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Abstract

Making holes with the minimum thrust force and torque using a drilling machine is challenging
for researchers because of the difficulties in setting input parameters such as the type of drill tool,
point of angle, and feeding speed. Therefore, the trial-and-error method to predict optimum input
parameters through experiment can be replaced with the Back Propagation Neural Network (BPNN)
and metaheuristic method (i.e., genetic algorithm (GA) and Simulated Annealing (SA)) method to
reduce costs and time. BPNN can be used to represent the input-output correlation precisely. However,
obtaining a model with minimum Mean Squared Error (MSE) requires much data for training, testing,
and validation. Since the obtained data from experiments requires expensive costs, combining data
from experimental and simulation using ANSYS should be considered to reduce the experimental
costs. This study was then conducted to answer the research problem using an EMS 45 tool steel
as the workpiece, with the three input parameters: type of drill tools (HSS M2 and HSS M35), the
points of angle (118 and 134 degrees) and feeding speed rates (0.07 and 0.1 mm/s). The 32 data
from experimental and modeling were used to model the correlation between the input and output
parameters of the drilling process using BPNN. The BPNN’s network model with minimum MSE is
then used as the objective function to determine the input parameters to obtain the smallest value of
thrust force and torque using the hybrid method using GA and SA. As the results, the optimum output
parameter value in drilling for material EMS-45 (i.e., thrust force = 1615.2 N, and torque = 3.0236
Nm) can be obtained with the following input specifications: (a) type of drill tool = HSS-M2, (b) point
of angle = 132.28o, (c) feeding speed = 0.1 mm/s.

Keywords: Drilling, Finite Element Method (FEM), Backpropagation Neural Network (BPNN),
Genetic Algorithm (GA), Simulated Annealing (SA)

1. Introduction
Determining the correlation of input and response

parameters in manufacturing processes is essential for
modern automated industries to achieve a high level of
effectiveness, efficiency, and economic competitiveness.
The important role of the finite element method (FEM) in
the manufacturing process has been recognized for its con-
tribution to accurately predict the relationship between
input and output parameters in a manufacturing process.
Meanwhile, the implementation method is considered to
be highly beneficial for the manufacturing industry to re-
duce the experimental and manufacturing costs, while
increasing the economic value of a product [1–3].

In essence, there have been numerous studies that
applied FEM to analyze different input parameters on out-

put parameters in drilling. One of them was by Singh,
et al. [4] was modeled the effect of input drilling pa-
rameters (point of angle, speed, and feed) with output
parameters (thrust force and torque) for Fiber Reinforced
Plastics (FRP) materials using FEM. A statistical method
of ANOVA was then used to predict the level of damage
to the drilling tools. Next, Strenkowski et al. [5] deter-
mined the minimum value of thrust force and torque in a
drilling process using Eulerian finite element. The input
drilling parameters observed consisted of spindle speed
and feed rate, and the material used in the experiment
was AISI 1020. Meanwhile, some authors used a 3D model
of FEM to investigate the effect of speed and feed rate on
the value of thrust force, torque, and delamination in the
drilling process for composite materials, titanium alloys,
and bones [6–9].
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Figure 1. General flowchart of research

Further, the utilization of artificial intelligence (AI) using
a backpropagation neural network (BPNN) has become an
increasingly popular method for modeling the correlation
between input and output parameters of the manufac-
turing process, such as milling and drilling. Nurullah et
al. [10] and Ighravwe et al. [11] utilized the combination
of BPPN and optimization methods to obtain minimum sur-
face roughness on milling. Furthermore, Panda et al. [12]
and Singh et al. [13] used BPNN for wear monitoring on
drill tool tips. Panda et al. [14] used a combination of
BPNN and radial basis function network (RBFN) to pre-
dict flank wear on a drilling tool. Then, Soepangkat et
al. [15] used BPNN-PSO to investigate the effect of drill
bit geometry, spindle speed, and feeding speed in drilling
for CFRP materials. The results of the BPNN modeling
were later used to determine parameters for the minimum
delamination using the PSO method.
Sonkar et al. [16] used Taguchi and ANOVA methods to

solve a multi-objective optimization problem of a drilling
process on a glass fiber-reinforced polymer (GFRP) mate-
rial. This study aimed to minimize the value of drill force,
torque, and delamination as well as improve the quality
of surface roughness by selecting the appropriate drilling
input parameters (drill speed, feed rate, drill diameter,
and plate thickness).
By considering the importance of FEM, AI, and optimiza-

tion methods in predicting drilling output parameters, we
determine to combine these three methods for this re-
search. The drilling input parameters include the type of
tool (HSS M2 and HSS M35 variations), points of angle
(118 and 134 degrees), and feeding speed (0.07 and 0.1
mm/s), and the output parameters to be studied are thrust
force and torque. The output optimization is predicted
using a combination of BPNN, GA, and SA methods. The
general flowchart of this research can be seen in Fig. 1.
In regards to AI, if we increase the data number on the

training, testing, and validation process, then the predic-
tions generated by AI will be more accurate. Therefore,
FEM is a low-cost alternative method to reproduce addi-

tional data in this case. This data will later be used to
increase the existing data obtained from the experimental
step.
In implementing FEM, the first step is to define theoret-

ical assumptions in the 3D FEM simulation. Supposedly,
the difference between the results of modeling using finite
element and experimental methods remains above 10%,
hence a feedback process is carried out to update the pa-
rameter settings in the FEM modeling. However, when the
error value is already below 10%, the modeling results can
directly be used to obtain the data for the drilling process.
All experimental and modeling data are divided into

three, namely training, testing, and validation processes.
The three data groups are used to model the relation-
ship between input and output parameters in the drilling
process using BPNN. Later, the model that BPNN has gen-
erated is used as an objective function. Next, GA and SA
methods are applied to this function to obtain the optimal
value.
GA and SA are two common metaheuristic methods used

in solving multi-objective cases. GA can perform a non-
linear case optimization process and run a systematic ran-
dom search to achieve the optimal global value [17,18].
Although it has several advantages, this method can be
trapped in the optimal local area and take a long time
to get to the optimal solution [19]. Meanwhile, the SA
method can quickly produce the local optimum value. Nev-
ertheless, this method is considered to be weak in achiev-
ing the global optimum [20,21]. Therefore, a combination
of GA and SA is expected to minimize the weaknesses and
keep the advantages so that the combination method can
produce the optimal solution in the shortest time possi-
ble. In the first step, the GA is used to identify an initial
solution. This initial solution is then used as an input for
the SA to identify a global optimum. The combination of
the methods is later used to predict the most appropriate
combination of input parameters. By then, the drilling
process can be done with the smallest possible value of
thrust force and torque.
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Table 1. Properties of drilling tool

Material HSS-M2 and HSS-M35
Diameter 10 mm

Length of drill bit 134 mm
Total Flute 2
Producer Sunflower

Min-max RPM 1500 – 2500 RPM
Point angle 118o and 134o

Figure 2. Measuring thrust force and torque in the drilling
process using Kistler 9272 dynamometer

2. Methodology
This study uses several stages of testing which are

described in the following sub-sections.

2.1. Drilling Process

In this experiment, the input parameters are (1) the
type of tool (HSS M2 and HSS M35), (2) points of angle
(118 and 134 degrees), and (3) feeding speed (0.07 and
0.1 mm/s), and the output parameters to be studied are
the thrust force and torque in the drilling process, mea-
sured using a Kistler 9272 dynamometer. The workpiece
used in this study is an EMS 45 tool steel with a length of
200 mm, width of 20 mm, and thickness of 30 mm. The
properties of the drilling tool can be seen in Table 11, and

the experimental process as well as the data collection
procedure for the drilling process using the Kistler 9272
dynamometer can be seen in Fig. 2.

2.2. Finite Element Method

During a metal-cutting process, the workpiece ma-
terial is subject to elastoplastic thermal deformation un-
der high temperatures, considerable strain, and signifi-
cant strain rate conditions. Therefore, a mathematical
model needs to be constructed to measure the conditions
and take appropriate actions accordingly. Johnson-Cook’s
mathematical model is commonly used to illustrate the
effect of strain rate on the stress-strain curve in the ma-
chining process, as shown in the following formulation.

σ = [A + B(ε)n].[1 + Clnε̇/ε̇0].[1 − (T − T0)
(Tm − T0)

m

] (1)

where σ is stress, A is yield strength, B is modulus
of hardening, ϵ is plastic strain, n is hardening coefficient,
C is strain rate sensitivity coefficient, ϵ́ is strain rate, ϵ́0
is reference of plastic strain rate, T is temperature, Tm is
melting temperature, T0 is temperature of reference, dan
m is coefficient of thermal softening. The first part of this
mathematical model describes the relationship between
strain and stress, the second part describes the relationship
between strain rate and stress, and the last part describes
the relationship between stress value and material temper-
ature during plastic deformation. Next, the Johnson-cook
parameters for working material EMS-45 and tool steel
can be seen in Table 2 and Table 3.

The theory of plasticity in metal formation is es-
sential in determining plastic deformation in the drilling
process. This deformation mechanism is used to deter-
mine the metal flow characteristics, final geometry of the
product, and mechanical properties of the working piece
after drilling.

For modeling material in a plastic state, the Johnson-
Cook formulation requires a strain rate parameter. Accord-
ing to Chao (1951), the strain rate for the metal-cutting
process is within the range of 103-106 s-1. The value of
strain rate in a machining process is influenced by cutting
speed, initial thickness, and angle of thread inclination,
which is formulated by the following Drucker [24] equa-
tion:

˙εxy = 0, 2εxyv sin φ

h
(2)

Table 2. Mechanical properties of working material and tool steels.

Parameter Working Material(EMS-45) [20] HSS M2 [21] HSS M35 [21]
Density (ρ) 7800 kg/m3 8100 kg/m3 8000 kg/m3

Thermal conductivity (K) 38 W/(m K) 24 W/(m K) 24 W/(m K)
Specific heat (c) 420 J/(kg K) 420 J/(kg K) 420 J/(kg K)
Modulus of elasticity 200 Gpa [22] 225 GPa 230 GPa
Thermal expansion ratio 6.39 × 10−6/K [22] 12.1×10−6/K 11.6×10−6/K
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Table 3. Johnson-Cook parameters for working material and tool steels.

Parameter
Working Material

(EMS-45) [20] Tool steel [23]

Yield strength (A) 553 MPa 391.3 MPa
Hardening modulus (B) 600 MPa 723.9 MPa
Coefficient of strain-rate sensitivity (C) 0.0134 0.1144
Coefficient of hardening (n) 0.234 0.3067
Coefficient of thermal softening (m) 1 0.9276

Figure 3. An illustration of a 3D modelling using FEM
software

where ϵ́xy is strain rate, ϵxy is shear strain, v is cut-
ting speed, h is t1/20, t1 is initial chip thickness, and Φ is
angle of thread inclination.

This research starts with determining the specifica-
tions and dimensions of the tool and workpiece. Next, 3D
tools and workpieces are then designed using a 3D CAD
software program. The 3D modeling design is tested using
Ansys 2021 R2 software with initial setting parameters
(FEM). ANSYS dynamic modeling is then employed for
modeling since the drilling process occurs with high strain
rates and temperatures. The workpiece is gripped at the
bottom and modeled as a boundary fixed. The element
type used is a tetrahedron because the shape of the tool is
not symmetrical about the tool axis. The contact condition
between the workpiece (slave) and the tool (master) is sep-
aration with friction. The FEM results are then compared
with the experimental results to calculate the difference in
error between the two methods. The setting parameter of
FEM is then tuned using feedback error continuously until
the error difference is less than 5%.

The modeling test is carried out by using different
types of tools, namely HSS M2 and HSS M35. The feeding
speed parameters are also varied (0.07 and 0.1 mm/rev),
and the points of angle are varied, namely 118° and 134o.
Further, the output parameters (thrust force and torque)
are calculated based on the maximum compressive force

in the normal direction (z) as shown in Fig 3.

2.3. Experimental and FEM Result

The measurement results of thrust force and torque
with various input parameters (tool types, point of angles,
and feed rates) obtained using the experimental and FEM
are shown in Table 4.

2.4. Backpropagation Neural Network (BPNN)

Backpropagation Neural Network (BPNN) is a su-
pervised learning algorithm for modeling the relationship
between parameter input and target in milling. BPNN con-
sists of 3 layers, namely input, hidden, and output layers.
All data is used to update the weight on the hidden layer
through a series of processes (epochs). This is to minimize
the mean squared error (MSE) between the target and
output predicted by BPNN. The selected BPNN parameters
in modeling the relationship between the input and tar-
get parameters can be seen in Table 5. These parameter
values should be tuned to obtain minimum MSE, making
prediction results of BPNN more accurate. The values of
parameters no 1, 2, 5, and 8 are suggested by MATLAB.
In contrast, the values of parameters 3, 4, 6, and 7 are
determined by our experience.

Specifications of the best BPNN network can be de-
tailed as follows: (1) the number of hidden layers is six
layers, (2) the number of neurons in each hidden layer is
eight neurons, (3) the activation function of the hidden
layers is tansig, and (4) the Mean Squared Error (MSE)
is 0.0047215. The best BPNN network topology with the
minimum MSE value can be seen in Fig. 4. Next, the
correlation coefficient value for training, validation, and
testing can be seen in Fig. 5. Since the correlation coeffi-
cient value is close to 1, the relationship between the data
in training, testing, and validation is said to be powerful.

3. Metaheuristic Method
This study uses two stages of the metaheuristic

method, namely Genetic Algorithm (GA) and Simulated
Annealing (SA). Those metaheuristics are described below.

3.1. Genetic Algorithm (GA)

Genetic algorithm is one of the optimization meth-
ods inspired by natural selection. This method looks for
the optimal value through a series of processes, namely se-
lection, crossover, and mutation. The procedure for using
the GA method is explained as follows:
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Table 4. Comparison of experimental vs FEM results in drilling

Tool types
Point of angles

(degrees)
Feed rates
(mm/rev) Thrust force (N) Torque (Nm) Data Types

1 118 0.07 1678 3.391 Experimental
1 118 0.07 1603 3.471 Experimental
1 118 0.07 1588 3.3976 Experimental
1 118 0.07 1627.3 3.45 FEM
1 118 0.1 2656 4.082 Experimental
1 118 0.1 2566 4.095 Experimental
1 118 0.1 2846 4.18 Experimental
1 118 0.1 2623 4.38 FEM
1 134 0.07 2523 3.591 Experimental
1 134 0.07 2546 3.571 Experimental
1 134 0.07 2719 3.456 Experimental
1 134 0.07 2812 3.23 FEM
1 134 0.1 2675 4.182 Experimental
1 134 0.1 2746 3.995 Experimental
1 134 0.1 2887 3.876 Experimental
1 134 0.1 2927 3.85 FEM
2 118 0.07 1411 4.396 Experimental
2 118 0.07 1652 4.386 Experimental
2 118 0.07 1576 4.217 Experimental
2 118 0.07 1650 4.33 FEM
2 118 0.1 2143 3.974 Experimental
2 118 0.1 2174 3.753 Experimental
2 118 0.1 2245 3.725 Experimental
2 118 0.1 2106.7 3.85 FEM
2 134 0.07 1897 3.096 Experimental
2 134 0.07 2041 2.878 Experimental
2 134 0.07 1911 2.924 Experimental
2 134 0.07 2067.2 2.81 FEM
2 134 0.1 2489 3.591 Experimental
2 134 0.1 2478 3.571 Experimental
2 134 0.1 2357 3.85 Experimental
2 134 0.1 2592.4 3.56 FEM

Table 5. BPNN tunning parameters

No Parameter Values
1 Ratio data for training, testing and validation 70%:15%:15%
2 Variation of activation function Harlim, Hardlims, Satlin, logsig, tansig, and purelin
3 Number of hidden layers 1:10 layers
4 Number of nodes each hidden layer 1:10 nodes
5 Stopping criterion Max epoch (10000 epochs)
6 Parameter for selecting best BPNN nework Mean Squared Error (MSE)
7 Learning rate 0.001
8 Training algorithm Levenberg-Marquardt

Table 6. Specification of backpropagation neural network (BPNN)

Items Value

Number of chromosomes 100
Composition of chromosomes;
Variable X (bits) 12
Variable Y (bits) 11
Stopping criteria: number of generations 10000
cross-over methods uniform cross-over
Selection Method Roulette wheel
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Figure 4. The best BPNN’s network topology

Figure 5. Correlation coefficient of the best BPNN’s network
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1. Randomly generating the initial population,

2. Calculating the fitness value of each individual in
the population,

3. Using the fitness value for selecting elites,

4. Performing crossover between two elites to produce
offsprings,

5. Randomly conducting the mutation process for sev-
eral individual’s cells, and

6. If the best individual fitness value has not met the
stopping criteria, the series of processes from num-
ber 1-6 is to be repeated.

The GA parameters used to identify the optimal solution
can be seen in Table 6.

3.2. Simulated Annealing (SA)

Simulated annealing (SA) is an optimization method
that is completed based on the annealing process. An-
nealing is the process of heating metal/alloy at a specific
temperature and cooling it at room temperature to in-
crease the ductility and reduce the metal’s brittleness. In
the beginning, an initial solution is selected, which rep-
resents the conditions of the material before the process
starts. The free movement of the atoms in the material is
represented in the modifications to the initial/temporary
solution. When the temperature parameter (T) is set high,
the existing temporary solution can be freely modified.
Furthermore, when the temperature is gradually reduced
in the next stage, the possibility of accepting a modifi-
cation decreases so that the freedom rate to modify the
solution gets narrower until the optimal solution is ob-
tained. In general, the SA procedure for achieving the
optimum value can be explained as follows:

1. Choose an initial solution (S0), initial temperature
(T0), final temperature (Tf ) and number of iteration
(niter)

2. Determine cooling schedule which is formulated by
the following equation (Kirkpatrick, 1983).

T(k) = To × exp( −c
k ) (3)

where:

c = 0.1

k =1
Number of iterations = 100 each temperature drop

3. While Tf < T0 or iteration < niter do

a. Select solution (S), where S ∈ N(S0)
b. Calculating the objective function difference

(δ), where:

δ = f(S) − f(S0) (4)

c. If δ < 0
S0 = S
else
generate random value (r), r ∼ U(0.1)
If r < exp( −δ

t ), then S0 = S
end

d. Define t = T (k)
4. Return S0

4. Result and Discussion
Fig 6(a) describes that higher torque can be achieved

by selecting tool type 1, point of angle at 118o, and feed
rate at 0.1 mm/rev. Fig 6b shows the higher thrust con-
ducted by tool type 1, point of angle at 134 degrees, and
feed rate at 0.1 mm/rev. This phenomenon indicates that
tool type HSS M2 and lower feed rate significantly af-
fect greater torque and thrust in drilling. Soepangkat et
al. [15] concluded that the value of thrust and torque
increase by increasing feeding speed. Increasing feed-
ing speed means increasing the volume of material to be
removed, and the drilling tool needs extra effort/thrust
force to perform it [22, 23]. Furthermore, Fig 6(b) also
depicts that increasing the point of angle increases the
thrust value. Increasing the angle point of the drilling tool
decreases the cutting edge’s length, decreases the support
at the circumstance, and reduces the trust force [23].

(a)

(b)

Figure 6. Effect of drilling process: a. Torque, b. Thrust
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Table 7. Generated five optimum candidates by genetic algorithm (GA)

Drilling parameter inputs Drilling parameter output

Type of drill tool
point of angle

(degree)
feeding speed

(mm/rev) Thrust force (N) Torque (Nm)

1.380 118.815 0.098 1.616.269 3.024
1.066 132.054 0.1 1.615.714 3.024
1.090 131.929 0.099 1.616.196 3.024
1.023 132.180 0.099 1.615.821 3.024
1.376 119.882 0.098 1.616.623 3.025

Table 8. Multi-objective optimization result using simulated annealing (SA)

Drilling parameter inputs Drilling parameter output

Type of drill tool
point of angle

(degree)
feeding speed

(mm/rev) Thrust force (N) Torque (Nm)

1.1 133.4 0.09 1.615.162 3.023

Table 9. Modified Simulated Annealing Results

Drilling parameter inputs Drilling parameter output

Type of drill tool
point of angle

(degree)
feeding speed

(mm/rev) Thrust force (N) Torque (Nm)

1 (HSS-M2) 132.28 0.1 1615.2 30.236

Table 10. Comparison between SA prediction and confirmation experiment

Drilling parameter inputs Thrust force (N) Torque (Nm)

Type of drill tool
point of angle

(degree)
feeding speed

(mm/rev) Pred/Exp error Torque (Nm) error

1 (HSS-M2) 132.28 0.1 1615.2/1705 5.6% 3.0236/3.16 4.5%

GA was applied as the initial method in the multi-
objective optimization for conducting a global search and
producing five candidates, as shown in Table 7. SA is then
utilized for performing a local search and increasing the
accuracy of GA. In the first iteration, the best candidate
generated by GA is then employed as an initial candidate
by SA. At the end of the iteration, SA chooses the tool-type
= 1.02 as the optimal solution, as shown in Table 8.

Next, because the type of drilling tool used in the
drilling process is 1 (HSS-M2), then the optimization value
must be changed. This process is carried out by redefining
the fitness function equation using the dynamic penalty
formulation shown below:

fitness(x) = f(x) + (C × t)α
m∑

j=1
φβ

j (x) (5)

Where f(x) is an original fitness value, C,α and β
are constants defined by 0.5, 2 and 2. Φj(x) is a viola-
tion function with constrain j, with m as the number of
constraints, and t is generation. The dynamic penalty
formulation has been implemented to reduce the original
fitness value when the violation value is not equal to zero
using predetermined parameters. The result of redefin-
ing the optimization value due to the limitation of the

tool type can be described as follows: (1) the type tool is
HSS-M2, (2) the point of angle is 132.28o, (3) the feeding
speed is 0.1 mm/s, (4) thrust force is 1615.2 N, (5) torque
is 3.0236 N.m., as shown in Table 9.

The confirmation experiment is then performed us-
ing the optimum drilling parameter setting. It is repeated
five times, and the mean value can be seen in Table 10.
Based on this table, the error value between the BPNN-
GA-SA prediction results and confirmation experiment
is below 6% for all the outputs. This validates that the
predicted drilling parameter output has an insignificant
difference from the experimental data.

5. Conclusion
In this study, the FEM is used to reproduce data for

the drilling process. Increasing the data leads to the in-
creasing performance of the BPNN’s network model. The
GA and SA methods are later used to identify the most opti-
mal value in drilling by utilizing the network model. From
the experimental work and optimization, the following
concluding remarks are drawn:

1. Researchers can use FEM to simulate the drilling pro-
cess so that large amounts of data can be obtained
at low cost.

2. BPNN can be used to predict the correlation between
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drilling input parameters (type of drill tools, points
of angle, and feeding speed rates) and output pa-
rameters (thrust force and torque). The best net-
work obtained is with 3-8-8-8-8-8-8-2 architecture,
comprising three neurons of an input layer, six hid-
den layers with eight neurons, and an output layer
with two neurons. The type of activation function
used is tansig with the mean squared error (MSE) of
0.0047215.

3. The genetic algorithm (GA) method can effectively
be used to set the initial predictions. Furthermore,
the results from the GA are used by the simulated
annealing (SA) method to precisely predict the opti-
mum value.

4. The combination of BPNN-GA-SA can be used as a
recommendation to design an angle point for the
drilling tool and determine the optimum feeding
speed in drilling. The optimum input-output param-
eter value in drilling for material EMS-45 can be
explained with the following specifications: (a) type
of drill tool = HSS-M2, (b) point of angle = 132.28o,
(c) feeding speed = 0.1 mm/s, (d) thrust force =
1615.2 N, and (e) torque = 3.0236 Nm.

5. Since the error value between the BPNN-GA-SA pre-
diction results and confirmation experiment is below
6%, it was concluded the prediction output has an
insignificant difference from the experimental data.
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