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Abstract: A quantum heat engine converts heat into work based on the principles of quantum thermodynam-
ics.This study investigates a quantum heat engine composed of two Dirac particles confined in a one-dimensional
potential well. The potential well is limited to three discrete energy levels, and the two non-interacting Dirac
particles are treated as identical. The system operates under a quantum Brayton cycle, consisting of isobaric
and adiabatic processes. The total work output is calculated using the energy levels derived from the relativistic
Dirac equation. The efficiency curve is obtained by plotting a theoretical expression as a function of the ratio
LA/λ, where λ is the Compton wavelength. The efficiency increases monotonically with LA/λ, approaching
an asymptotic maximum, and is further enhanced by larger values of the parameter α, which drive the engine
toward near-optimal performance.
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I. INTRODUCTION

Similar to classical thermodynamics, quantum thermody-
namics also introduces the concept of a quantum heat engine.
Its main principle is the conversion of heat into work by uti-
lizing quantum systems as the working medium. These en-
gines operate through thermodynamic cycles, among which
the Brayton cycle comprising isobaric and adiabatic processes
is widely studied. This cycle was introduced by John Barber
in 1791 and further developed by George Brayton [1].

Quantum thermodynamic quantities have analogies with
quantities in classical thermodynamics. For instance, pressure
corresponds to force, volume to system length, and internal
energy to the expectation value of the Hamiltonian operator.
Heat energy is associated with a probability change in the ex-
pectation value of the Hamiltonian, while work is associated
with a change in the eigenenergy of the system [2].

The operation of quantum heat engines is governed by the
laws of quantum thermodynamics. The change in internal en-
ergy is given by:

dU = dQ− dW. (1)

where the infinitesimal heat and work are defined as:

dQ =
∑
n

En dPn, dW =
∑
n

Pn dEn, (2)

This equation is an implication of the first law of thermody-
namics [3].

According to the second law of thermodynamics, the ef-
ficiency of a heat engine is defined as the ratio of the work

performed to the input heat:

η =
W

Qin
(3)

Where η is the efficiency, W is the total work, and Qin is the
incoming heat. This law also confirms that the efficiency of
the engine cannot reach 100 percent [4].

Research on quantum heat engines has progressed rapidly,
particularly in exploring various types of working media.

Research on quantum heat engines has grown rapidly, espe-
cially related to variations in the working medium used. One
of the working mediums that is often studied is potential wells
[5]. In this paper, the efficiency of a quantum heat engine
using two Dirac particles in a one-dimensional potential well
operating on a Brayton cycle is examined in detail. The poten-
tial well under consideration has three available energy levels.
Since Dirac particles are fermions, they obey the Pauli exclu-
sion principle, which states that no two fermions can occupy
the same quantum state simultaneously. Consequently, each
energy level in the potential well can be occupied by only one
of the two Dirac particles.

This paper is organized as follows. Section II discusses the
energy solution for a single Dirac particle in a potential well,
beginning with the Dirac equation and detailing the derivation
steps that lead to the energy solution. Section III introduces
the concept of a quantum heat engine based on this system,
operating according to the Brayton cycle. This section also
presents the formulation of heat input and output for the quan-
tum heat engine. Section IV describes the efficiency formula
of the quantum heat engine and presents the corresponding
efficiency graph.
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FIG. 1: A Dirac particle in a one-dimensional infinite
potential well.

II. ENERGY SOLUTION FOR A DIRAC PARTICLE IN A
ONE-DIMENSIONAL POTENTIAL WELL

We consider a Dirac particle of mass m confined in a one-
dimensional infinite potential well of width L. The potential
outside the well is infinite, while it is zero inside the well. A
schematic of this system is shown in Figure 1.

To determine the energy spectrum of the Dirac particle, we
begin with the Dirac equation:

Eψ =
(
c~α · ~p+ βmc2

)
ψ, (4)

where ~α = (α1, α2, α3) are the Dirac matrix defined as:

αi =

(
0 σi
σi 0

)
, i = 1, 2, 3, (5)

with σi being the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6)

The β matrix is defined as:

β =

(
I 0
0 −I

)
, (7)

and ψ is written as:

ψ =

(
η
χ

)
(8)

with

η =

(
ψ1

ψ2

)
, and χ =

(
ψ3

ψ4

)
. (9)

ψ1, ψ2, ψ3, danψ4 are spinors [6].
By substituting Eqs. (5)(8) into the Dirac equation (4), and

considering the one-dimensional case, we obtain the follow-
ing second-order differential equation:

d2η

dx2
+ k2η = 0, (10)

with the general solution:

η = A cos(kx) +B sin(kx), (11)

FIG. 2: Brayton Cycle

where the wavenumber k is defined as:

k2 =
E2 −m2c4

c2~2
. (12)

To find the quantized energy levels, we apply the boundary
conditions:

V (x) =

{
0, 0 ≤ x ≤ L,
∞, otherwise.

(13)

These conditions imply that the wavefunction must vanish at
the boundaries, leading to:

k =
nπ

L
, n = 1, 2, 3, ... (14)

Substituting this expression for k into Eq. (12) yields the
relativistic energy spectrum:

En =

√(
nπ~c
L

)2

+m2c4. (15)

This equation represents the energy levels for a Dirac particle
confined in a one-dimensional infinite potential well.

III. A POTENTIAL WELL WITH TWO DIRAC
PARTICLES AS A QUANTUM HEAT ENGINE IN BRAYTON

CYCLES

Analogous to the movable piston in classical heat engines,
the potential well walls can change dynamically. The potential
well is subjected to a thermodynamic Brayton cycle consisting
of four distinct processes: adiabatic compression, isobaric ex-
pansion, adiabatic expansion, and isobaric compression. [2].

As shown in Figure 2, the Brayton cycle consists of four
thermodynamic processes: AB (isobaric expansion), BC (adi-
abatic expansion), CD (isobaric compression), and DA (adi-
abatic compression). During each stage of the cycle, the po-
tential well boundaries shift by the corresponding thermody-
namic processes. In this model, the potential well contains
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FIG. 3: Schematic representation of two Dirac particles
confined in a one-dimensional infinite potential well

undergoing state transitions throughout a quantum Brayton
cycle.

three discrete energy levels and is occupied by two identical
Dirac fermions of mass m. Due to the Pauli exclusion prin-
ciple, the particles occupy different quantum states within the
well.

During the isobaric expansion process, both particles are
excited, whereas during isobaric compression, they are de-
excited. Under the assumption that WBC −WDA = 0, the
formulation is restricted to the work contributions arising ex-
clusively from the isobaric expansion and compression pro-
cesses [3]. A more detailed explanation of the work performed
during these stages is provided in the following section.

A. Incoming Heat by Isobaric Expansion

The cycle begins with an isobaric expansion process during
which heat is absorbed by the system. During this process,
the wall of potential well shifts to the right, from LA to LB ,
without any change in the applied force. The constant-force
condition during this process is expressed as:

FAB(L) = F (LA) = F (LB). (16)

During this stage, the two Dirac particles, which initially
occupy the first and second energy levels, are excited to the
second and third levels (see figure 3), respectively, due to the
absorbed heat. Based on equation (16) and the definition of
force as the derivative of energy with respect to the potential
well width:

F =
∂E

∂L
, (17)

the relationship between the width of the potential well LA
and LB is obtained as follows:

L3
A

L3
B

=

1√(
~πc
LA

)2
+m2c4

+ 4√(
2~πc
LA

)2
+m2c4

4√(
2~πc
LB

)2
+m2c4

+ 9√(
3~πc
LB

)2
+m2c4

. (18)

Using equation (18), the work done during this expansion
can be expressed as:

WAB =

∫ LB

LA

FAB(L) dL

=
1

L2
B

 (2π~c)2√(
2π~c
LB

)2
+m2c4

+
(3π~c)2√(

3π~c
LB

)2
+m2c4



− 1

L2
A

 (π~c)2√(
π~c
LA

)2
+m2c4

+
(2π~c)2√(

2π~c
LA

)2
+m2c4

 .

(19)
The change in internal energy resulting from the expansion

of the well width from LA to LB is given by:

∆UAB =E(LB)− E(LA)

=

√(
2π~c
LB

)2

+m2c4 +

√(
3π~c
LB

)2

+m2c4

−

√(
π~c
LA

)2

+m2c4 +

√(
2π~c
LA

)2

+m2c4.

(20)
The heat absorbed by the system during the isobaric expan-

sion, obtained by summing equations (19) and (20), is:

Qin =WAB + ∆UAB

=
2(2π~c)2 +m2L2

Bc
4

L2
B

√(
2π~c
LB

)2
+m2c4

+
2(3π~c)2 +m2L2

Bc
4

L2
B

√(
3π~c
LB

)2
+m2c4

− 2(π~c)2 +m2L2
Ac

4

L2
A

√(
π~c
LA

)2
+m2c4

− 2(2π~c)2 +m2L2
Ac

4

L2
B

√(
2π~c
LA

)2
+m2c4

.

(21)
The Compton wavelength of a particle is λ = 2π~

mc [7], al-
lowing equation (21) to be rewritten in terms of λ/LA and
λ/LB as follows:

Qin =mc2

 2
(
λ
LB

)2
+ 1√(

λ
LB

)2
+ 1

+

9
2

(
λ
LB

)2
+ 1√

9
4

(
λ
LB

)2
+ 1

−
1
2

(
λ
LA

)2
+ 1√

1
4

(
λ
LA

)2
+ 1

−
2
(
λ
LA

)2
+ 1√(

λ
LA

)2
+ 1

 .

(22)

After this stage, the cycle proceeds to the adiabatic expan-
sion process, during which no heat is exchanged with the sur-
roundings [8].
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B. Heat Released by Isobaric Compression

This stage corresponds to the third step of the cycle, where
heat is released through an isobaric compression process
[3].In this stage, the wall of the potential well moves, resulting
in a change in width from LC to LD under constant force.

The constant force during this process is given by:

FCD(L) = F (LC) = F (LD). (23)

During this process, two Dirac particles undergo de-
excitation. Initially occupying the second and third energy
levels, they transition to the first and second levels (see fig-
ure 3), respectively, as heat is released from the system. The
relationship between well widths LC and LD can be written
as:

L3
C

L3
D

=

4√(
2~πc
LC

)2
+m2c4

+ 9√(
3~πc
LC

)2
+m2c4

1√(
~πc
LD

)2
+m2c4

+ 4√(
2~πc
LD

)2
+m2c4

. (24)

As in isobaric expansion, the isobaric compression process
also produces work which is calculated as:

WCD =

∫ LD

LC

FCD(L) dL

=
1

L2
D

 (π~c)2√(
π~c
LD

)2
+m2c4

+
(2π~c)2√(

2π~c
LD

)2
+m2c4



− 1

L2
C

 (2π~c)2√(
2π~c
LC

)2
+m2c4

+
(3π~c)2√(

3π~c
LC

)2
+m2c4

 .

(25)
The change in internal energy due to the change in well

width from LC to LD can be written as:

∆UCD =E(LD)− E(LC)

=

√(
π~c
LD

)2

+m2c4 +

√(
2π~c
LD

)2

+m2c4

−

√(
2π~c
LC

)2

+m2c4 −

√(
3π~c
LC

)2

+m2c4.

(26)
Using equations (25) and (26), the amount of heat escaping

from the system during the isobaric compression process can
be calculated as:

Qout =WCD + ∆UCD

=
2(π~c)2 +m2L2

Dc
4

L2
D

√(
π~c
LD

)2
+m2c4

+
2(2π~c)2 +m2L2

Dc
4

L2
D

√(
2π~c
LD

)2
+m2c4

− 2(2π~c)2 +m2L2
Cc

4

L2
C

√(
2π~c
LC

)2
+m2c4

− 2(3π~c)2 +m2L2
Cc

4

L2
C

√(
3π~c
LC

)2
+m2c4

.

(27)

FIG. 4: Relationship between LA and LB obtained from the
Monte Carlo method.

As with the isobaric expansion, the above expression can be
rewritten in terms of λ/LC and λ/LD:

Qout =mc2

 1
2

(
λ
LD

)2
+ 1√

1
4

(
λ
LD

)2
+ 1

+
2
(

λ
LD

)2
+ 1√(

λ
LD

)2
+ 1

−
2
(
λ
LC

)2
+ 1√(

λ
LC

)2
+ 1

−
9
2

(
λ
LC

)2
+ 1√

9
4

(
λ
LC

)2
+ 1

 .

(28)

Following the isobaric compression, the cycle proceeds
with an adiabatic compression, thereby returning to the ini-
tial state and completing the thermodynamic cycle.

IV. EFFICIENCY

The work done during the adiabatic processes is neglected;
thus, the efficiency of the quantum heat engine is defined as:

η = 1−
∣∣∣∣QoutQin

∣∣∣∣ , (29)

where the values of Qin and Qout are given by equations (22)
and (28). This efficiency depends on four parameters:LA, LB ,
LC , and LD. For the purpose of visualization, these depen-
dencies are reduced to two parameters.

The analysis begins with equations (18) and (24), which
are recursive in nature. Using the Monte Carlo method, the
relationships between LA and LB , as well as LC and LD, are
determined, as shown in Figures 4 and 5.

Figure 4 shows that the relationship between LA and LB
is linear with a positive slope of 1.3771. Similarly, Figure 5
reveals a linear relationship between LC and LD with a slope
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FIG. 5: Relationship between LC and LD obtained from the
Monte Carlo method.

FIG. 6: Efficiency η as a function of the length ratio LA/λ,
showing a monotonically increasing trend approaching an

asymptotic limit.

of 0.7304. These ratios satisfy the constraints of the Brayton
cycle, where LB must be greater than LA and LC must be less

than LD. For further analysis, the substitution LA = αLD is
introduced, thereby reducing the system to two independent
parameters: α and LA/λ.

Figure 6 shows the quantum heat engine efficiency as a
function of LA

λ , for α values ranging from 1.5 to 9. In the
range LA

λ ∈ [0, 1], the efficiency remains low across all val-
ues of α. However, it increases significantly as LA

λ grows. At
this point, the quantum heat engine operates at its maximum
efficiency, and further increases in LA

λ yield only marginal im-
provements.

In the range LA
λ ∈ [1, 3], the efficiency increase begins to

decelerate. Beyond LA
λ = 3, the efficiency approaches a sta-

ble asymptotic value. At this point, the quantum heat engine
operates at its maximum efficiency, and further increases in
LA
λ yield only marginal improvements.

The parameyer of α affects the efficiency of the quantum
heat engine. Larger values of α lead to both higher average
and maximum efficiency. Therefore, a quantum heat engine
with larger α exhibits improved capability in converting heat
into work.

V. CONCLUSION

A graph of the efficiency of a relativistic quantum heat en-
gine as a function of LA/λ has been obtained, based on the
total work produced by two Dirac particles confined in a one-
dimensional potential well undergoing a Brayton cycle. The
relationships between LA and LB , as well as LC and LD,
were determined using the Monte Carlo method. The results
show that as LA/λ increases, the efficiency increases mono-
tonically and approaches an asymptotic maximum. Addition-
ally, the parameter α significantly affects the engine’s perfor-
mance, with larger values of α yielding higher average and
peak efficiencies. For α ≥ 4.5, the engine operates with ef-
ficiency close to unity, indicating near-optimal performance.
Future studies are encouraged to investigate the effect of par-
ticle number on the efficiency of relativistic quantum heat en-
gines.
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