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Abstract

This experiment focused on the drilling process of Glass Fiber Reinforced Polymer (GFRP) composites.
The data was obtained from an experiment carried out by Production Engineering Laboratory, Me-
chanical Engineering Department, Faculty of Industrial Technology and Systems Engineering, Institut
Sepuluh Nopember Surabaya in 2019. The experiment was done with an artificial intelligence method
called Backpropagation Neural Network (BPNN) as an approach to predict the response parameters
(thrust force, torque, hole roundness, and hole surface roughness). The parameter inputs are drill point
geometry, drill point angle, feed rate, and spindle speed. Hence the prediction would be used to gain
the minimum input parameters by applying metaheuristic methods called Differential Evolution (DE)
and Teaching Learning Based Optimization (TLBO). Then the result from both methods was compared
to determine which method gained the better optimization values. Since BPNN-DE and BPNN-TLBO
with type X drill point geometry was considerably better than type S drill point geometry, type X drill
point geometry could be used to optimize the drilling process of GFRP.
Keywords: Drilling, backpropagation neural network, differential evolution, glass fiber reinforced
polymer, teaching learning based optimization

1. Introduction
Glass Fiber Reinforced Polymer (GFRP) is one type

of polymer that has been widely used in building blocks,
electrical equipment, automotive, and aerospace indus-
tries [1–4]. The popularity of GFRP applications is aligned
with its characteristics. Based on an experiment about
comparison of GFRP with steel slab in building a bridge,
the result shows that GFRP can bear tension much better
than steel slab then considered as a strong material with a
tensile strength of nearly 700 MPa [1]. Other than that,
GFRP is also classified as a light material for having a den-
sity of 1.2-2.1 g/cm3 as stated in a catalogue published by
American Concrete Institute (ACI) in 2008 [5]. Another re-
search says that GFRP has good durability; nevertheless, it
depends on several things such as temperature, humidity,
whether the material is radiated by the sun, and acidic or
base conditions [5,6]. By the time, the usage of GFRP will
keep increasing, and it will lead to applying machining
processes to GFRP. One of the processes is called drilling.

Drilling is a machining process that is used to create
a circular hole using a twist drill. Its movements will pro-
duce forces in the axial direction called thrust force, and in
the rotational direction called torque then these forces will
affect the hole roundness and surface roughness which
can influence the quality of the product [7,8]. To predict

the values of these parameters, it is adequate to apply neu-
ral networks, especially the one namely Backpropagation
Neural Network (BPNN) [9–12]. After obtaining the best
network to gain the parameters, it is necessary to find the
optimum values of these parameters. One of the methods
to do that is called metaheuristic. There are some stud-
ies in optimization applying metaheuristic methods such
as Differential Evolution (DE), Teaching Learning Based
Optimization (TLBO), Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), Response Surface Methodol-
ogy (RSM), Harmony Search (HS), and others [8,13–19].

Some scholars have proposed the optimization in
the drilling process of GFRP using some metaheuristics
methods. However, there are not many attempts in op-
timizing the drilling process of GFRP using TLBO, even
more using DE. Therefore, in this study, BPNN was applied
together with metaheuristics, specifically DE and TLBO to
predict parameter input for obtaining optimum response
in drilling as shown in Figure 1. Firstly, choosing the ap-
propriate BPNN parameters to obtain the smallest error
in predicted responses. Moreover, selecting the suitable
parameters in the drilling of GFRP using BPNN-DE and
BPNN-TLBO to gain multi-performance response variables.

The significance of the input parameters to the out-
put responses can be specified as follows,
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Figure 1. Steps for optimizing using BPNN-DE and BPNN-TLBO.

• Drill point geometry (PG) has influence on the val-
ues of thrust force, torque, hole roundness, and hole
surface roughness. PG has various shapes such as
standart-point drill bit, split-point drill bit, four-facet
drill point, and splot point with double margin with
different characteristics and is used to process a
particular material for each shape. Choosing the
right PG can affect the delamination action in the
drilling process of GFRP and is related to both hole
roundness and hole surface roughness of the work-
piece [20,21].

• The values of drill point angle (PA) can affect the
values of thrust force, torque, hole roundness, and
hole surface roughness. The PA values can be 90◦,
118◦, or 135◦. Each value is applied to a different
material with 118◦ being the standard PA for drilling
process, 90◦ is used for a softer material, while 135◦

is used for a harder material [22,23].

• Increasing the value of feed rate (fr) will raise the
value of thrust force received by the workpiece and
it can also make the torque turn bigger, while de-
creasing the fr will have the thrust force and also
torque have small values. This happens because
with the low fr, the thickness of uncut chip thick-
ness will be small and the relief angle will increase,
it can cause the thrust force working on the work-
piece to decrease. And in order to gain a low value
of torque, the fr needs to be set on a small value

to minimize the cross-section of the chips and the
effective clearance angle will increase [24,25].

• The values of spindle speed (n) has influence on
the numbers of thrust force, torque, hole roundness,
and hole surface roughness. Increasing the values
of n can reduce the thrust force and torque, while
decreasing the values of n will enlarge the thrust
force and torque working on the workpiece [24,25].

1.1. Drilling in GFRP

Gurumukh Das and Padam Das [7] defined the cut-
ting forces in the drilling process. The force acting on
both the lips of a drill in drilling process may be resolved
into three mutually perpendicular force components: ax-
ial force (FA) along the axis of a drill, radial force (FR)
along the radial direction of a drill, and tangential force
(FT ) perpendicular to the force components FA and FR as
shown in Figure 2 [26].

Since drilling is used in making hole operations
and for joining the mechanical fasteners such as rivets,
screws, and bolts, the delamination happening in the
drilling process of FRP becomes a critical thing to be
considered. Soepangkat et al. [13] stated that the de-
lamination worked in the FRP drilling process was divided
into two parts. The peel-up delamination referred to the
delamination in the hole entry. In contrast, the push-out
delamination referred to the exit plane, as shown in Fig-
ure 3.

Figure 2. Forces in drilling process, (a) ISO view, (b) bottom view.
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Figure 3. Delamination in drilling of GFRP.

Kumar et al. [27] explained that delamination hap-
pened because of the contact between the composite layer
and the drill bit cutting edge in the axial direction through
the drill flute. It results in the composite material rotating
upward. It causes the composite layer to be separated
from the uncut part then it is called the peel-up delamina-
tion. While the push-out delamination happens as the drill
bit reaches the exit plane of the composite laminates. The
uncut FRP thickness gets thinner as the drill bit gets closer
to the bottom of the FRP layers hence it decreases the
deformation resistance. Until a certain point, the thrust
force damages the interlaminar bond strength and creates
a crack. The uncut FRP layers are bent down due to this
thrust force from the drill bit, and it can cause a hole
exit delamination as the drill bit goes through the exit
side. This delamination at the exit occurs before the FRP
laminate is entirely pierced by the drill bit.

Prachad and Shaitanya [9] explained that delamina-
tion happening in the entry and exit hole of the composite
layer is represented as delamination factor, which can be
calculated as the ratio between the maximum diameter in
the delamination area and the nominal diameter of the
drill. The delamination is formulated by the following
equation:

D = Dmax

D◦
(1)

1.2. Drilling in GFRP

Artificial neural network models human brain sys-
tem called neural system. It consists of essential parts,
namely neurons, dendrites, axons, and the connection
of the neurons, as shown in Figure 4 [10]. In contrast,
neural networks consist of similar parts, as shown in Fig-
ure 5 [11].

Figure 4. Human brain system.

85



Fatika, Effendi/JMES The International Journal of Mechanical Engineering and Sciences/5/2(2021)

Figure 5. Neural networks.

Therefore, an analogy can be drawn from these simi-
larities. The nodes in human brain are called neurons in
neural networks and the connection between cells is called
a connection of neurons in the neural networks. There
also are assumptions taken to develop neural networks
based on human brain system:

• Information processing is conducted at the neurons.

• The connection links of one neuron to another are
utilized to pass the signals between them.

• Every connection link has a weight which is used to
multiply the signal transmitted.

• An activation function is applied by each neuron to
its net input in order to determine its output.

1.3. Differential Evolution

Das and Suganthan [14] pointed out why scholars
consider DE as an interesting optimization method:

a. DE is more straightforward to implement compared
to most other evolutionary algorithms.

b. DE gives away a better performance on broad va-
riety of problems including multimodal, unimodal,
separable, non-separable, and so forth.

c. DE has very few control parameters with adaptation
rules, and it might increase the performance of the
algorithm to a considerable extend without inflicting
any significant computational trouble.

d. The capacity difficulty of DE is slight compared to
some optimization methods. This feature aids in ex-
panding DE for control of enormous scale and steep
optimization difficulties.

DE begins the process with initiating a population
that is judged by the cost or fitness function, and the better

individuals will proceed to the next generation. Along this
process, individuals evolve with mutation and crossover
operators; then, this evolution will be pursued until the
algorithm achieves a stopping criterion, which is called a
selection stage as shown in Figure 6 [15].

1.3.1. Initialization

At the beginning of the optimization process, an initial
population has to be generated. Generally, each decision
parameter in every vector of the initial population is given
a randomly chosen value from the boundary constraints:

xi
0

j = aj + randj .(bj − aj) (2)

with randj defines a uniformly distributed value between
[0,1], producing a new number for individually decision
parameter. aj and bj are the lower and upper bounds for
the jth decision parameter, respectively.

1.3.2. Mutation

In the theories of Biology, mutation is known as an abrupt
change in the gene characteristic of a chromosome, while
in the study, as Das and Suganthan [12] stated, mutation
is a process to change the value of a gene with a random
element. For each target vector

vi
G+1 = xr1

G + F ∗ (xr2
G − xr1

G), r1 6= r2 6= r3 6= i (3)

with randomly chosen indices and r1, r2, r3 ∈ {1,2,...,NP}.
Consider that these indices has to be different from

one another and from the running index i so that NP must
be at least four. F is a real number to control the amplifi-
cation of the difference vector (xr2

G – xr1
G). The range

of F is in [0,2]. If a component of a mutant vector goes
off the search space, then the value of this component is
created anew using (2).
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Figure 6. Flowchart for Differential Evolution.

1.3.3. Crossover

To increase the potential diversity of the population, a
crossover operation comes into use after creating the
donor vector through mutation. The donor vector switches
its components with the target vector through this oper-
ation to form the trial vector [10]. The target vector
is mixed with the mutated vector, using the following
scheme, to yield the trial vector ui

G+1.

uG+1
i = vG+1

ij , rand(j) ≤ CR or j = rand n(i)xG+1
ij ,

rand(j) > CR or j 6= rand n(i)
(4)

with j=1, 2,..., D, rand(j) ∈ [0,1] is the j-th evaluation
of a uniform random generator number. CR ∈ [0,1] is
a constant showing the crossover probability rate, which
must be determined by the user. rand n(i) ∈ 1, 2,..., D is
a randomly chosen index which ensures that ui

G+1 gets
at least one element from the mutant vector vij

G+1; or
else, no new parent vector would be generated and the
population would not change.

1.3.4. Selection

DE applies a greedy selection strategy. If only if the trial
vector ui

G+1 yields a better fitness function value than
xi

G, then ui
G+1 is set to xi

G+1. Otherwise, the old vector
xi

G is maintained. The selection scheme is as follows:

xG+1
i = uG+1

i , f(uG+1
i ) < f(xG

i )xG
i , f(uG+1

i ) ≥ f(xG
i )
(5)

1.4. Teaching Learning Based Optimization

Teaching Learning Based Optimization is a meta-
heuristic method illustrating a natural condition in a class.
Rao et al. [16] proposed a study to establish an up-to-date
optimization method untied from the algorithm parame-
ters and can answer divergent optimization troubles effec-
tively and efficiently. This new method is called Teaching
Learning Based Optimization (TLBO).

The TLBO method shows the influence of guidance
from a teacher towards the output of their students in class.
The result here is deemed as the grades of the students
while the teacher is reckoned as a highly learned person
who distributes their knowledge with their students. Rao
et al. explained that a good teacher brings out a better
mean for the grades of their students. They also stated
that a teacher improves the mean of their class in accor-
dance with their capability. Other than that, the quality
of the students is determined from the mean value of the
population, or in this case is the class. The teacher will
put efforts to escalate the quality of their students prior
to a point showing that the students need a new teacher
of a better level than themselves. The study enunciated
that TLBO is divided into two parts. The first is called the
’Teacher Phase,’ and in this phase the class students are
learning from their teacher. The second phase is called
the ’Learner Phase,’ which means the students learn from
their interactions (Figure 7).
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Figure 7. Flow chart for Teaching Learning Based Optimization.
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1.4.1. Teacher Phase

Rao et al. [17] stated that a good teacher is the one who
can help their students get to their higher level of knowl-
edge and increase the mean of their class from MA to MB .
But in reality, this is not possible as a teacher can only
enhance the mean of their class up to the capability of the
class and it depends on many factors. Let Mi be the mean
and Ti be the teacher at any iteration i. This Ti will try to
move mean Mi towards its level, hence now the new mean
will be Ti designated as Mnew. The solution is updated
according to the difference between the existing and the
new mean is given by

Difference_Meani = ri(Mnew − TFMi) (6)

with TF is defined as a teaching factor that decides the
value of the mean to be adjusted, and ri is a random num-
ber in the range of [0,1]. The value of TF can either be 1
or 2 which is a heuristic step and decided randomly with
the same probability as TF = round[1+rand(0,1){2–1}].
Then the following expression is used by the difference to
modify the existing solution,

Xnew,i = Xold,i +Difference_Meani (7)

1.4.2. Learner Phase

Rao et al. [12] also expressed that students from a class or
so-called learners expand their knowledge by two different
means: the first one is by input from their teacher, and
the second one is by the interaction between themselves.
Learners in a class will interact with each other randomly
by having discussions, group presentations, formal com-
munications, etc. A learner can learn something new if
the other learner has more information or knowledge than
them. Learner modification is shown below

For i = 1:Pn

Randomly select two learners Xi and Xj , where i 6=j
Nnew,i=Xold,i+ri(Xi – Xj)
Else
Nnew,i=Xold,i+ri(Xj – Xi)
End If
End For
Accept Xnew if it gives a better function value.

2. Experimental Method
The following limitations are being used in our cal-

culation:

a The BPNN uses one up to 5 hidden layers with 2–10
neurons each, and the learning method is Levenberg
Marquardt.

b The same numbers of neurons are used to simplify
the topography of the BPNN; hence it will take a
shorter time to process.

c The steps used in Differential Evolution are general-
ized mutation, binomial crossover, and selection.

d TLBO is done with 0 as the lower bound, ten as the
upper bound, having a population number of 100
and 100 iterations.

e The stopping criteria for both DE and TLBO are the
stage of a lower value (from the previous value) is
obtained then gains a convergence value after up-
dating the population as much as the number of
iterations.

f The data used in the study is based on research
done by the Production Engineering Laboratory of
Mechanical Engineering Department, Faculty of In-
dustrial Technology and Engineering Systems ITS in
2019 about the drilling process of GFRP.

g The used activation functions are hardlim, purelin,
logsig, and tansig.

h The data split of this study is 70%, 15%, and 15%
for training, testing, and validating, respectively.

CNC Vertical Machining Center is used to carry out
the experiment and since this study is based on a previous
research done by Laboratory in 2019, the materials used in
that experiment are E-glass GFRP with length of 200 mm,
width of 30 mm, and the thickness is 6 mm. The FRP
has 0.25 mm thickness of each ply, hence it has 24 plies.
Its tensile modulus, shear modulus, tensile strength, and
density are 19 GPa, 20.5 GPa, 390 MPa, and 1.86 g/cm3,
respectively. The material has two different types of drill
geometry called S type which is made of HSS and X type
which is made of HSS-cobalt (Figure 8), and each of them
is 10 mm in diameter.

Figure 8. Drill point geometry (a) S type and (b) X type.
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The measurement tools for thrust force, torque, hole
roundness, and hole surface roughness were Kistler 9272
dynamometer, Kistler 972 dynamometer as shown in Fig-
ure 9, EC-3D round tester, and Mitutoyo Surftest SJ-310,
respectively. The schematic of thrust force and torque
measurements can be seen in Figure 10.

The Table 1 shows the experimental process parame-
ters which divided into three levels each, while the exper-
iment was done with some steps as shown in Figure 11.
Moreover, the experimental data can be seen in Figure 12,
where R1, R2, and R3 show the replication of the experi-
ment. Figure 11 shows the procedure of this study and it
starts with doing literature review, using the data from an
experiment of multi-performance optimization in drilling

process of GFRP using RSM and BPNN-GA as the exper-
imental data, defining the input and output parameters,
modelling the BPNN, then doing the response optimization
using DE and TLBO, comparing the results, determining
whether the optimization is better, and concluding the
study.

The experimental data can be seen in Figure 12,
where R1, R2, and R3 show the replication of the ex-
periment. It includes the thrust force (Fz), torque (Mz),
hole roundness (R), and hole surface roughness (SR) data.
Every parameter has 18 data and being replicated trice
shown as R1, R2, and R3, thus the total number of the
data is 54 for each parameter.

Figure 9. GFRP drilling process using dynamometer Kistler.

Figure 10. Schematic of thrust force and torque measurements.
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Table 1. Experimental process parameters and their levels.

Parameters Units Level 1 Level 2 Level 3

Drill point geometry - S type X type -
Drill point angle degree 90 118 135

Feed rate mm/min 50 100 150
Spindle speed rpm 2000 2500 3000

Figure 11. Experimental procedure.
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Figure 12. Experimental data.

3. Results and Discussion
To determine the predicted responses, this study

combines the response parameters by giving them weights
0,25 each and expressed with the following equation
called the objective function, which is formulated by the
following equation:

Obj.Function = (0.25× Fz) + (0.25×Mz) + (0.25×R)
+ (0.25× SR)

(8)

with the phrase Obj. function shows target or the com-
bined response parameters, Fz is thrust force (N), Mz is
torque (Nm), R is hole roundness (µm), and SR is hole
surface roughness (µm).

Before entering the neural network training process,
a normalization step is done using MATLAB command,
namely mapminmax which has [-1,+1]as its range. The
normalization can be calculated with the following formu-
lation:

xnj = xi −mina

maxa −mina
.(newmaxa − newmina)

+ newmina

(9)

with xnj defines the normalized value of x from j-th vari-
able, xi expresses the initial value of x, mina shows the
minimum value of overall data, while maxa shows the
maximum value of overall data, newmaxa tells the max-
imum value of the defined range, and newmina tells the
minimum value of the defined range. The following calcu-
lations show an example of expression (9) application,

The calculations carried out the first values
from R variable, with xi=125, mina=75, maxa=125,
newmaxa=1, and newmina=–1, hence the value of xnj

is

xnj = 125− 75
125− 75 .(1− (−1)) + (−1)

xnj = 50
50 .(2) + (−1)

xnj = 1

After completing the normalization process, the
BPNN modeling is being carried out, and this study will
show the MSE from each type and the comparison of the
target with the predicted values. Figure 13, 14, and 15
show the gained MSE values for each type.
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Figure 13. Values of MSE for S Type PG.

Figure 14. Values of MSE for X Type PG.

Figure 15. Values of MSE for Combination of S and X Types PG.
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From Figure 13 through Figure 15 it is known that
the MSE for S type PG is 0.0184, 0.0114 for the X type
PG, and 0.0076 for the combined type, with the suitable
Backpropagation Neural Networks parameters to gain the
smallest error of the response prediction are five hidden
layers, nine neurons, and using logsig as the activation
function for Type S PG, while the parameters for Type X
PG are three hidden layers, ten neurons, and using logsig
as the activation function, and the parameters for Combi-
nation of Type S and X PG are three hidden layers, nine
neurons, and using tansig as the activation function. Be-
sides obtaining the MSE values for each type, there are
also comparisons between the target numbers with the
prediction results, which are shown in Figure 16.

From the predicted values shown in Figure 13
through Figure 15 and Figure 16, it is known that the
smallest error occurs in BPNN model with the combina-
tion of S and X type PG. However, this model needs a
penalty and complex steps. Therefore the used PG types
in this optimization experiment in the drilling process for

GFRP are S type and X type PG, separately. After getting
the MSE values from the BPNN modelling, the next step
is to find the input parameter values based on the opti-
mization using DE and TLBO methods. The results of
this optimization need to be denormalized to convert it
into original value. The denormalization process applies
a simple linear expression to make it easier to be applied
to DE and TLBO results. The formulation used in the
denormalization is

y = mx+ c (10)

with y is the value obtained from the optimization meth-
ods, x is the input parameter, while m and c are constants
that will be calculated by entering +1 and –1 as the upper
bound and lower bound, respectively. The following calcu-
lations show the application of expression (10) in finding
the best values of input and output parameters, and the
one being an example here is the calculation for type S PG
in determining the value of its input parameter, PA:

Figure 16. Comparison of targeted and predicted values of PG (a) S type, (b) X type, (c) Combination of S and X type.
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• Finding the m and c Values for PA

The values of y = –1 with x = 90 and y = 1 for
x = 135. Those values will be substituted into ex-
pression (10) then two expressions will be obtained
as the following:

− 1 = 90m + c (a)

1 = 135m + c (b)

The next step is finding the value of m by subtracting
expression (a) to (b) and it will produce expressions
(c) to (e) as the following:

− 2 = −45m (c)

m = 0.044444 (d)

c = −4.99996 (e)

• Finding the Value of x1 or PA for Type S PG

The values of y = 1, m = 0.044444, and c = –
4.99996. Those values will be substituted into
expression (10) and the value of x1 or PA for

the type S PG will be known as the following:

1 = x1(0.044444)+(–4.99996)
5.99996 = x1(0.044444)
x1 = 135

The same process will be applied in determining
the input and output parameters for both DE and TLBO
methods, which the results are shown in Table 2.

Graphs in Figure 17 show the gained results after do-
ing the optimization using DE, and TLBO methods. Graph
(a) uses type S PG and it can be seen that DE method
gains values of –0.385702 while TLBO obtains –0.399422.
The graph also shows that TLBO gets the constant num-
ber –0,474519 at its 2nd iteration whilst DE obtains the
constant value of –0,474519 at its 3rd iteration. Then
graph (b) uses type X PG and it shows that DE obtains the
number of –0,552206 while TLBO gains –0,556338. TLBO
obtains the constant number of –0,556730 at its 12th iter-
ation while DE gains the constant value of –0,556670 at
its 58th iteration.

The following table shows the comparison the results
of DE and TLBO optimization methods:

Table 2. Comparison of optimization results using DE and TLBO

Method
Optimum Drilling Parameters Response Parameters

Iteration
PG PA f n Fz Mz R SR

BPNN-DE S 135 150 2000 46,6 0,894 97 1,356 3
BPNN-TLBO S 135 150 2000 46,6 0,894 97 1,356 2

BPNN-DE X 90 89.759 2841 45,9 0,8835 96,5 1,255 58
BPNN-TLBO X 90 89.754 2821 45,9 0,8835 96,5 1,255 12

Figure 17. Comparison of optimization results using DE and TLBO.
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Table 3. The new values of feed rate

X Type

f
(mm/min)

n
(rpm)

DE TLBO
Fz
(N)

Mz
(Nm)

R
(µm)

SR
(µm)

Fz
(N)

Mz
(Nm)

R
(µm)

SR
(µm)

89

2841 49.87 0.95 99.46 1.43 49.87 0.95 99.46 1.43
2842 49.45 0.94 99.14 1.42 49.45 0.94 99.14 1.42
2900 50.11 0.95 99.63 1.43 50.11 0.95 99.63 1.43
3000 50.22 0.95 99.71 1.44 50.22 0.95 99.71 1.44

90

2841 50.20 0.95 99.69 1.44 50.20 0.95 99.69 1.44
2842 50.21 0.95 99.71 1.44 50.21 0.95 99.71 1.44
2900 49.42 0.94 99.12 1.42 49.42 0.94 99.12 1.42
3000 50.71 0.96 100.07 1.45 50.71 0.96 100.07 1.45

100

2841 47.82 0.91 97.94 1.38 47.82 0.91 97.94 1.38
2842 50.34 0.95 99.80 1.44 50.34 0.95 99.80 1.44
2900 49.89 0.95 99.47 1.43 49.89 0.95 99.47 1.43
3000 49.63 0.94 99.28 1.42 49.63 0.94 99.28 1.42

As it is shown in Table 2, the DE method needs more
iterations than TLBO to get its optimum value of the pa-
rameters. It is possible to happen because only a few
samples lead to being trapped in the local optimum, and
the search may not be more expansive. There are only
slight differences in DE and TLBO methods as both method
has similar optimization results. Besides having decimal
values for some parameters, it is necessary to approach
these results with a step to find a possible value to be
operated by practitioners using the Equation (a) to (e) as
in the previous discussion.

The parameters that need to be calculated are
feed rate f and spindle speed n with values of 89, 90,
100 mm/min and 2841, 2842, 2900, 3000 rpm for f and
n, respectively. Therefore, the new values of feed rate are
shown in the following table.

From Table 3, it can be seen that the smallest re-
sponse parameters were gained by using f 100 mm/min
and n 2841 rpm for DE and TLBO methods with X type
PG.

4. Conclusions
This study results suggest that DE method gains

higher values than TLBO using both Type S and Type
X PG. On the other hand, TLBO is able to obtain the con-
stant number faster than DE for both Type S and Type
X PG. The contents of this paper show that optimization
in the drilling process of GFRP and the application of DE
and TLBO will continue to expand in a multi-disciplinary
study in the years to come. However, as the data used
in this study was limited, the optimization applying DE
and TLBO methods could not achieve their best results.
Therefore, the future experiment needs more data to make
the prediction processed by BPNN becomes more accurate.
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