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Abstract
The electric field effect on the smectic-A - smectic-Cα* phase transition of antiferroelectric liquid crystal have

been investigated theoretically. A phenomenological theory under DC field has been developed to establish the
calculated hysteresis loop and theE (electric field)−T (temperature)phase diagram, in which a tricritical point
was found.
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I. INTRODUCTION

Since the discovery of the antiferroelectric SmC∗
A phase,

several new phases have been found in antiferroelectric liq-
uid crystals. Among these, the SmC∗

α phase is unique. This
phase was already found by DSC measurement in 1989 [1, 2],
but it took 10 years to clarify the structure by such sophisti-
cated experiments as resonant X-ray diffraction [3] and dif-
ferential optical reflectivity [4]. It was found that the SmC∗

α

phase has a helical structure like the ferroelectric SmC∗ phase,
but the pitch is very short. For example, it is about three layers
in MHPOCBC, which shows the phase sequence as SmC∗

A-
SmC∗α-SmA as increasing the temperature.

As in solid ferroelectrics, applying an electric field is a good
method to investigate the molecular neighboring interactions
because in chiral smectic liquid crystals the electric field cou-
ples with the order parameter representing the amplitude and
phase of the molecular tilt in each layer. Recently a preciseE
(electric field)−T (temperature) phase diagram of an antifer-
roelectric liquid crystal MHPOCBC was obtained by means of
dielectric measurements [5] as well as by using a photoelastic
modulator [6]. In the SmA(SmC) to SmC∗α transition, there
exists a tricritical point (TCP) where the dielectric constant
begins to jump discontinously. This tricritical point has been
investigated in detail by Bournyet al. [7]. In ferroelectric
and antiferroelectric liquid crystal phase transitions the TCP
is of great interest from a viewpoint of related anomalies in
physical properties.

The phenomenological theories have been developed so far
to explain the phase sequences and dynamics properties of
chiral smectic liquid crystals [8]. When the free energy is
expanded in the Landau-type power series in terms of a sin-
gle transition parameter, the TCP is simply recognized as the
point in a phase diagram where the coefficients of the second
order and fourth order terms vanish simultaneously. But, in
the case where the free energy is written in terms of more than
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two transition parameters the situation is rather different, and
the procedure for finding TCP is a little more complicated.

The purpose of the present paper is to reexamine the previ-
ously studied simple Landau theory written in a term of two
parameters for second-order SmA-SmC∗

α phase transition [9],
with the emphasis put on analytical derivation of the TCP, hys-
teresis loop and then present theE − T phase diagrams in a
more transparant way.

II. ORDER PARAMETER

First, the order parameter in thej-th smectic layer will be
defined. The structures of the SmA and SmC phases were
shown in Fig. 1. In the SmA phase the molecules are per-
pendicular to the smectic layers, while in the SmC phase they
tilt in the same direction. The molecular tilt can be described
by a unit vector parallel to the molecules, called a director
~nj = (njx, njy, njz). Since opposite orientations of the di-
rector are the same, it is natural to use a second rank tensor
ninj . From the components we can construct an axial vector:

~ξj = (ξjx, ξjy) = (njynjz,−njxnjz) (1)

where thez axis is taken along the layer normal. In the SmA
phase~ξj = 0 , while in the SmC phase~ξj 6= 0. Therefore,~ξj

is the order parameter describing the SmA-SmC phase transi-
tion.

(a) SmA (b) SmC

FIG. 1: Typical smectic phases, (a) SmA and (b) SmC.
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FIG. 2: Relationship between the director~nj and the order parameter
~ξj .

In chiral smectic liquid crystals, which contain chiral car-
bons, the tilting direction changes moving along the layer nor-
mal and the spontaneous polarization appears in each layer.
It is obvious that~ξj is always parallel or antiparallel to the
polarization. For example, in the ferroelectric phase (SmC*)
the molecules tilt as in the SmC phase but~ξj rotates slowly
to form a helix and the in-plane polarization rotates as well.
While in the antiferroelectric phase, the molecules in the
neighboring layers tilt in the opposite directions and so the
polarizations also point to the opposite directions, and fur-
thermore the chirality causes a small deviation from the180◦
alternation in the tilt between two consecutive layers and the
formation of a helical structure as well as in the SmC* phase.

When an electric field is applied parallel to the smectic
layer, two kinds of liquid crystal molecular motion are needed
to consider, a spatially homogeneous tilt, i.e., the ferroelec-
tric mode(ξfx, ξfy), and a helicoidal tilt, i.e., the soft mode
(ξq1, ξq2) related to the SmA-SmC∗α phase transition, which
is the primary order parameter in our case. With these modes
the order parameter in thejth layer,~ξj , can be expressed as
[9]

ξjx = ξfx + ξq1 cos qcjd− ξq2 sin qcjd, (2)

ξjy = ξfy + ξq1 sin qcjd + ξq2 cos qcjd, (3)

whereqc is the wave number of the helicoidal structure andd
the layer spacing. Here, the experimental fact shows that no
stripe corresponding to the helical structure was observed with
a polarizing microscope in the process of changing the applied
field [7]. This indicates that the very short pitch helical struc-
ture in the SmC∗α should disappear without the divergence
of the pitch, i.e., the amplitude of the helix should become
zero. Therefore,qc can be regarded as constant. Similarly,
the polarizations corresponding to each relaxation modes are
described as,

Pjx = Pfx + Pq1 cos qcjd− Pq2 sin qcjd, (4)

Pjy = Pfy + Pq1 sin qcjd + Pq2 cos qcjd, (5)

III. FREE ENERGY

The ferroelectric mode located at the Brillouin zone cen-
ter is directly excited by the applied field through the piezo-

electric coupling between the ferroelectric mode and the po-
larization, which contributes to the linear dielectric response.
In the third-order nonlinear dielectric response, on the other
hand, the nonlinear coupling between the nonpolar soft mode
and the ferroelectric mode plays an essential role. Taking into
account these couplings, the free energyf under an applied
electric field can be expanded as

f =
α′

q

2
ξ2
q +

βq

4
ξ4
q +

α′
f

2
ξ2
f +

βf

4
ξ4
f +

η

2
ξ2
qξ2

f

−λq (ξq1Pq1 + ξq2Pq2)− λf (ξfxPfx + ξfyPfy)

+
1

2χq
P 2

q +
1

2χf
P 2

f − (PfxEx + PfyEy) , (6)

where

ξ2
q = ξ2

q1 + ξ2
q2, ξ

2
f = ξ2

fx + ξ2
fy (7)

P 2
q = P 2

q1 + P 2
q2, P

2
f = P 2

fx + P 2
fy (8)

Here,χf the dielectric susceptibility without the coupling be-
tween the polarization and ferroelectric order parameter. The
η term represents the nonlinear biquadratic coupling between
the ferroelectric and soft modes.λf is the piezoelectric con-
stant. Equilibrium conditions for the ferroelectric polarization
(Pfx, Pfy) and (Pq1, Pq2)yield,

∂f/∂Pfx = 0 or Pfx = χfλfξfx + χfEx (9)

∂f/∂Pfy = 0 or Pfy = χfλfξfy + χfEy (10)

∂f/∂Pq1 = 0 or Pq1 = χfλfξfx (11)

∂f/∂Pq2 = 0 or Pq2 = χfλfξfy . (12)

Substituting Eq. (9-12) into Eq. (6), it is obtained

f =
αq

2
ξ2
q +

βq

4
ξ4
q +

αf

2
ξ2
f +

βf

4
ξ4
f +

η

2
ξ2
qξ2

f

−χfλf (ξfxEx + ξfyEy)− 1
2
χf

(
E2

x + E2
y

)
,(13)

whereαq = α′
q − χqλ

2
q, αf = α′

f − χfλ2
f . When an electric

field is applied along thex-axis, the free energy densityf is
given as

f =
αq

2
ξ2
q1 +

βq

4
ξ4
q1 +

αf

2
ξ2
fx +

βf

4
ξ4
fx +

η

2
ξ2
q1ξ

2
fx

−χfλfξfxEx −
1
2
χfE2

x, (14)

ξfy has been dropped because it cannot be excited by the field
Ex.

IV. E-T PHASE DIAGRAM

From the equilibrium conditions, a set of simultaneous non-
linear equations is obtained as

∂f

∂ξfx
= αfξfx + βfξ3

fx + ηξ2
q1ξfx − χfλfEx = 0,(15)

∂f

∂ξq1
= ξq1

(
αq + βqξ

2
q1 + ηξ2

fx

)
= 0. (16)
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The stability of the equilibrium state obtained is assured if

∂2f

∂ξ2
fx

= αf + 3βfξ2
fx + ηξ2

q1 > 0, (17)

∂2f

∂ξ2
q

= αq + 3βqξ
2
q1 + ηξ2

fx > 0, (18)

|Hij | =

∣∣∣∣∣∣
∂2f
∂ξ2

fx

∂2f
∂ξfx∂ξq

∂2f
∂ξfx∂ξq

∂2f
∂ξ2

q1

∣∣∣∣∣∣
=

∂2f

∂ξ2
fx

∂2f

∂ξ2
q1

−
(

∂2f

∂ξfx∂ξq1

)2

> 0 (19)

where

∂2f

∂ξfx∂ξq1
= 2ηξq1ξfx. (20)

and the values representing the concerned equilibrium state
have to be substituted forξfx danξq1 in |Hij |. The condition
for the limit stability of phases, in another words, the phase
transition takes place when

|Hij | =
(
αf + 3βfξ2

fx + ηξ2
q1

) (
αq + 3βqξ

2
q1 + ηξ2

fx

)
−4η2ξ2

q1ξ
2
fx = 0. (21)

When electric field is applied,ξfx appears. Therefore un-
der the effect of field SmA phase (ξq1 = 0, ξfx = 0) has to
transform to SmC phase (ξq1 = 0, ξfx 6= 0). For large elec-
tric field the SmC∗α phase (ξq1 6= 0, ξfx 6= 0; note thatξfx is
not zero under an external field) becomes less stable, because
whenξfx is large, a nonzeroξq1 would increase the free en-
ergy throughη

2 ξ2
q1ξ

2
fx term in Eq. (14). This means that only

the SmC phase is stable for largeE. Therefore there must
be exist a phase boundary between the SmC∗

α phase and SmC
phase . Ifξq1 vanishes continuously on the phase boundary,
the transition is of the second order and the condition for it is
expressed, using Eq. (21), as

∂2f

∂ξ2
fx

= αf + 3βfξ2
fx = 0 → ξ2

fx = − αf

3βf
, (22)

or

∂2f

∂ξ2
q1

= αq + ηξ2
fx = 0 → ξ2

fx = −αq

η
, (23)

since∂2f/∂ξfx∂ξq1 = 0 for ξq1 = 0, whereξfx is obtained
from Eq. (15) withξq1 = 0 by

Ex =
1

χfλf

(
αfξfx + βfξ3

fx

)
, (24)

If ∂2f/∂ξ2
fx > ∂2f/∂ξ2

q1,

αf − αq + (3βf − η) ξ2
fx > 0, (25)

the phase boundary is determined by Eq. (23) and Eq. (24)
which yields,

Ex =
1

χfλf

√
−αq

η

(
αf −

αqβf

η

)
(26)

while if otherwise, by Eq. (22) and Eq. (24).
These apply only to the second order transition. With de-

creasing temperature, the first order transition may take place
from SmC∗α phase to SmC phase whenEx 6= 0 even if both
∂2f/∂ξ2

fx and ∂2f/∂ξ2
q1 are still positive. We have to re-

sort to numerical calculations, to some extent, to determine
the SmC∗α-SmC phase boundary of the first order transition as
following.

First the limit stability is determined for the SmC phase
when decreasing and SmC∗

α phase when increasing the dc-
field, respectively. For the SmC phase (ξq1 = 0, ξfx 6= 0),
Eq. (15) becomes

Ex =
1

χfλf

(
αfξfx + βfξ3

fx

)
. for SmC, (27)

whereξfx is obtained by using Eq. (23) which yield

ξ2
fx1 = −αq

η
. (28)

On the other hand, for the SmC∗α phase (ξq1 6= 0, ξfx 6= 0),
with the use of Eq. (16)

αq + βqξ
2
q1 + ηξ2

fx = 0 → ξ2
q1 =

1
βq

(
−αq − ηξ2

fx

)
(29)

Eq. (15) becomes,

Eax =
1

χfλf

{(
αf −

αqη

βq

)
ξfx +

(
βf −

η2

βq

)
ξ3
fx

}
for SmC∗α, (30)

where the subscripta to Ex is used to indicate that it is
the field in the SmC∗α phase. ξfx is obtained by using
Eqs. (29),(21) which yield

ξ2
fx2 = − αfβq − αqη

3 (βfβq − η2)
. (31)

V. TRICRITICAL POINT

Let us consider the TCP related to the transition from SmC∗
α

phase to SmC phase, which takes place with decreasing or
increasing electric field, is considered. Needles to say, the
tricritical point is located on the second order transition line
where Eq. (15), Eq. (16) and Eq. (21) are satisfied. Here
a general way to determine the TCP is considered. Note that
the value ofξfx in the SmC∗α phase is determined by Eq. (15)
(but not by Eq. (16) which is satisfied by anyξfx if ξq1 = 0),
which is an even function ofξq1, that is,dξfx/dξq1 = 0 at
ξq1 = 0, the free energy functionf(ξfx, ξq1) can be regarded
as a function of a single parameterξq1. Then the free energy
fucntion can be expanded aroundξq1 = 0 as

f (ξq1) = f (0) +
1
2

(
d2f

dξ2
q1

)
ξq1=0

ξ2
q1

+
1
4!

(
d4f

dξ4
q1

)
ξq1=0

ξ4
q1 + · · · , (32)
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sincef is an even function ofξq1.
At the tricrical point, the relation

d2f

dξ2
q1

}
ξq1=0

=
∂2f

∂ξ2
q1

+
∂f

∂ξfx

(
d2ξfx

dξ2
q1

)
= 0, (33)

d4f

dξ4
q1

}
ξq1=0

=
∂4f

∂ξ4
q1

+ 6
∂3f

∂ξfx∂ξ2
q1

(
d2ξfx

dξ2
q1

)

+ 3
∂2f

∂ξ2
fx

(
d2ξfx

dξ2
q1

)2

= 0, (34)

has to be satisfied, and both relations vanish simultaneously
[10]. On differentiating Eq. (15) with respect toξq1;

d2

dξ2
q1

(
∂f

∂ξq1

)}
ξq1=0

=
∂2f

∂ξ2
fx

d2ξfx

dξ2
q1

+
∂3f

∂ξfx∂ξ2
q1

= 0 (35)

we obtain

d2ξfx

dξ2
q1

}
ξq1=0

= −
∂3f

∂ξfx∂ξ2
q1

∂2f
∂ξ2

fx

(36)

and on putting this into Eq. (34), we find the condition of
appearance of the TCP as

d4f

dξ4
q1

}
ξq1=0

=
∂4f

∂ξ4
q1

+ 3
∂3f

∂ξfx∂ξ2
q1

d2ξfx

dξ2
q1

= 0. (37)

By assuming suitable temperature dependencies ofαf and
αq such asαq = A (T − Tc) andαf = αq + b, whereT ,
Tc, A and b are the temperature, the transition temperature
from the paraelectric SmA phase to the SmC∗

α and positive
constants, respectively, and using the above equations we can
getαf(TCP ) as following,

αf(TCP ) =
(2η2 − 3βfβq)b

2η2 − 3βfβqb + βqη
. (38)

The Ex(TCP ) can be obtained by substitung Eq. (38) into
Eq. (26). No hysteresis appears forαf(TCP ) < T < TC

but it does forT < αf(TCP ), as shown below.

VI. DISCUSSIONS

A typical E-T phase diagram made on the basis of the argu-
ments described above is shown in Fig. 3. The adopted values
of parameters are given in the caption. The second and first or-
der lines are indicated by solid and dotted lines, respectively.
The SmA-SmC∗α second order phase transition takes place at
αf = 1 whenEx = 0. For large electric field, the SmC phase
becomes most stable and then SmC∗

α-SmC phase boundary
appears. The part of the second order transition is determined
by Eq. (26) because the condition Eq. (25) is satisfied in
this case. The TCP is calculated by Eq. (38) and Eq. (26) as
αf = −0.7857 andEx = 0.4629. Below this temperature

0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

L1

L2
TCP

Ex

�f

FIG. 3: Theoretically obtained E-T phase diagram, withαf = αq +
1, βq = 0.3, βf = η = 1, χf = 1, λf = 1 in the SmC∗α phase .

the first order phase transition from SmC∗
α to SmC has been

obtained.
The similarE−T phase diagram has been obtained exper-

imentally by Bournyet al. by the microscopic observation of
texture change under dc electric fields [7]. But they cannot
draw the line betweenαf(TCP ) (the tempererature of TCP)
andTC (the SmA-SmC∗α phase transition temperature) since
no texture change and no stripe were observed when the elec-
tric field was gradually increased. It is indicating that in the
phase boundary line, the transition from the SmC∗

α phase to
the unwound SmC phase should take place continuously not
through a structure with a large pitch, as usually observed in
the second-order phase transition. BelowTTCP , on the other
hand, it is seen the narrow region limited by the linesL1 and
L2 in Fig. 4., which correspondens to the coexisting state of
SmC∗α and SmC phases. LinesL1 indicates the phase bound-
ary from SmC∗α to SmC when increasing the electric field ob-
tained by using Eq. (26). While linesL2 is the phase boundary
from SmC to SmC∗α when decreasing the electric field which
determined by using Eq. (30) whereξ2

fx obtained by using
Eq. (29) and Eq. (21). Experimentally it is observed that the
ferroelectric SmC domains appeared and then propagated [7].
Therefore, the field-induced transition from SmC∗

α phase to
SmC phase is discontinuous with a typical hysteresis.

Next, the double hysteresis loop in the SmC∗
α phase will be

discussed. The Eqs. (27)-(30) are giving theξfx − Ex curve
together with the stability conditions in Eqs. (18)-(19). The
calculatedξfx − Ex curve in the SmC∗α phase depend on the
coefficients of the fourth order terms and temperature, and two
distinct behavior were observed, as shown in Fig. 4-??. The
SmC∗α and SmC phases solutions, Eqs. (27)-(30), are stable
on the bold lines, andξfx1 is given with Eq. (28) andξfx2

is given with Eq. (31). In type I (ξfx2 > ξfx1,Ex > 0 or
TTCP < T < TC), as shown in Fig. 4 (a)., the field-induced
phase transition from SmC∗α phase to SmC phase, which oc-
curs atE′

1, is of the second order, and therefore, the double
hysteresis loop is not observed. In type II (ξfx2 > ξfx1,Ex >
0 or T < TTCP ), as shown in Fig. 4 (b) and (c), on the other
hand, the transition is of the first order. Since there exist two
critical points,Pa andPf , at which the solution become un-
stable, the double hysteresis curve appears. This result show
the existence of TCP.
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FIG. 4: Calculated hysteresis loop at (a).αf = 0.9◦C, (b).αf = 0.4◦C, (c).αf = -0.15◦C, with αf = αq + 1, βq = 0.3, βf = η = 1, χf = 1,
λf = 1 in the Sm-C∗

α phase.

VII. CONCLUSION

The E − T phase diagram of MHPOCBC near the SmA-
SmC∗α transition point has been established and a tricritical

point has been found . No hysteresis appears for the tempera-
ture betweenαf(TCP ) andTC but it does for the temperature
belowαf(TCP ).
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