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The Use of Dirac Oscillator as Medium Substrate for
Quantum Heat Engine
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Abstract: The research on Dirac oscillators has been increasing recently. In this paper, a quantum heat
engine by means of a Dirac oscillator that interacts with the external magnetic field is proposed. Relativistic
Landau energy levels are used to perform the iso-energetic cycle. The large magnetic field is set to obtain a
perfect thermodynamic cycle. Some stable performances at a certain magnitude of magnetic field and expansion
parameter range are obtained. When the value of efficiency is compared with the non-relativistic case, an
opposite result occurs. Therefore, a quantum heat engine using a Dirac oscillator doesn’t govern like a classical
oscillator.
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I. INTRODUCTION

The quantum heat engine has been progressing lately, along
with advances in nanotechnology. A wide range of medium
substrates for quantum heat engines has been proposed, such
as a one-dimensional potential well [1–5], a harmonic oscilla-
tor [6–8], etc. There have also been studied quantum heat en-
gines with minimal length [9]. For one-dimensional potential
well, the efficiency of non-relativistic and relativistic quantum
heat engines have been compared. It was proved that the rel-
ativistic quantum heat engine in a potential well has a lower
efficiency than the non-relativistic case [10].

A harmonic oscillator as a medium substrate without an
external magnetic field has been carried out by utilizing the
master equation [7]. Also, a quantum heat engine in non-
relativistic cases has been studied using an external magnetic
field which is analogous to the width of the potential well
[11]. The thermodynamics processes are governed by a one-
dimensional potential well quantum heat engine. The applied
medium substrate is a single particle in a quantum dot semi-
conductor cylinder [12].

This paper discusses the quantum heat engine by means of
a Dirac oscillator as a medium substrate. It is assumed that
the spin on the Dirac oscillator will be ignored. The magnetic
field is converted during the process so that the system under-
goes a transition state. The magnetic field is set to obtain a
perfect cycle. These models are expected to make a valuable
contribution to quantum dot semiconductor applications.

II. DIRAC OSCILLATOR

A Dirac oscillator is the relativistic version of the quantum
harmonic oscillator. There are several topics of Dirac oscilla-

tor in the case of (2+1) dimensions [13–15]. In this paper, the
Dirac oscillator using an external magnetic field as a ref [13]
is used. The Hamiltonian of the system is given by

H = cα · (p− eA/c− imωβr) + βmc2, (1)

with A is the external magnetic field vector potential, e is elec-
tron charge that acts as the Dirac oscillator. In this model, the
(2+1)-oscillator dimensions are considered, with the external
magnetic field on the z-axis direction so that the vector po-
tential is A =

(
−B2 y,

B
2 x, 0

)
. Because of the two spatial

dimensions, Pauli matrices become αx = σx, αy = σy , and
β = σz . In order to get an analytic solution, mapping as ref.
[13] is carried out, in order to obtain a modified Hamiltonian
as follows

H = cα · (p− imω̃βr) + βmc2, (2)

with ω̃ = ω − |e|B/2mc. From the results of completion
of the Dirac equation HΨ = EΨ, relativistic Landau energy
levels are obtained as follows

E±
n = ±mc2

√
1 +

4~ω̃
mc2

n, n = 1, 2, 3, .. (3)

III. SINGLE PARTICLE QUANTUM HEAT ENGINE

According to Eq. (3), the energy levels of the system de-
pend on the value of an external magnetic field. Then the
energy of a single particle system is

E =
〈
Ĥ
〉

= Tr
(
ρ̂Ĥ
)

=
∑
n

pn(B)En(B). (4)

By differentiation, it shows

dE =
∑
n

pn(B)dEn(B) + En(B)dpn(B). (5)
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FIG. 1: Iso-energetic cycle. B represents an external magnetic field
that is applied to the system, and M is the magnetization of the
medium substrate

The energy equation above is analogous to the First Law of
Thermodynamics.

dU = dQ− dW. (6)

Because the probabilities of each state of the system is asso-
ciated with entropy (von Neumann entropy).

S = −kB
∑
n

pn(B) ln pn(B). (7)

Then, the change in the total energy of the system is analogous
to the change of internal energy in classical thermodynamics.
On the right side, the first term of Eq. (5) is analogous to the
work, and the second term is analogous to the heat exchange.
The external magnetic field is related to the internal charac-
teristics of the system, as well as the width of the potential
well of the one-dimensional quantum heat engine. Thus, the
change of the magnetic field does not provide an addition of
heat to the system. During the iso-energetic process, the to-
tal energy is unchanged. An external magnetic field is set in
a way that allows the system state changes from n = 1 to
n = 2. During the process, all incoming heat is converted
into work. Whereas during the adiabatic process, the mag-
netic field remains changing although there is no heat intake.
The running of the magnetic field will change the energy level
of each state as compensation for the work that has been done
to the system.

IV. ISO-ENERGETIC PROCESSES

The iso-energetic cycle has two iso-energetic processes and
two iso-entropic processes, as shown in Fig. 1. First, the iso-
energetic AB is calculated in which the heat penetrating into
the system changes completely into work. In this model, the
initial state of the system is a ground state n = 1 with a con-
stant magnetic field BA. During the iso-energetic process, the
magnetic field changes. At the end of the process, the system
is fully in the state n = 2. During the process, the probability

value and the total energy are changed as follows

p1(B) + p2(B) = 1, (8)

p1(B)E1(B) + p2(B)E2(B) = E1(BA). (9)

Based on the ref. [2], the value of the incoming heat is given
by

QAB =
∑
n

∫ BB

BA

En(B)
dpn(B)

dB
dB. (10)

Using Eqs. (8) and (9), the heat value can be written as follows

QAB =

∫ BB

BA

[E1(B)− E2(B)]
d

dB

[
E1(BA)− E2(B)

E1(B)− E2(B)

]
dB.

(11)
Using Landau relativistic energy level Eq. (3), it shows

QAB = −mc2
[
tanh−1

(
E2(BB)

mc2

)
+ tanh−1

(
E1(BB)

mc2

)
− tanh−1

(
E2(BA)

mc2

)
− tanh−1

(
E1(BA)

mc2

)]
.

− E1(BA) ln

[
eBB − 2mωc

eBA − 2mωc

]
+

1

2
E1(BA) ln

[
F (BB)

F (BA)

] (12)

with

F (B) = 3ecB~−m2c4 − 6mc2~ω − E1(B)E2(B)

During process AB, the total energy of the system remains
constant. Thus, the magnetic field at the end of the process
AB satisfies

BB =
1

2
BA +

mωc

e
. (13)

The value of the magnetic field is not the same as the non-
relativistic case, as in ref. [11]. In this paper, the magnitude
of the magnetic field at the end of the process depends on the
mass m, charge e, and frequency ω. At the same time, the
value ω will be determined by geometric scale `d =

√
~/mω.

In the relativistic case, in order to obtain the fully final state
n = 2, the magnitude of the magnetic field is also determined
by these three parameters.

The following process is the iso-entropic processBC. Dur-
ing this process, there is no heat absorbed into the system. The
work done by the system depends on changes in the internal
energy. There is no state change, so the system is entirely on
the state n = 2. Thus, during process BC, the work is given
by

WBC = E2(BC)− E2(BB). (14)

By substituting Landau relativistic energy levels, it becomes

WBC = mc2

√
1 +

8~
mc2

(
ω − eBC

2mc

)

−mc2
√

1 +
8~
mc2

(
ω − eBB

2mc

)
.

(15)
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During the iso-entropy process, there is a change in the mag-
nitude of the magnetic field from BB to BC . In the ref. [11],
the iso-entropic process involves an expansion parameter. In
order to make a good analogy, the geometric scale by an ex-
ternal magnetic field is defined as follows

`B =

√
~

mωB
, (16)

with

ωB =
eB

m
. (17)

So that the expansion parameter can be involved with

`BC
`BB

= α1. (18)

The expansion parameter α1 is not written in a general form.
The reason is the expansion parameter of the next iso-entropic
process is not necessarily the same. Using Eqs. (16) and (17)
show

BC =
1

α2
1

BB . (19)

Then the cycle continues to the iso-energetic process CD. In
this process, the state of the system changes from n = 2 state
to n = 1 state again. Because the total energy remains con-
stant, the process is fulfilled by

E2(BC) = E1(BD). (20)

Thus obtained the relation

BD = 2BC −
2mωc

e
. (21)

While the heat that comes out can be calculated by the integral
as follows

QCD =

∫ BD

BC

[E1(B)− E2(B)]
d

dB

[
E2(BC)− E2(B)

E1(B)− E2(B)

]
dB,

(22)
resulting

QCD = −mc2
[
tanh−1

(
E1(BD)

mc2

)
+ tanh−1

(
E2(BD)

mc2

)
− tanh−1

(
E1(BC)

mc2

)
− tanh−1

(
E2(BC)

mc2

)]
− E2(BC) ln

[
eBD − 2mωc

eBD − 2mωc

]
+

1

2
E2(BC) ln

[
F (BD)

F (BC)

]
.

(23)

And the later process is the iso-entropic process, in which
the end of the process is returning to the initial state. The work
during this process is

WDA = mc2

√
1 +

4~
mc2

(
ω − eBA

2mc

)

−mc2
√

1 +
4~
mc2

(
ω − eBD

2mc

)
,

(24)

FIG. 2: Relation between α1 and α2.

with the geometry scale satisfies

`BD
`BA

= α2. (25)

the relationship of the initial and the final magnetic field is

BD =
1

α2
2

BA. (26)

In order to obtain a reversible cycle, the magnitude of the mag-
netic field must satisfy the following cycle

BA −−−−−−−→
1
2BA+mωc

e

BB −−−−→
1

α2
1
BB

BC −−−−−−−→
2BC− 2mωc

e

BD −−−−→
α2

2BD
BA.

(27)
The first and second expansion parameter could be related as
follows (

1− α2
2

α2
1

)
2
(
α2

2

α2
1
− α2

2

) =
mωc

eBA
. (28)

It can be illustrated by Fig. 2. According to Fig. 2, the value
of the first expansion parameter α1 is not necessarily the same
as the second α2. Then the efficiency of the machine can be
obtained as

η = 1− QCD
QAB

, (29)

substituting Eqs. (12), (13),(21), and (23) related as follows

η = 1− [tanh−1 Θ(4aC)−tanh−1 Θ(aC)]− 1
2 Θ(2aC) lnG(aC)

[tanh−1 Θ(aA/2)−tanh−1 Θ(2aA)]+ 1
2 Θ(aA) lnG(aA)

,

(30)
we define

G(a) =

[ 3
4a−

1
4 −

1
4Θ(a)Θ(4a)

3
2a− 1−Θ(a)Θ(4a)

]
with Θ (a) =

√
1 + a and aA = 4~

mc2

(
ω − eBA

2m

)
, aC =

4~
mc2

(
ω − eBC

2m

)
. Variable aA and aC are related by aC =
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FIG. 3: Relation between expansion parameter with the efficiency by
initial magnetic field with various BA. We choose `d = 10−7 m.

1
2α2

1
aA + 4~

mc2ω
(

1− 1
α2
A

)
. We define NΦ as a quantity that

expressed the value of initial magnetic field BA as BA =
2mω
e NΦ. Due to relativistic property, not all values of NΦ

producing all cyclic processes. It can be said initial value of
the magnetic field is large enough and has a minor change
during the iso-energetic cycle. From Fig. 3, it appears that the

greater the magnetic field, the smaller the engine efficiency.
That differs from the ref [11], which provides the opposite
conclusion.

V. DISCUSSION AND CONCLUSION

A Quantum heat engine with the Dirac oscillator as the sub-
strate medium produces engine efficiency values through an
isoenergetic cycle. In the non-relativistic case, the efficiency
is proportional to the initial value of the magnetic field. In
a relativistic case, this happens inversely. The larger the ini-
tial magnetic field, the smaller the efficiency value. Moreover,
what should be noted is that not all initial magnetic field val-
ues produce cyclic cycles in a quantum heat engine using the
Dirac oscillator as the substrate medium. The expansion pa-
rameter’s value also affects the engine’s efficiency, as in the
non-relativistic case.
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