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Abstract: This research aims to determine the energy quantization in a one-dimensional infinite square well
modified by capacitive walls. The electric field inside the wall produces a linear potential. The solution to
the Schrdinger equation is the Airy function for an infinite square well. Furthermore, the Wentzel-Kramers-
Brillouin (WKB) approach is applied to finite wells, and the energy quantization for both cases based on this
modified potential has been derived. In this paper, we also examine the quantum capacitance of the system,
which is determined from the density of states and depends on dimensionality. The result of this work is a toy
model that does not yet provide a complete complex picture of the quantum capacitance model. However, this
model shows similarities in terms of energy dispersion relations and quantum capacitance with several types of

graphene systems.
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I. INTRODUCTION

The infinite square well is one of the most fundamental
problems in quantum mechanics, typically characterized by
rigid, infinite potential barriers. It serves as an idealized
model to introduce the principles of quantum confinement
and energy quantization. However, its simplicity often lim-
its its applicability to real-world systems, for example con-
jugated polyene [1], quantum well lasers [2], and quantum
dots [3, 4]. If there is a electric field generates inside the
wells, this problem lead to some what called Quantum capac-
itance. The quantum capacitance is required for incorporating
the quantum mechanical effects, particularly in nanoscale and
low-dimensional systems, for example graphene-based struc-
tures, quantum dots, nanowires, etc. Unlike classical capaci-
tance, which depends only on the geometry and permittivity of
the system, quantum capacitance arises from the finite density
of states (DOS). The metals serve classical capacitance, with
density of states for two-dimensional metal like electron gas
(2DEG) with parabolic dispersion leads to a constant quantum
capacitance [5]. This subject is studied along some number in
material devices i.e metals, monolayer and bilayer graphene,
carbon nanotubes [6—11].

To calculate quantum capacitance, which is directly related
to the density of states and the energy dispersion of energy
in the system. In a material, quantum capacitance is defined
as the change in charge density relative to changes in elec-
trochemical potential, which plays an important role in de-
termining the electronic behavior of devices at the nanoscale.
For example, in graphene, the quantum capacitance is derived
from the density of states, which in the case of pure mono-

layer graphene shows its proportionality to energy. This cer-
tainly provides a theoretical basis for further exploring similar
properties in other materials at a more advanced level [12-16].
Another very important material is supercapacitors which can
act as other energy storage devices, where understanding the
interaction between quantum and classical capacitance is very
important to optimize their performance [17-20].

By adding an electric field in the infinite potential well,
it will modify the Schrodinger equation and create a linear
potential that impacts the solution of the wave function and
energy eigenvalues of the particles differently from the case
without a magnetic field. The solution to this equation is the
Airy function, which has been found in many physical sys-
tems. The Wentzel-Kramers-Brillouin (WKB) approach can
be used to analyze energy quantization in finite potentials,
thereby enabling a deeper understanding of how electric fields
influence quantum states for finite wells.

In this paper, the issue of energy quantization has been re-
visited, in which the infinite and finite potential wells have an
electric field inside, and finding that the connection between
quantum capacitance and materials like graphene. This paper
does not intend to build a new complex and comprehensive
model that matches multiple material properties and experi-
mental findings. Our goal is to solve the Schrodinger equation
for our scenario and then compare it with current models. We
believe that our discoveries provide perspectives for studying
nanoscale devices and materials with electronic characteris-
tics.
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FIG. 1: Plot of Airy zeroes a,, as a function of n for
n = 1..1000

II. MODIFIED INFINITE SQUARE WELL WITH
CAPACITIVE WALLS

Consider a one-dimensional infinite square well of length
L, in which the walls are regarded as capacitor plates at z = 0
and x = L. Inside the well is a particle with charge q. Now,
the electric field E' produced by the capacitive walls affects
the potential inside the well. Between the capacitor plates, the
uniform electric field E is produced by:

E=2 (1)
€o
where € is the permittivity of medium and o is the surface
charge density on the plates. The charged particle’s potential
energy V (z) in the well is thus

qozx

V(z) = —qBx = — (2)
€o
As a result, the potential within the well varies linearly
V(z)=—ax 3)

where @« = qo/e,. Within the well, the time-independent
Schrdinger equation becomes

n? d?
e D | aap) = Bu@) @

Subtitute z = {/2ma/h?(x — E/«a) and the equation be-
comes an Airy-like function

2
a d‘fc(f) — z¢(2) =0 5)

Using methods Airy-like functionswhich are the solutions to
the Schrdinger equation for a linear potentialthe general solu-
tion to this differential equation can be discovered as

W(z) = Cy Ai ( 2;;0‘ (x - f)) (6)
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FIG. 2: Plot of —84/n for n = 1..1000

By applying boundary conditions at x = 0, we have

| s/2ma E
Al< i (o_a)>:o ™

The zeros of Ai a,, withn = 0,1,2, ... can be found in [21],
then the energy quantization is

22\ /3
E, =— ( ) Qp ®)

2m

This problem is similar in principle as in gravitational poten-
tial (see Problem 8.6 in [22])

bn(z) = Cy Ai ( X 22;‘“ (x - i")) 9)

Since the Airy function cannot be normalized use C, which
can be determined by applying the Airy delta-dirac properties:

“+oo
/ dzAi(y — 2)Ai(y —2) =5 —y) (10)

— 00

The normalized wave function can be written as

o (z) = Y/ 2ma/h2Ai (3 2;;& <x — %)) (11)

Now, we will find a dispersion relation for our energy quan-
tization. The plot of the first 1,000 airy zeros is shown in
Fig.1. We also plotted —v+/n, with v = 8, which is ap-
proximately close to a,. Then, we use the zeros of the Airy
function, which is proportional to /7 in the energy dispersion
relation (see Fig.1 and Fig.2).
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III. FINITE WELL AND WKB APPROXIMATION

The potential energy V(x) inside the well now becomes
—arfor0<x <L
Viz) =

12
Vo for x < Qorx > L (12)

To investigate energy quantization in a modified finite square
well with capacitive walls and a placed charge using WKB
(Wentzel-Kramers-Brillouin) approximations, we examine
how the capacitive walls’ potential influences the energy lev-
els of the particle inside the well. The WKB approximation is
ideal for this problem because it can handle the slowly varying
potential within the finite well.

The WKB approximation is applicable in regions where
the potential changes slowly concerning the de Broglie wave-
length of the particle. Inside the well, the potential is linear
and smooth, which satisfies the slow variation condition, i.e.,
V(x) changes gradually over the width of the well. In partic-
ular, since potential outside the well is constant V, the turn-
ing points can be accurately treated, and the WKB solution is
straightforward to match at the boundaries. The general WKB
solution for the wavefunction ¢ () in a potential is given by

/ia?) exp (:I:i /1: k(x')dx') (13)

where the k(z) = /2m(E — V (z))/h?
In the WKB approximation, the quantization condition for
bound states is expressed by the Bohr-Sommerfeld rule:

/;c2 k(z)dx = (n + ;) wh (14

where z; and x, are the classical turning points, which are
determined by F = V(). The classical turning points x; and
x4 correspond to the locations where the energy £ = V' (z)

P(z) =

E=—-ar1+ Vo, E=—axe+V, (15)
Solving these for 1 and xo gives:
Vo— F Vo—FE 2F
T1 = ; Lo = +— (16)
« o o

The integral for the WKB quantization condition is then

/z k(z)dz = (n + ;) mh a7

where the k(z) = /2m(E + az — V,)/h2. We substitute
k(z) into the quantization condition and evaluate the integral

/x k(x)dz = \/2m(E + ax — V,)/h2 (18)

0

Changing the variable v = F + ax — V, the integral then
becomes

E—Vo+alL
G20 2 s
E-V, « 30é

E-V,
E—-V,+al

_ 2lE_ 3/2
- 3a[(E Vo +al)

(E- %)3/2} (19)
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Substituting into WKB quantization condition yields

(Ep — Vo +aLl)*? — (B, —V,)3/?
_ 3mah n+1
2 2
al 3/2
14+ —— —1
(*Envo> ]

3rah 1
= = <n+2) (20)

(En _ ‘/;)3/2

For E,,—V, > aL, we use the Taylor expansion of (1+x)" =
1 4+ nz, which gives

3/2§ al _37raﬁ +1
°F, —v. 2 \"T3

2 h? 1\°
E, = VO+7L2 <TL+2> 2n

(ETL - ‘/O)

We can see that the «, which contains the electric field in-
formation, is cancelled out. The energy dispersion relation
E, ~ n?, which is similar to 2DFG or parabolic dispersion
relation. This equation is implicit and generally requires nu-
merical methods to solve for E,. The energy levels are thus
quantized according to this modified WKB condition, reflect-
ing the influence of the capacitive walls on the potential within
the finite well.

IV. THE QUANTUM CAPACITANCE

The old method to calculate quantum capacitance from den-
sity of states, i.e., the energy relation. The quantum capaci-
tance Cg is given by

Cq = e*g(E) (22)

where e and g(F) are electron charge and density of states.
The density of states is determined from the dispersion rela-
tion. In d-dimensional systems, the number of states up to
k is proportional to the volume of a d-dimensional sphere of
radius k

N(k)g = Cqk? (23)

where C is a constant depending on the dimensionality and
the system size. For d = 1,2, 3 the N (k) are

N(k), = (;ﬁ) 2% (24)
N(k)y = <(2;1)2) mk? (25)
N(k)3 = (Q‘;)B) %wk?’ (26)

The density of states can be calculated as

AN (k) dk

9(E) = ~dk dE 27
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FIG. 3: Plot of quantum capacitance in modified infinite
square wells for various strengths
(8 =1073,5 x 103,107 2). The solid line indicating a
one-dimensional case, while the dot, dashed, and dotdashed
line is for a two-dimensional case.

A. Infinite square well

Recall the energy relation in equation (8). For continuum
states, the zeros of the Airy function for large n can be ap-
proximated as yn'/2, for some constant . Changing variable
k = nm/L, then the k as a function of F is given by

kw[ 2m

2/3
2
=1 ] 1 29

Therefore, we can calculate the density of states for one-
dimensional square well, which gives

2 2/3
9(E) = [5204273} (29)
Thus, the quantum capacitance is given by
2/3
2m
ClD :62 |:W:| |E‘ 5625|E‘ (30)

where [ is defined as field strength. We can see that the quan-
tum capacitance is proportional to £ which is related to pure
and perfect monolayer graphene quantum capacitance. The
perfect monolayer graphene quantum capacitance formula is
given by [7]

_ 9sGumm*

= F 31
Curc 7TﬁQW| | (€2

where g, g,,, m*, and 7y, are spin degeneracy, valley degener-
acy, effective mass, and interlayer coupling. That two formu-
las of quantum capacitances are the same shape up to constant

51
|
0154
.
|
|
|
|
i
0.104;
I
S I
< I
Jig
I
|
0054, \
]l\ A
. 1D(u = 0.01
v (u ) 55
N M (u=10"%5x107%,107%)
~ L,
] \_;p_g;f__zo.uom S o
“LLAD(R=10001) T T T T —m—m——
0 —— — r : :
0 1 2 3 4 5

FIG. 4: Plot of quantum capacitance in modified finite square
wells with WKB approximation for various strengths
(1 =1073,5 x 1073, 1072). The solid line indicating for a
one-dimensional case, while dot, dashed, and dotdashed line
is for a two-dimensional case.

proportionality. For a two-dimensional square well, the quan-
tum capacitance becomes

2m

4/3
] 1B = e

CQD:€2|:

The plot of the quantum capacitance of one and two dimen-
sional infinite square wells shows in Fig.3.

B. Finite square well

Take the continuum states in equation (21), the k = nw/L
as a function of E' can be written as

s 1
k__ﬁ—'—ﬁ E-V, (33)

Thus, the quantum capacitance for one and two-dimensional
finite square wells is given by

L

Cip = — (E-V) Y2 =pw(E-V,)"Y? (39)
4rh
2 /1 1 L2
= —_— _—— ~ = 4 2
Cp = oh (h WE - VO)) e~ AT

In case 2D finite square well, the quantum capacitance
is a constant value, which is similar to bilayer graphene
near dirac-point or parabolic dispersion with 2DFG: Cg =
gvme?/mh? [5, 7]. The plot of the above quantum capaci-
tance is shown in Fig.4.
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C. Comparisson and future improvements

There is a difference in the approach used between solv-
ing cases of infinite potential wells and finite potential wells.
In the case of an infinite potential well, the solution to the
Schrodinger equation is an exact solution, whereas in the case
of a finite potential well, we use the WKB approach. Fig.
1 and Fig. 2 show energy quantization in an infinite square
well with capacitive walls. The energy eigenvalues are pro-
portional to n'/2, in contrast to the original infinite square
well. This behavior highlights the significance of the linear
potential of the electric field. On the other hand, the WKB ap-
proximation shows a more complex relationship between the
energy levels and the well depth, V5, in the finite well (Fig.
3). However, Fig. 3 is for limit &' — V, > aL, the quantiza-
tion condition simplifies, surprisingly, independent from the
electric field strength. The more general results can be solved
numerically from the equation (20) and the electric field de-
pendency is restored.

The improvements of this model, for example, applied a
uniform magnetic field applied perpendicular to the plane of
the quantum well. This modifies the Hamiltonian through
the vector potential A using minimal substitution and then
applying the Landau gauge. The resulting guest is discrete
Landau levels, which cause oscillations in quantum capaci-
tance. This scenario allowed us to have precise control over
electronic properties. This tunability is essential for magnetic
field-sensitive electronics such as quantum dots and nanoscale
energy storage systems. Another improvement is incorporat-
ing spin-dependent effects via electric field and spin coupling.
This coupling modifies the Hamiltonian. In a 2D system
with structural inversion asymmetry, this effect is called the
Rashba SOC (spin-orbit coupling) effect. In the capacitive
quantum well, this leads to spin-split subbands. The SOC
modifies the density of states by introducing spin-dependent
energy levels, which can be exploited for spintronic devices.
Specifically, the quantum capacitance becomes a function of
the Rashba parameter, which allows for control via external
electric fields. This extension enables spin-resolved transport
features required for spintronic devices.
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V. DISCUSSION AND CONCLUSION

The consequence of introducing capacitive walls is that it
results in significant deviations from traditional infinite square
well behavior. Our analysis shows the energy levels propor-
tional to the square root of quantum number n when we an-
alyze the zeroes of airy functions. This relation is deviating
from parabolic dispersion in typical quantum wells. The re-
sulting quantum capacitance shows dimensional dependence:
proportional to E in one-dimensional systems, which is sim-
ilar to a perfect monolayer graphene system, and E2 in two-
dimensional systems.

For finite wells, the WKB approximation provides a frame-
work for quantifying the influence of electric fields. In case
E — Vi, > alL, the quantization condition is surprisingly in-
dependent of the applied electric field. The quantum capaci-
tance is proportional to the square root of the energy for one
dimension, while for two dimensions it results in a constant
value that is similar to the 2DEG model or bilayer graphene
near the dirac point.

This paper relies on the infinite and finite square well model
by incorporating capacitive walls, a homogeneous electric
field, and a linear potential. We used Airy functions and the
WKB approximation to calculate the energy dispersion rela-
tion and quantum capacitance values. The observed results
support the dimension dependence of quantum capacitance
and exhibit parallels to graphene-like structures.

Future research could look into interactions with magnetic
fields, spin-orbit coupling, and multilayer topologies to im-
prove the model’s applicability to nanoscale materials science.
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