-Vis lapisan TiO₂. Lapisan TiO₂ yang dideposisi dengan screen T-49 memiliki ketebalan yang terbesar dan juga absorbansi gelombang UV-Vis terbesar dibanding screen T-55 dan T-61. Efesiensi DSSC tertinggi diperoleh dari lapisan TiO₂ yang dideposisi dengan screen T-49 yaitu 0,47%.

-19

Gambar 4: Kurva karakteristik I-V DSSC.

Ucapan Terima Kasih

Peneliti mengucapkan terimakasih kepada DIKTI-KEMENDIKBUD Republik Indonesia atas dukungan

- D.S. Kim, et al., String ribbon silicon solar cells with 17.8% efficiency", Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2, 1293-1296, 2003, ISBN 4-9901816-0-3.
- [2] M. Edoff, AMBIO, **41**(2), 112-118 (2012).
- [3] B. O'Regan, and M. Grätzel, Nature, **353**, 737-739 (1991).
- [4] H. Zhou L. Wu, Y. Gao, J. Photochem. Photobiol., A. 219, 188-194 (2011).
- [5] M. Gratzel, Journal of Photochemistry and Photobiology C: Photochemistry Review, 4, 145-153 (2003).
- [6] M.K. Nazeeruddin, et al., Journal of the American Chemical Society, 115(14), 6382-6390 (1993).
- [7] I. Nath, Stanford Journal of International Relations, XI(2), 6-16 (2010).
- [8] A.V. Moholkar, et al., Appl. Surf. Sci., 255, 9358-9364 (2009).
- [9] L. Zhao, *et al.*, Applied Catalysis A: General, 263, 171-177 (2004).
- [10] K.E. Jasim, S. Al-Dallal, A.M. Hasan, J. Nanotechnology,

pendanaan Hibah Penelitian Unggulan Perguruan Tinggi Universitas Sebelas Maret (UNS), Indonesia.

2012, Article ID 167128, 6 pages (2012).

- [11] D. Yulika, Variasi Teknik Deposisi Lapisan TiO₂ untuk Meningkatkan Efisiensi Dye-Sensitized Solar Cel, Skripsi S1, Jurusan Fisika MIPA, UNS Surakarta Indonesia, 2010.
- [12] L. Muliani, Y. Taryana, J. Hidayat, *Pembuatan sel surya* TiO₂ dye-sensitized menggunakan metoda screen printing, Jurnal Elektronika, 10(1), 126-131 (2010).
- [13] S. Ito, *et al.*, Prog. Photovolt: Res. Appl. (in press) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/pip.768(2007)
- [14] S. Arman, N.M. Hoda, Int. J. Electrochem. Sci., 10, 3354-3362 (2015).
- [15] J. Ming-Jer, W. Yi-Lun, C. Liann-Be, and C. Lee, International Journal of Photoenergy, 2013, Article ID 280253, 8 pages (2013).