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Abstract

Transportation plays a critical role in modern society, with air travel being a key component of long-
distance mobility. Despite strict regulations by the Federal Aviation Administration (FAA) and mandatory
periodic inspections, aircraft maintenance inspections are crucial for air travel safety, yet human error
in manual checks can lead to critical issues. This study aims to optimize the inspection distance for
AGVs inspecting the underside of a Boeing 757-200 aircraft using MATLAB R2023a simulation tools.
The input data for the simulation consists of the x, y, and z coordinates of various inspection points
on the aircraft, and the output is the total distance travelled by the AGV during inspection. The
objective is to minimize the travel distance, calculated as a vector from one point to the next. Two
optimization methods to be compared include Simulated Annealing (SA) and Genetic Algorithm (GA).
The SA method involves varying parameters such as the number of iterations, initial temperature, and
cooling rate. Meanwhile, the GA method varies the number of iterations, population size, and crossover
and mutation percentages. The study evaluates the performance of both methods using a dataset
of 34 inspection points. The results show that Simulated Annealing produces optimal path-planning
distance, achieving a minimum of 85.099 meters across all parameter variations. Compared to the
manual path planning result of 163.53 meters, this optimization yields an efficiency improvement
of approximately 48%. This optimized solution contributes to more efficient and reliable aircraft
maintenance processes, reducing human error and enhancing air travel safety and reliability." This
optimized solution contributes to more efficient and reliable aircraft maintenance processes, reducing
human error and enhancing air travel safety and reliability.
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1. Introduction

Over the past few decades, studies have revealed
that the number of aircraft fatalities has drastically de-
creased [1]. Fatalities due to component failures have
declined since 1960, driven by continuous improvements
in flight safety through technological advancements in
aircraft, avionics, and engines. These developments, cou-
pled with innovations such as proximity warning devices,
state-of-the-art pilot training simulations, enhanced reg-
ulations due to a better understanding of human factors,
improved navigation aids, efficient air traffic management,
and accurate weather forecasting, have significantly ele-
vated commercial aviation safety [2]]. In the commercial
aviation industry, some tasks require the visual inspec-
tion of aircraft parts. Trained workers must examine pro-
duction defects, assembly errors, component failures, or
damage during flight activities such as departure, flight,
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and landing. This inspection task is part of the aircraft’s
maintenance, repair, and overhaul (MRO) activities, which
are essential for identifying and addressing issues before
the aircraft is approved for flight. This can minimize the
risk of accidents and unexpected events. Visual inspection
is defined as the use of human resources, relying on the
eye, with or without other assistive devices, to assess the
condition of the aircraft [|3].

Aviation maintenance is overseen by the Federal Avi-
ation Administration (FAA), among other agencies. In ad-
dition to regulating various maintenance matters, the FAA
enforces safety regulations in the aircraft’s manufacture,
operation, and maintenance. It also establishes air traffic
and airspace use regulations to ensure the safety and ef-
ficiency of navigable airspace and regulate air traffic [4]].
Various methods are used in the inspection process, in-
cluding walk-around inspections by aircraft maintenance
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and operations teams to detect damage quickly. Addi-
tionally, General Visual Inspection (GVI) must be carried
out periodically by the aircraft maintenance team. A De-
tailed Visual Inspection (DVI) is performed when a specific
issue is suspected, whereas a Special Detailed Visual In-
spection (SDVI) is conducted periodically to ensure the
airworthiness of critical aircraft structures. Although the
FAA defines inspection types and practices, many commer-
cial aviation accidents and serious incidents are caused
by poor aircraft maintenance practices [5]. Maintenance
personnel play an invaluable and essential role in ensur-
ing operational safety. However, as with all complex hu-
man/machine systems, some degree of human error is
inevitable. It is important to recognize the term "error"
should not automatically imply guilt or blame.

From a maintenance perspective, the FAA outlines
basic annual and 100-hour inspection requirements out-
lined in 14 CFR part 91. With a few exceptions, all aircraft
are required to undergo an annual inspection. Aircraft
used for commercial purposes (i.e., carrying passengers
other than flight crew or flight instructors) and likely to
be used more frequently than non-commercial aircraft
are required to be inspected every 100 hours. However,
in practice, the FAA acknowledges that aviation, with all
its complexities, faces both design and maintenance chal-
lenges. In the maintenance sector, ensuring the availability
of spare parts remains a significant challenge for the civil
aviation logistics industry in meeting operators demands.

Various studies have shown that the major causes
and contributing factors to aviation incidents include in-
stallation/dismantling problems, inspection/testing issues,
work practices, finishing defects, and inadequate lubrica-
tion and maintenance. A mixed-method study analyzed
the official CAO database on accidents caused by mainte-
nance failures. The study identified five broad categories
of maintenance risks, such as “general (improper practices,
inadequate maintenance, qualifications, training, etc.),
engine, spare parts, airworthiness directives/service bul-
letins.” (failure to comply with AD or SB), and PD (repair
of previous damage). Additionally, the study examined
the impact of aircraft age and explored the relationship be-
tween aircraft age, maintenance risks, and aircraft damage
due to accidents [6]].

Figure 1. An Illustration of the Path Planning of An AGV
Inspecting A Boeing 757-200

Automated Guided Vehicles (AGV) have been in
use since the 1950s when Barret Electronics from Grand
Rapids, Michigan, first developed the technology. The
movement of AGVs is controlled by a navigation system
that processes information obtained from sensor readings.
Based on their structure, mobile robots can be categorized
as wheeled robots, tracked treads, or legged robots [7]].
The use of path planning for AGVs to inspect planes (Fig-
ure[1)) was first developed to enable automated scanning
without human intervention. This innovation improves op-
erational efficiency during aircraft inspections. Addition-
ally, it expands the inspection area beyond what was pre-
viously feasible due to inspector visibility limitations [8]].

2. Methodology: Optimization with Genetic
Algorithm (GA) and Simulated Annealing
(SA)

This study uses data from the FAAs Aircraft Main-
tenance Manual handbook. After determining the initial
data, calculations are carried out to obtain the distance
value between coordinate points, which will be used as
a reference for comparing the distance value to be opti-
mized, using the following formula.

As presented in Equation (2.1)), the function f(i,j)
quantifies the distance, expressed in meters (m), between
two spatial points. The variables x(i), y(i), and z(i) denote
the Cartesian coordinates of the initial point along the
X, ¥, and z axes, respectively, whereas x(j), y(j), and z(j)
represent the corresponding coordinates of the terminal
point.

The optimization process aims to determine the op-
timal inspection distance by varying the x, y, and z co-
ordinates used by the Automated Ground Vehicle (AGV).
This process helps identify the most effective inspection
distance for inspecting the bottom of the aircraft.

The output from the optimization, either using the
Genetic Algorithm (GA) or Simulated Annealing (SA), pro-
vides the optimal inspection distance. To achieve this, the
optimization process involved specific parameters: SA pa-
rameters included varying maximum iterations (10,500 to
10,000), a fixed sub-iteration of 10, initial temperatures
from 20°C to 70°C, and cooling rates of 90%, 50%, and
1%. GA parameters varied maximum iterations (500 to
100,000), a population size of 10, crossover percentages
of 0.5 and 0.6, and mutation percentages of 0.3 and 0.4.
After obtaining the results, a thorough analysis and dis-
cussion are conducted to interpret the data. The results
from the Genetic Algorithm and Simulated Annealing opti-
mizations are then compared to determine which method
performs better in achieving the optimal inspection dis-
tance. Finally, conclusions are drawn based on the results
and comparisons. These conclusions are presented as key
discussion points, addressing the research questions and
achieving the objectives.
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F@,5) = V(@(@) — ()2 + (y(@) — y(1))? + (=) — 2(7)) 2.1
3. Results and Discussion £(3,4) = /(x(i) — 2(5))2 + (y(3) — y(5))2 + (2(i) — 2(4))2
3.1. Validation of Optimization Method = /(185 —18.5)2 + ((—1) — (—1))2 + (0 — (—1))2
3.1.1. Gurobi Optimizer version 11.0.2 =/(1)2
This study examines the TSP solution using Simu- =1m
lated Annealing and Genetic Algorithm, both metaheuris- (2.2)

tic optimization methods. However, metaheuristic algo-
rithms do not always guarantee optimal solutions. The 3.2. Simulated Annealing (SA) Optimization
optimization results of these two methods were compared
with the brute-force method using Gurobi in MATLAB.

Based on the optimization results, the path planning dis- s Incert Took Deskton Window Hel .
tance value obtained by Gurobi is 8.80224e+01, or can PDede Q08 RE
be interpreted as 88.0224 meters, the result was obtained ‘ Total Distance: 85.0999metor

after 8185.32 seconds of computation time with 10 mil-
lion iterations, finding 20 ways to solve the given TSP.
It is crucial to acknowledge the computational complex-
ity associated with the Gurobi Optimizer. The Traveling
Salesperson Problem (TSP) is an NP-hard problem, and the
brute-force approach employed by Gurobi involves evaluat- N O
ing all possible path permutations, which grows factorially p
with the number of coordinate points. The extended com-

putation time and large number of iterations underscore | 0
the limitations of this method for larger problem instances. 0

In real-world aircraft maintenance applications, the num- Y
ber of coordinate points can be significantly higher, and
time constraints are paramount. The 8185.32 seconds
required by Gurobi is impractical for routine inspections.
Furthermore, real world applications can contain many
more constraints than this study contained. For exam-
ple, areas requiring specific tools, or specific inspection
order. Therefore, while Gurobi provides a benchmark for
optimality, its computational complexity renders it unsuit-
able for scalable, real-world applications. Metaheuristic
methods like SA and GA, which offer a trade-off between
solution quality and computational efficiency, are more
adaptable and flexible for addressing the dynamic and
complex requirements of aircraft maintenance.

(a)

(b)

3.1.2. Manual Calculation

Using manual calculation with the formula in Equa-
tion (2:I)), here is one of the calculations for point 3 to
point 4. From the calculation above, data is obtained in
the form of the path planning distance from the initial
coordinates to the final coordinates specified. The data is
presented in Figure [2) which is a 34X 34 matrix as follows.

Figure 2. (a) Path planning results, (b) Visualization in
Ansys
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Table 1. Simulated Annealing Parameters

Parameter Value
Max Iterations 10,500,1000,5000,10000
Maximum number of sub iterations 10
Initial Temperature 20°C;30°C;40°C;50°C;60°C;70°C
Cooling Rate 90%;50%;1%

Simulated Annealing (SA) optimization was per-
formed 3 times in each parameter variation. The output
obtained was the shortest distance the AGV could traverse
for each parameter variation. Table|1|shows the variations
used.

After the SA process runs with one variation of 1000
iterations, an initial temperature of 20°C and a cooling
rate of 0.1, the best optimization results are obtained, as
shown in Figure

From Figure 2, the optimization results using one
variation of SA show that the best cost value for distance
produced is 85.099 meters.

3.2.1. Analysis of Path Planning Distance with Iteration
Variation and Initial Temperature for Each Cooling Rate
Variation

Figure (3| shows the most optimal results when the
cooling rate is 1% and the iteration count is below 1000.
This is because, with iterations below 1000 and an ini-
tial temperature of 20-70°C at a cooling rate of 1%, the
temperature requires more iterations to reach the final
temperature of 0°C, resulting in a downward trend.
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Figure 3. Graph of Path Planning Distance Comparison:
Impact of 90%, 50%, and 99% Cooling Rates on Iteration
and Initial Temperature
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Figure 4. Graph of Path Planning Distance Analysis: Impact
of Initial Temperature and Cooling Rate Across Iterations

3.2.2. Analysis of Path Planning Distance with Initial
Temperature and Cooling Rate Variations across Iteration
Variations

Figure [4| shows the effect of initial temperature and
cooling rate in each iteration used, in accordance with
the theory. It can be seen that when using 100 and 500
iterations, with cooling rates of 90% and 50%, the optimal
result is obtained. However, when the cooling rate used is
1%, the result is different.

3.3.  Genetic Algorithm (GA) Optimization

Genetic Algorithm (GA) optimization was carried out
3 times for each parameter variation. The output obtained
was the shortest distance that the Automated Ground Vehi-
cle (AGV) could travel for each parameter variation. Table
shows the variations used.

After the GA process runs with one variation of 1000
iterations, a population size of 2000 and a crossover x
mutation percentage of 0.5 x 0.4, the best optimization
results are obtained as shown in the figure [5| below.

Table 2. Genetic Algorithm Parameters

Parameter

Value

Max Iterations
Population Size
Crossover Percentage
Mutation Percentage

500,1000,5000,50000,75000,100000

10
0.5; 0.6
0.3; 04
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Figure 5. (a) Path planning results, (b) Visualization in
Ansys

From Figure |5, the optimization results using one
variation of GA show that the best cost value for distance
produced is 85.099 meters.

3.3.1. Path Planning Distance Analysis on Iteration Vari-
ations and Population Size in Each Crossover x Mutation
Percentage Variation

From Figure [f] it can be observed that, based on ex-
isting theory, the results follow the theoretical basis: with
each increase in iteration and population size (Npop), the
optimal results found by the Genetic Algorithm (GA) tend
to improve.

3.3.2. Path Planning Analysis of Crossover x Mutation
Percentage Variations and Population Size in Each Itera-
tion Variation

Based on the theoretical framework, the results
shown in Figure |7| confirm that each increase in popula-

tion size, along with variations in crossover and mutation
percentages across iterations, brings the results closer to
the optimal outcome. The slight differences between the
variations in crossover and mutation percentages are ob-
served when the crossover parameter of 0.5 x mutation
percentage 0.3 is used.

3.4. Analysis of SA and GA Optimization Results with
Validation Using Gurobi Optimizer 11.0.2

From Table |3} it can be observed that the path plan-
ning distance obtained using the SA method is shorter
than the validation results produced by the Gurobi Opti-
mizer. This indicates that the SA method provides valid
path planning distance results. Similarly, the path plan-
ning distance using the GA method is also shorter than
the validation results from Gurobi, confirming the valid-
ity of the GA method. Based on the validation results,
the Gurobi Optimizer cannot achieve the same value or a
lower path planning distance compared to the two opti-
mization methods used. It is worth noting that the Gurobi
Optimizer was run under a student license, which limited
it to a maximum of 10,000,000 iterations.
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Figure 6. Path Planning Graph Against Iteration Variation
and Population Size at Crossover x Mutation Percentages of
0.6x0.4,0.5x0.3,0.5x0.4
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Figure 7. Path Planning Graph for Crossover x Mutation
Percentage Variation and Population Size at 500, 1000,
5000, 50000, 75000, and 100000 iterations
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Table 3. Comparison of Gurobi, SA, and GA Results

.. Method
Criteria Simulated
GuRoBi . Genetic Algorithm
Annealing
Path Planning Distance (m) 88.0224 85.099 85.099
Computation Time (s) 8185.32 0.86 74.21

4. Conclusions

Based on the input data obtained from the Hypo-
thetical Federal Aviation Administration (FAA) Aircraft
Maintenance Manual, the path planning developed in
this study was designed to evaluate the suitability of the
coordinate data provided for the underside of a Boeing
757-200 aircraft. The path planning, generated using
Simulated Annealing (SA) and Genetic Algorithm (GA)
methods, effectively reflects these coordinates. After val-
idation using Gurobi on MATLAB, the result for the two
variants of MEVITS polyethylene bumpers was 88.0224
meters, representing the optimal solution for the TSP prob-
lem. The Simulated Annealing (SA) method achieved an
optimal path planning distance of 85.099 meters, while
the Genetic Algorithm (GA) produced the same shortest
distance of 85.099. Therefore, it can be concluded that
both methods yield valid results, as the path planning dis-
tances obtained are shorter than those generated by the
Gurobi Optimizer.

Based on experiments using metaheuristic-based
methods, namely Simulated Annealing (SA) and Genetic
Algorithm (GA), the results demonstrate that SA can
quickly achieve optimal path planning with the shortest
distance of 85.099 meters by adjusting its parameters.
In contrast, although GA can achieve the same optimal
distance of 85.099 meters, it requires more parameter
adjustments than SA. For example, GA achieves optimal
results using a population size of 2000, 1000 iterations,
and a crossover X mutation percentage of 0.5 x 0.4. How-
ever, these optimal results are not consistently guaran-
teed and often require additional iterations for improved
reliability. Increasing the number of iterations in GA en-
hances the likelihood of finding optimal results, but sig-
nificantly increases computation time, often exceeding 2
hours. This reduces its effectiveness when seeking stable
results. Therefore, the SA method is recommended for
achieving optimal results with shorter computation time
and greater efficiency than GA, regardless of variations in
input parameters. Adapting these optimization techniques
to various aircraft models requires adjustments in coordi-
nate data, parameter optimization, constraint integration,
and tool-sensor compatibility. While both methods hold
potential, SA exhibits superior robustness across varying
problem complexities. In scenarios with fewer coordinate
points, both algorithms perform adequately, yet SA's sim-
plicity confers a slight computational advantage. For mod-
erate problem sizes, SA maintains its efficiency, whereas
GA's performance is contingent upon precise parameter

calibration. In complex scenarios involving numerous co-
ordinate points, SA’s ability to escape local optima proves
advantageous, mitigating the substantial computational
burden associated with GA. Consequently, SA’s consistent
performance across varying problem scales and its compu-
tational efficiency render it a more dependable approach
for optimizing aircraft maintenance path planning.
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