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Abstract

The energy used in the hybrid vehicle needs to be regulated to gain further mileage and lower fuel
consumption. It is achieved by selecting the correct levels of hybrid energy management system (EMS)
parameters (i.e., vehicle speed, engine RPM, and activation State of Charge (SOC) of battery). This
study focused on the modeling and optimization of Sepuluh Nopember Institute of Technology (ITS)’s
series plug-in hybrid electric vehicle (PHEV) car mileage and fuel consumption by comparing the
backpropagation neural network (BPNN) method – genetic algorithm (GA) and BPNN – particle swarm
optimization (PSO). The BPNN was used to model the character of ITS’s series PHEV EMS and predict
mileage and fuel consumption. The BPNN’s model obtained the best EMS parameters, most extended
mileage, and minimum fuel consumption. The result of the validation experiment showed that both
the integration of BPNN - GA and BPNN - PSO were able to predict and optimize the multi-objective
characteristic with the same results.
Keywords: EMS, BPNN, genetic algorithm, particle swarm optimization, optimization

1. Introduction
According to a recent study by [1], around 1.2 bil-

lion vehicles are running around the globe, while 95%
are light-duty vehicles, of which 99% still use internal
combustion engines (diesel and gasoline-fueled). This
condition contributes highly to global warming and the
continuous reduction of global oil reserves. Electric ve-
hicles (BEV) and hybrid vehicles (HEV) are alternative
vehicles developed to face global warming and the reduc-
tion of petroleum reserves [2]. In Hybrid Electric Vehicles
(HEV), the drive system and power source can be obtained
by combining a conventional internal combustion engine
with an electric motor system. The drive system and power
source division can be divided into a series system, a series-
parallel system, and a parallel system. The drive system
is entirely driven by an electric motor in the series sys-
tem used at ITS’s PHEV. The combustion motor drives a
generator that aims to charge the battery without directly
assisting the drive system [3,4]. These power distributions
need an EMS to enable the vehicle to reach the furthest
mileage with the lowest fuel consumption possible.

The EMS works by a rule-based strategy, responding
to predetermined parameters to execute some tasks. In
ITS’s PHEV, the parameters used as a rule-based strategy
were SOC of battery and engine RPM. The SOC of the bat-

tery effect when the engine needs to be activated, while
the engine RPM affects the power generated by the alter-
nator. Both parameters affect the mileage of the car and
its fuel consumption. These parameters deem possible to
be optimized to suit better the character of the vehicle’s
main drivetrain components for further mileage and lower
fuel consumption [5]. Currently, the rule-based EMS used
in ITS’s series PHEV produces a car with either a long-
range mileage with high fuel consumption or a low-range
mileage with low fuel consumption.

Determining the suitable parameters by experiments
on each parameter with a long-range option is considered
time-consuming and resource-intensive. Thus, researchers
try to implement soft computing techniques to optimize
the EMS rule-based parameters. The soft computing tech-
nique enabled the researcher to solve complicated prob-
lems, including multivariable and non–linear problems.
These methods usually consist of some set of algorithms
to find the possible best solutions for a general or specific
problem.

In this study, two sets of algorithms were used to
determine which one has the better solution to optimize
the EMS of the ITS series PHEV car. These algorithms were
BPNN-GA and BPNN-PSO. Each problem was unique and
may have a different best optimization method. Hence
this study’s goals include finding the best optimization
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method to optimize EMS parameters of ITS’s series PHEV
by comparing BPNN-GA and BPNN-PSO. Various articles
have used GA and PSO separately and showed a good
result in EMS optimization [6–9]. There was no previous
study regarding ITS’s series PHEV EMS. Hence this study’s
goal is to find the optimum value of the parameters to
gain the furthest mileage and the least fuel consumption
to improve ITS’s series PHEV EMS. To further validate the
optimization process, vehicle efficiency at the optimum
vehicle speed, engine RPM, and State of Charge (SOC)
activation needed to be determined. The optimum effi-
ciency is then compared with vehicle efficiency without
optimization.

2. Method
2.1. Back Propagation Neural Network (BPNN)

An artificial neural network (ANN) was a digital
model of the human brain. It simulated how the brain
processed data or information by detecting patterns and
connections between data. Therefore, it was suitable to
optimize a complex problem [10]. In an artificial neu-
ral network, the processing occurred in neurons, signals
were sent between neurons via links, and connectors be-
tween neurons had weights that amplified or weakened
the signal. Each neuron used an activation function as-
signed to the received input in determining output. The
magnitude of this output was compared with a thresh-
old [11]. ANN also had two types of learning phases,
which were feedforward and feedback. ANN also could be
a single-layer neural network or a multilayer neural net-
work. A multilayer neural network utilized the learning
algorithm of a backpropagation neural network (BPNN),
a supervised training algorithm that made BPNN able to
modify the weight between input and output to minimize
error [12,13]. To further enhance the optimization, BPNN
could be coupled with a metaheuristic method [14], such
as a genetic algorithm and particle swarm optimization.

The modeling of BPNN’s architecture could be de-
tailed in the following steps:

• Step 1: Normalized the study’s input and output
using the mapminmax function, so it had a similar
range from -1 to 1.

• Step 2: Created the BPNN architecture by varying
the value of hidden layers, number of neurons, and
activation function.

• Step 3: Training, validation, and testing the BPNN
architecture.

• Step 4: Saving the best BPNN architecture with the
lowest mean square error (MSE).

2.2. Genetic Algorithm (GA)

A genetic algorithm was a metaheuristic method
based on Darwin’s Theory of Evolution [15]. The char-
acteristic of the parent, called genes, were passed to its

offspring. Each generation had a better characteristic or
a smaller error. The first generation with random char-
acteristics with the number of offspring could ultimately
produce the perfect individual. The basic elements of GA
were reproduction, crossover, and mutation. A study by
Yin [16] used a hybrid backpropagation neural network
and genetic algorithm to optimize the injection molding
process resulting in a higher optimum value of the design
parameter. Each GA parameter could alter the optimum
value of the optimization. According to Zhang [17], the
more the number of populations, the better the result. Al-
though, after achieving convergence, the optimum value
only slightly changed. The mutation rate, however, varied
in every problem and needed to be adjusted.

2.3. Particle Swarm Optimization (PSO)

Particle swarm optimization was a metaheuristic
method based on the social interaction of a swarm or
school of fish or birds. As a swarm, each individual af-
fected others. For example, when an individual found
some food or objective function, another individual was
affected and tended to head to the same spot as the one
that found it first. This social trend was then modeled and
became PSO. PSO had a faster processing time but could
be trapped in an optimum local value [18].

2.4. Hybrid Vehicle Efficiency

The efficiency of the optimized parameter compared
to the experiment parameter. This comparison validated
the result of the optimization. Since the hybrid vehicle had
three driving modes: full electric, hybrid, and charging,
three different equations were used to determine the effi-
ciency of each driving mode [2]. For full-electric driving
mode, Equation 1 is used.

ηtc = Ptc

Vb · Ib
× 100% (1)

ηtc was the test cycle efficiency, Ptc was the power
of the test cycle or the power at the wheel hub, vb was
the battery’s voltage, and Ib was the battery current. For
hybrid driving mode, the battery and alternator supplied
the power. The equation was shown in Equation 2.

ηtc = Ptc

Vb · Ib
× 100% (2)

Similar to Equation 1, Equation 2 now introduced
ṁ the fuel mass flow rate and LHV as the lower heating
value of gasoline. The last driving mode was charging
driving mode, where the power produced from the alter-
nator was transmitted to the motor controller to run the
vehicle and charge the battery. The equation of vehicle
efficiency while the vehicle was running in charging mode,
was shown in Equation 3.

ηtc = Ptc + (Vb × Ib)
ṁ · LHV

× 100% (3)
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Figure 1. Prototype of series PHEV ITS. Figure 2. Schematic of SOC, voltage, current, and fuel flowrate measure-
ment on PHEV prototype.

2.5. Experiment Method

This experiment used a prototype of ITS’s series
PHEV. Several of the main components used were a 12

kW 150 cc internal combustion engine (ICE) taken from a

Honda CB150R motorcycle, 5 kW Werner alternator
DC Model F60AD, 10 kW Golden BLDC electric motor, and
4.8 kWh LiFePO4 GB System battery with 15 series and
two parallel configurations. Dynapack dyno test kit mea-
sured the power at the wheel hub and the vehicle speed.
Orion BMS Jr 2 was used as a battery management system
(BMS) to collect data such as the battery’s current, voltage,
and SOC. The prototype of the series PHEV ITS showed
in Figure 1. The schematic of the prototype and the data
measurement showed in Figure 2.

The experimental design shown in Table 1 showed
the variable level used in a Rule-Based energy manage-
ment system. The researcher ran the experiment using a
combination of parameters and its level. The prototype
was placed at dyno test and loaded with a vehicle mass
of 745 kg, as shown in Figure 1 and Figure 2. It ran from
the battery SOC of 95% with the electric motor running
at the various vehicle speed shown in Table 1. ICE turned
on when the battery state of charge and RPMs reached
a specific value. The electric motor ran until the battery
SOC got 20%, and the fuel consumption was measured
with a measuring cylinder. The procedure of this study
showed in Figure 3.

As shown in Figure 3, this study started with a lit-
erature review. With predetermined input and output
parameters, the researcher experimented with obtaining
the experiment data. The data were normalized to alter
the experiment value to a specific range. This study used
a -1 to 1 range. The BPNN model was generated by find-
ing the best BPNN parameter, which was the number of
hidden layers, the number of neurons, and the activation
function. The model with the lowest mean square error
(MSE) was saved and used in GA and PSO optimization.

The optimized value for engine RPM, battery SOC activa-
tion, mileage, and fuel consumption was found using GA
and PSO. These values were denormalized and compared
between GA and PSO. The best value was validated using
the prototype and whether it was under 10% error. Fi-
nally, to further validated the optimized parameters, the
researcher calculated the efficiency of the vehicle after
optimization and compared it with the experiment value.

3. Results and Discussion
3.1. Objective Function

This study uses the objective function equation to ex-
press the combined output parameters of mileage and fuel
consumption. Each of which is given a similar weight of
0.5. The objective function is formulated in the following
equation [7].

Objectivefunction = ((w1 ×Obj1) + (w2 ×Obj2)) (4)
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Figure 3. Experimental procedure

Table 1. Experimental design

Energy Management
System Rule Parameter

Unit
Level

1 2 3
Vehicle Speed km/hour 17 30 50
Engine RPM RPM 7000 7500 -
Battery State

of Charge (SOC)
% 40 60 -

The objective function expresses the target or com-
bined output parameters. For example, Obj1 represents
the vehicle’s total mileage, while Obj2 represents the fuel
consumption. The fuel consumption parameter is given a
negative sign since it minimizes while the mileage maxi-
mizes.

The BPNN modeling consists of the number of hid-
den layers from 1 to 5, the number of neurons from 8 to 14,
and the activation function of hardlim, hardlims, purelin,
satlin, logsig, and tansig. The best parameters combina-
tion for one problem may differ from others. From each
parameter combination, the best parameter combination
with the lowest MSE value, shown by Figure 4, is a com-
bination of the activation function of tansig, the number
of hidden layers of 2, and the number of neurons of 12
with the value of MSE 0.0017. Figure 5 compares the real
normalized target value and the BPNN predicted value.
There was a slight different from target and the prediction
seen from Figure 5 since there was an MSE though it was
small. The BPNN modeling is used as the fitness function
in the GA and PSO optimization phase.

3.2. GA and PSO Optimization

The GA and PSO optimization phase started with
searching for the best parameters which produce the high-
est value of optimum value with the least iteration process.
The optimum value of each parameter at GA and PSO is
shown in Table 2.

From Table 2, the best GA parameter combination
with the number of populations of 100 and a mutation rate
of 0.01. While for PSO, the best parameter combination is
with the number of populations of 100 and PSO inertia of
0.5. GA and PSO have a better value if the population size
increases. The value needs to be adjusted for the mutation
rate and the PSO inertia to produce the best optimum
value with the least number of iterations. Figure 6 shows
the graphic between GA and PSO results.

From Figure 5, GA and PSO have the same optimum
value, but PSO needs less iteration to achieve the optimum
value. Compared with PSO, GA commonly performs better
because it can escape a local optimum trap by generating
offspring through crossover and mutation processes [16].
Due to the narrow range of the experiment data and the
small amount of experiment data, the optimum value from
GA and PSO has the same value. On the other side, PSO
needs less iteration since PSO derives from continuous
equation optimization [17]. The optimized value can be
seen in Table 3.

Table 2. GA and PSO best parameters

GA PSO

Number of

populations
100

Number of

populations
100

Mutation rate 0,01 PSO inertia 0,5

Figure 4. BPNN architecture
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Figure 5. Comparison between the target value and BPNN
prediction value

Figure 6. Comparison of optimum value and iteration be-
tween GA and PSO

Table 3. Optimization value of GA and PSO

Vehicle Speed

(km/hour)

SOC Activation

Condition
RPM

Mileage

(km)

Fuel Consumption

(L)

GA 36.32 48.72 7500 83.1233 6.007857

PSO 36.33 48.73 7500 83.1233 6.00785

Table 4. Comparison between optimized parameters with experiment data

Vehicle
Speed

(km/hour)

SOC
Activation
Condition

(%)

RPM
Mileage

(km)

Fuel
Consumption

(L)

Difference
in

Mileage
(km)

Difference in
Fuel

Consumption
(L)

36.33161 48.7361 7499.99 83.12334844 6.007857429 - -
17 40 7000 123.8 12 -40.677 -5.992
17 40 7500 135.71 12 -52.587 -5.992
17 60 7000 129.7 12 -46.577 -5.992
17 60 7500 137.23 12 -54.107 -5.992
30 40 7000 47 3.76 36.123 2.251
30 40 7500 128 11.88 -44.877 -5.872
30 60 7000 61.5 3.76 21.623 2.251
30 60 7500 128.5 12 -45.377 -5.992
50 40 7000 35 0.7 48.123 5.308
50 40 7500 35 1.27 48.123 4.737
50 60 7000 30.83 1.27 52.293 4.737
50 60 7500 49.167 2.98 33.956 3.026
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Table 5. Comparison between optimization method (BPNN-GA and BPNN-PSO) with confirmation experiment.

Speed
(km/hour)

SOC Activation
Condition

RPM
Mileage

(km)
Fuel Consumption

(L)
MATLAB 36.33 48.74 7500.0 83.12 6.008
Experimental validation 36 48 7500.0 81.57 6.380
Error (%) 0.9 1.54 0 1.90 5.83

Figure 7. Mileage Comparison. Figure 8. Fuel Consumption Comparison.

The predicted optimum value by BPNN-GA and
BPNN-PSO is the fuel consumption of 6.007857 L and
mileage of 83.1233 km. This optimum value can be ob-
tained by vehicle speed of 36.32 km/hour, the SOC ac-
tivation condition of 48.72%, and the ICE RPM of 7500.
The optimum design value is then compared with the
experimental data shown in Table 4.

Table 4 compares mileage and fuel consumption
from the optimization results and experiment data. The
effect of each input parameter on mileage and fuel con-
sumption can be seen in Figure 7 and Figure 8. Since
ITS’s PHEV is a series hybrid car, its movement relies only
on an electric motor. Thus the speed of the vehicle cor-
responds to the amount of electrical current drawn from
the battery. The faster the vehicle goes, the more energy
is drawn from the battery, and the battery drains faster.
For example, from Figure 7, the vehicle with a speed of 17
km/hour has the furthest mileage since the current needed
to run the vehicle is smaller than the current generated by
the alternator. This condition affects the vehicle’s fuel con-
sumption since the engine works for an extended period.

Engine RPM is proportional to the amount of energy
generated by the generator and the fuel consumption. As
the engine RPM goes faster, fuel consumption and energy
generated increase. It also affects mileage coverage since

more energy is generated to charge the battery, so the
mileage goes up proportional to engine RPM. Battery SOC
activation takes effect when the ICE turns on to charge
the battery. It heavily depended on the chemical of the
battery. In the LiFePO4 battery used in ITS’s series PHEV,
the charging characteristic showed that it could charge
faster at around 40% of SOC, similar to what Tseng [19]
found in its journal. At around 30% to 50%, the LiFePO4
battery is around its maximum charging efficiency, and the
amount of current drawn is in balance with the change of
the voltage, thus higher energy drawn. Nearing 85% SOC,
the current drop significantly while the voltage remains
unchanged at its maximum voltage [20]. The battery SOC
activation parameter affects how long the engine works,
how much fuel consumption is, and how much energy can
be stored in the battery, thus also affecting the mileage.

At the speed parameter of 17 km/hour, the activation
condition of SOC 60%, and the RPM of 7500, with the
longest distance traveled, the total fuel consumption de-
creased by 5,992 L or approximately 49.93% of the initial
experiment consumption. However, the driving distance is
also reduced by 54.107 km or about 39.4% of the exper-
iment data. However, this is still acceptable because the
percentage reduction in fuel consumption is higher than
the reduction in driving distance. Compared with data

with input speed parameters of 30 km/hour, 40% SOC
activation conditions, and the RPM of 7000, with bal-
anced mileage and fuel consumption values, the mileage
increased by 36.123 km or about 76.85%. However, its

fuel consumption increased by 2.251 L or about 59.8%
from the experiment data.

The optimized EMS ruled-based parameter value ob-
tained from this optimization was vehicle speed of 36.33
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km/h, battery SOC engine activation of 48.73%, and ICE
RPM of 7500. These parameters produce a vehicle achiev-
ing 83.12 km of mileage and a 0.072 L/km fuel consump-
tion rate. It is achieved by balancing the mileage and
the fuel consumption parameters. The vehicle speed and
engine RPM parameters affect the current flows to the
system. The vehicle’s speed of 36.33 km/h and ICE RPM
of 7500 was the most balanced configuration between the
current drawn by the electromotor and the current gener-
ated from the generator. Battery SOC activation condition
of 48.73% was the best SOC condition that balanced the
time needed to operate the engine and the time required
to charge the battery. Also, it was in the best condition to
meet the charging characteristic of the LiFePO4 battery.

3.3. Confirmation experiment

Completing the multi-response optimization using
the BPNN-GA and BPNN-PSO method, the optimum
mileage and fuel consumption value were obtained by set-
ting the speed, SOC, and RPM at 36.33 km/h, 48.74%, and
7500 rpm, respectively. This set of parameters for the pro-
cess was later chosen as the input to obtain confirmation
experiment results. Furthermore, the results of the com-
parison of speed, SOC, and RPM between optimization-
methods prediction and confirmation experiments are pre-
sented in Table 5.

This errors happens because there is a slight differ-
ence in BPNN modeling. This study has a mean square
error (MSE) of 0.0017. In the prototype, there is a possi-
bility of an efficiency decrease in vehicle transmission or
power transmission on the cable. The optimization results
still follow the study’s objectives, where the error limit for
this study is less than 10%.

3.4. Efficiency Calculation

The efficiency of the optimized parameter needs to
be compared to the experiment parameter. This com-
parison further validates the result of the optimization.
Equations 1, 2, and 3 are used to calculate the efficiency
of the vehicle. The efficiency comparison can be seen in
Figure 9.

The efficiency of the PHEV 40% at a speed of 17
km/h does not change compared to the experimental data
because the value of optimization results is the same as
in the experiment design parameters. At a speed of 30
km/hour, the increase in vehicle efficiency is 2.1%. At a
speed of 50 km/hour, the increase in vehicle efficiency is
1.1%. This condition is influenced by the battery’s perfor-
mance at its optimum condition, in its rated voltage range
which impacts maximum power expenditure [20], and the
minimum load on the internal combustion engine. The
BEV mode has the highest system efficiency since its only
runs using an electric system.

Figure 9. Comparison of average vehicle efficiency between
experiment and optimized data.

4. Conclusion
In this study, the combination of BPNN-GA and

BPNN-PSO has been applied to optimize the mileage and
minimize the fuel consumption of the ITS’s series hybrid
car. The experimental works and optimization come up
with the following concluding remarks:

• BPNN has been applied to predict the response, such
as mileage and fuel consumption. The optimum
BPNN topology with MSE of 0.0017 was achieved
using two hidden layers, 12 neurons at each hidden
layer, and tansig activation function.

• Both BPNN-GA and BPNN-PSO can optimize the
rule-based EMS of ITS’s series PHEV and produce
the same result; hence both can be used to optimize
ITS’s series PHEV EMS for future study.

• The optimum rule-based EMS parameter for ITS’s
series PHEV was identified as vehicle speed of
36.33 km/hour, battery SOC activation condition
of 48.74%, and ICE RPM of 7500 RPM.

• The combination of BPNN-GA and BPNN-PSO in-
creases the ITS’s series PHEV efficiency up to 2.1%.
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