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Abstract

Interaction between an anti-plane crack with a three-phase circular composite by using complex po-
tential methods is considered in this paper. The solution procedures for solving this problem consist
of two parts. In the first part, based on complex potential methods in conjunction with analytical
continuation theorem and alternating technique, the complex potential functions of a screw dislocation
interacting with three-phase circular composites are obtained. The second part consists of the derivation
of logarithmic singular integral equations by introducing the complex potential functions of screw
dislocation along the crack border together with superposition technique. The logarithmic singular
integral equations is then solved numerically by modeling a crack in place of several segments. Linear
interpolation formulae with undetermined coefficients are applied to approximate the dislocation distri-
bution along the elements, except at vicinity of crack tip where the dislocation distribution preserves a
square-root singularity. The mode-III stress intensity factors are then obtained numerically in terms of
the values of the dislocation density functions of the logarithmic singular integral equations.
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1. Introduction
Complex potential methods is a mathematic tools

that has been used widely to solve elasticity problems [1].
Those include a dislocation embedded in any shapes of
multilayered composite, such as: circular media [2], el-
liptic media [3], and plane layered media [4]. A fracture
mechanics problems also can be solved using complex
potential methods together with logarithmic singular inte-
gral equations [5]. The logarithmic singular integrals are
established by using dislocation solutions as the Green’s
function in conjunction with the principle superposition.
The merit of this technique is that allows us to easily deal
with the interface continuity conditions of multi-layered
composites. The studies that has been done using those
techiques including an anti-plane crack interacting with
reinforced elliptic hole [6], elliptically layered media [7],
eccentric circular inclusion [8], and tri-material media
[9]. To our knowledge, an anti-plane crack interacting
with multi layered circular media has not been recorded in
the literature. It is therefore the purpose of this paper to
provide mode-III stress intensity factors of a crack in three-
phase circular composite using complex potential methods
together with logarithmic singular integral equations.

2. Solution Procedures
Consider a three-phase circular composite composed

of three number of dissimilar materials bonded along con-
centric circular interfaces with a crack located in infinite
matrix or in core inclusion subjected to a remote uniform
shear load as shown on Figure 1. Let S1 denote the infinite
matrix, S2 denote the coating layer, and S3 denote the
core inclusion, respectively. The boundaries of coating
layer are two circles Γ1 and Γ2 which are assumed to be
perfect, i.e. both tractions and displacements are continu-
ous across the two interfaces. The origin of the Cartesian
coordinate system is chosen to be at the center of the inner
circle Γ2 with r unit radius and outer circle Γ1 with R unit
radius. Let the infinite matrix (core inclusion) contain a
line crack with length 2a is located in x-axis with distance
h from outer circle (inner circle) interface. In addition,
the direction of remote uniform shear load is 90◦ from
x-axis. The complex potential method plays an important
role in anti-plane elasticity. In the method, the resultant
force P and the displacement ω can be described in terms
of complex potentials θ(z) which expresses in Equation 1
and 2.

P =
∫

(τxydy − τyz) = −Im2 [θ(z)] (1)
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ω = 1
2µRe [θ(z)] (2)

where Re and Im denote the real part and imagi-
nary part of the bracketed expression, respectively. The
quantities τxy and τyz are the components of shear stresses
in x and y direction, respectively, (‘) is designated as the
derivative with respect to the associated argument and µ

stands for the shear modulus. Once the anti-plane problem
is solved, the complex potential θ(z) is determined.

Complex potential functions for a screw dislocation
and three-phase circular composite is derived by using
analytical continuation theorem together with alternating
techniques. The complex potential functions for a screw
dislocation in matrix is described as expression Equation
3 and Equation 4.
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) (7)

Figure 1. A three-phase circular composite interacting with (a) a crack embedded in matrix, (b) a crack located in core
inclusion, under uniform shear load in anti-plane elasticity.

Meanwhile, the complex potential functions of the other
case in which the screw dislocation is located in core in-
clusion can be expressed in Equation 5 where recurrence
formula for Θn(z) is expressed in Equation 6 and Equation
7.
A crack can be modeled by place a dislocation distribution

along the prospective site of the crack. In mathematical

expression, it simply makes integration along the crack
and change the dislocation to dislocation density function
as Equation 8 and :

θn(z) = µ1

2πi

∫
L

b0(s)log(z − zt)ds (8)
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θ∗0(z) = µ1

2πi

∫
L

b0(s)log(z − zt
z

)ds (9)

where b0(s) indicate the density function and zt is a
point on the crack. By placing a continuous distribution
of dislocation density along the crack L and applications
of principle of superposition lead to the singular integral
equation with logarithmic singular Kernels. In order to
solve the logarithmic singular integral, it need to used
boundary element technique in which a crack is divided
to several segments and performed an appropriate inter-
polation formula for each segment. After the dislocation
density coefficients for left tip and crack tip solved numeri-
cally, then mode-III stress intensity factors can be obtained
accordingly as expressed in Equation 10 and 11:

KIII(tip−A) = −
√
π lim
s1→0

b0(s1)s
1
2
1 = −

√
πd1b0,1 (10)

KIII(tip−B) =
√
π lim
sN+1→2d

b0(sN+1)s
1
2
N+1 =

√
πdNb0,N+1

(11)

3. Numerical Results
To prove the suggested technique and to provide more

results of the mode-III stress intensity factors, several nu-
merical results are carried out below. The results including
two cases: a crack embedded in matrix and a crack located
in core inclusion.
From the calculated results in Figure 2 showed that for

a crack embedded in matrix, the influence of the coating
layer material properties µ1/µ2 = 0.7, 0.9, 2, 3) are not
the same. In the softer coating layer case (µ2/µ1 = 0.7,
0.9), the results should be expected, mode-III stress in-
tensity factors always increase when approaching outer
circular interface layer. On the other hand, in the stiffer
coating layer (µ2/µ1 = 2, 3), the mode-III stress inten-
sity factors should decrease when a crack approaching
outer circular interface. This tendency happen because
the stiffer materials tends to be a barrier for crack propa-
gation.
In the another case for a crack located in core inclusion,

Figure 3 showed that the behavior of the studied problem
does not appear much different from the case of a crack
embedded in matrix. Only in some particular cases, for
example µ2/µ2 = 2 the mode-III srtress intensity factors is
increasing when a crack approaching inner circular inter-
face, apparently because softer matrix give bigger effect
rather than stiffer coating layer. However, it is not hap-
pen forµ2/µ3 = 3 in which stiffer coating layer make the
mode-III stress intensity factors decrease when a crack
approaching inner circular interface.

Figure 2. Normalized mode-III stress intensity factor versus
dimensionless location of a crack in matrix with different
µ2/µ1 for µ3/µ1 = 0.5 and r/R= 0.9.

Figure 3. Normalized mode-III stress intensity factor ver-
sus dimensionless location of a crack in core inclusion with
different µ2/µ1 for µ3/µ1 = 0.5 and r/R= 0.9.

4. Conlusions
Complex potential methods together with logarith-

mic singular integral equations has been used to solve
interaction between a crack with three-phase circular com-
posite under a remote uniform shear load. Numerical
calculations are performed to investigate the effect of ma-
terial properties combinations on mode-III stress intensity
factors, either for a crack embedded in matrix or a crack
located in core inclusion.
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