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Abstract
This study investigates the use of Support Vector Machine (SVM) and Backpropagation Neural Network
(BPNN) for predicting diesel engine health based on operational data that was relabeled using K-Means
Clustering. Two SVM kernels, Radial Basis Function (RBF) and Sigmoid, were tested with various
parameter settings. The results show that the SVM with a Sigmoid kernel achieved an accuracy of
94.06% but had lower sensitivity in identifying unhealthy engine conditions. In contrast, BPNN with a
three-hidden-layer configuration (1-2-1 neurons) and the tansig activation function delivered superior
performance, achieving an accuracy of 97.13%, MSE of 0.03, recall of 94%, precision of 100%, and an
F1-score of 97%. These findings highlight that BPNN is more effective than SVM in capturing complex
data patterns and more accurate in detecting unhealthy engine states. Moreover, dataset relabeling
significantly improved prediction accuracy, from 72.3% to 97.13%, underscoring the critical role of data
balance in modeling. Overall, the study confirms that BPNN with an optimized configuration provides a
more reliable approach for diesel engine condition monitoring.
Keywords: Diesel Engine; Machine Health Prediction; Support Vector Machine; Backpropagation
Neural Network; Condition-Based Maintenance; Artificial Intelligence

1. Introduction
Machine health plays a critical role in ensuring reli-

able operations across diverse sectors, including industry,
automotive, maritime, and air transportation [1]. Unex-
pected machine disruptions or failures can lead to serious
consequences, both in terms of operational efficiency and
maintenance costs [2]. Therefore, effective maintenance
strategies, such as Condition-Based Maintenance (CBM),
are increasingly being implemented to detect and prevent
potential machine failures before they occur [3]. CBM is
a predictive maintenance approach that utilizes real-time
data from sensors installed on machines to analyze their
operational conditions. This method offers significant ad-
vantages over time-based and corrective maintenance, as it
can reduce operational costs and extend machine lifespan.
However, the main challenge in implementing CBM lies
in accurately and efficiently processing large and complex
sensor data [4,5].

Several studies have investigated the application of
CBM in machine maintenance. For example, [6] developed
a machine learning–based CBM model for early anomaly
detection in industrial machines, which improved failure
prediction accuracy by up to 95%. In another study, [7] im-
plemented a deep learning–based CBM model to identify

degradation patterns in diesel engines used in heavy-duty
vehicles, demonstrating a 30% increase in maintenance
efficiency compared to traditional approaches.

In the context of predictive maintenance, various ar-
tificial intelligence methods have been applied, including
Support Vector Machine (SVM) and Backpropagation Neu-
ral Network (BPNN). SVM is recognized for its capability
to handle high-dimensional data and deliver strong clas-
sification performance, whereas BPNN is more effective
in capturing complex patterns from machine sensor data.
Nevertheless, both methods have notable limitations: SVM
often requires considerable computational time when deal-
ing with large datasets, while the performance of BPNN
is highly dependent on initial parameter settings and re-
mains vulnerable to overfitting.

Several previous studies have examined the applica-
tion of SVM and BPNN in machine health prediction. For
instance, [8] developed a predictive maintenance system
for motor vehicles using SVM, achieving an accuracy of
92.92%. In another study, [9] applied an Optimized Back-
propagation Neural Network (OBPNN) combined with
the Fish Swarm Algorithm (FSA) to predict the health of
marine diesel engines, reaching an accuracy of 99.05%.
Similarly, [10] compared Logistic Regression, SVM, and K-

*Corresponding author. Email: fadli.nurdin01@gmail.com,
© 2025. The Authors. Published by LPPM ITS.

JMES The International Journal of Mechanical Engineering and Sciences; Vol. 9, No. 2 (2025): 69-79



Nurdin et al./JMES The International Journal of Mechanical Engineering and Sciences/09/02(2025)

Nearest Neighbors (KNN) for diesel engine maintenance,
with SVM demonstrating the best performance at 93%
accuracy.

Although previous studies have demonstrated the
effectiveness of SVM and BPNN in predicting machine
health, several research gaps remain to be addressed.
First, the use of more advanced kernels in SVM, such
as Radial Basis Function (RBF) and Sigmoid, has not been
extensively investigated to improve accuracy on non-linear
datasets. Second, parameter optimization in BPNN contin-
ues to pose challenges, particularly in mitigating overfit-
ting and accelerating convergence.

This study contributes to the development of diesel
engine health prediction by comparing a modified SVM
approach with an optimized BPNN. Accordingly, it seeks
to bridge the existing gap in the literature by investigat-
ing more accurate and efficient strategies for AI-based
predictive maintenance.

2. Experimental/theoretical method
2.1. System Design

The system developed in this study is designed to
assess the condition of diesel engines using Support Vec-
tor Machine (SVM) and Backpropagation Neural Network
(BPNN) within the framework of Condition-Based Main-
tenance (CBM). The workflow of the proposed system
comprises four main stages: dataset preparation, prepro-
cessing, parameter mapping, model analysis, and eval-
uation. These stages are presented in Figure 1, which
illustrates the overall workflow of the system model.

Figure 1. System Model Workflow

2.2. Dataset & Engine Data Acquisition

This study employs a dataset comprising diesel en-
gine operational parameters, including temperature, pres-
sure, and vibration. The dataset is divided into two sub-
sets: training data and testing data. SVM is used to clas-
sify engine conditions based on the optimal hyperplane,
while BPNN applies a neural network architecture with a
backpropagation algorithm to learn the underlying data
patterns.

The dataset used in this study is sourced from pa-
pers [11] and [10] by D. Mohakul (2023). The engine
examined in this research is the MTU Series 1400 diesel
engine. The dataset comprises several operational parame-
ters, including engine speed (Engine RPM), lubricating oil
pressure (Lub Oil Pressure) in bar, fuel pressure (Fuel Pres-
sure) in bar, cooling system pressure (Coolant Pressure) in
bar, lubricating oil temperature (Lub Oil Temperature) in
degrees Celsius, and cooling system temperature (Coolant
Temperature) in degrees Celsius.

The output label used to determine engine condition
consists of two categories: healthy (1) and unhealthy (0).
This dataset is employed for training and testing predictive
models to evaluate the performance of SVM and BPNN
in diesel engine health prediction. The detailed structure
of the dataset used in this study is presented in Table 1,
while the data acquisition process is illustrated in Figure
2.

2.3. Data Preprocessing

Data preprocessing ensures that the dataset used in
the analysis is clean, structured, and ready for algorithmic
processing [12]. The preprocessing steps include data
cleaning to address missing values through mean impu-
tation and the removal of outliers using the Interquartile
Range (IQR) method. Subsequently, data normalization
is applied using Min-Max Normalization to standardize
feature scales, ensuring compatibility with both SVM and
BPNN algorithms.

Re-labeling of engine condition data using the K-
Means clustering method is carried out to improve data
quality by distributing labels more representatively. This
process involves re-normalization, determining the num-
ber of clusters (K = 2), applying the K-Means algorithm,
and validating the clustering results using the Silhouette
Score and prediction accuracy. Following re-labeling, the
dataset is divided into three subsets: a training set (70%)
for model training, a testing set (15%) for performance
evaluation, and a validation set (15%) to prevent over-
fitting. The dataset is randomly split to minimize bias in
data distribution.
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Table 1. Dataset

No
Engine

rpm
Lub oil

pressure
Fuel

pressure
Coolant
pressure

Lub oil
temp

Coolant
temp

Engine
Condition

1 520 2.96 6.55 1.06 77.75 79.65 1
2 1221 3.99 6.68 2.21 76.40 75.67 0
3 729 3.85 10.19 2.36 77.92 71.67 1
4 845 4.88 3.64 3.53 76.30 70.50 0
5 824 3.74 7.63 1.30 77.07 85.14 0
6 1230 3.43 10.84 1.83 77.41 85.92 0
7 538 4.26 7.69 2.08 80.18 81.18 1
8 1187 2.59 6.89 1.83 78.10 84.97 1
9 609 3.75 10.09 3.00 77.28 75.58 1

10 606 2.27 5.49 1.91 75.17 77.73 1
... ... ... ... ... ... ... ...

165 1286 5.12 3.83 3.25 77.37 71.86 1
166 524 3.22 8.19 1.86 79.28 68.36 1
167 980 3.53 9.05 1.02 76.80 80.01 0
168 571 3.56 7.63 2.68 76.32 69.89 1
169 541 3.11 6.36 1.72 76.65 86.09 1
170 422 2.80 9.51 1.31 77.18 71.52 1
171 430 2.20 5.47 3.32 77.59 77.07 1
172 801 4.84 5.80 1.12 80.36 84.06 1
173 588 2.28 6.52 1.87 75.68 73.38 0
174 709 2.04 5.20 2.55 75.93 80.22 1

Figure 2. Diesel Engine Operation Data Acquisition Scheme [13]

2.4. Analysis of Engine Operational Parameter Relation-
ships

The relationship between operational parameters
and diesel engine health is analyzed using Spearman cor-
relation [14], with the results visualized in a heatmap
as illustrated in Figure 3. The correlation coefficient is
calculated to measure both the strength and direction of
the relationships between variables, and the outcomes

are presented in a correlation matrix. The colors in the
heatmap represent the intensity of these relationships:
positive values close to +1 indicate a strong correlation,
negative values close to –1 indicate a strong inverse cor-
relation, and values near 0 represent weak relationships.
This analysis helps identify the most influential parame-
ters for predicting engine health, thereby supporting the
optimization of condition-based maintenance models.
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Figure 3. Diesel Engine Operation Data Acquisition Scheme

2.5. Model Analysis

In Logistic Regression, Deviance-based Analysis of
Variance (ANOVA) is applied to examine whether group
differences are statistically significant in a binary response
dataset [15]. The method relies on the Likelihood Ra-
tio Test (LRT), which contrasts the full model against a
reduced model; a p-value < 0.05 indicates that specific
variables have a significant effect on the diesel engine’s
health condition.

The analysis is conducted in three stages: (1) ANOVA
Deviance test to identify significant variables, (2) post-
ANOVA analysis using odds ratios to measure the influ-
ence of each parameter, and (3) model validation through
goodness-of-fit tests and data independence checks. This
process provides insights into the factors affecting engine
health and supports the development of accurate predic-
tive models using SVM and BPNN.

2.6. Support Vector Machine

The Support Vector Machine (SVM) modeling in
this study applies two types of kernels [16]: Radial Basis
Function (RBF) and Sigmoid, each offering advantages in
handling non-linear patterns in diesel engine health data.
The kernel function, which transforms data non-linearity
into a higher-dimensional space, is illustrated in Figure 4.

a. Radial Basis Function (RBF) Kernel

The RBF kernel enables the separation of non-linear
data by mapping it into a higher-dimensional space. Its
formula is;

K(xi, xj) = exp exp(−λ.(|xi − xj |2)) (1)

Where λ (lambda) controls the model’s sensitivity to data
variations. A high gamma value makes the model too
sensitive (overfitting), while a low value makes the model
less flexible (underfitting). The parameters C and gamma

are optimized using Grid Search for the best results.

b. Sigmoid Kernel

The Sigmoid kernel resembles the activation func-
tion of artificial neural networks and is used to capture
non-linear relationships. The formula is:

K(xi, xj) = tanh tanh(γ.(xi, xj) + c) (2)

where gamma determines the slope of the function,
and c shifts the curve to adjust data separation. This ker-
nel is suitable for datasets that resemble ANN patterns but
is more sensitive to parameter selection.

Figure 4. Kernel Transforms Non-Linear Problems into
Linear Problems in a New Space (Ritonga & Purwaningsih,
2018).

2.7. Backpropagation Neural Network (BPNN)

The Backpropagation Neural Network (BPNN) is em-
ployed to predict machine health conditions [17] using
operational parameters, including engine speed, oil pres-
sure, fuel pressure, coolant pressure, oil temperature, and
coolant temperature. The network architecture comprises
three main layers: input, hidden, and output. The input
layer receives operational parameters, while the hidden
layer captures non-linear relationships in the data. The
hidden layer configuration varies from one to three lay-
ers, each containing one to three neurons. The output
layer produces binary predictions of machine condition:
healthy or unhealthy. The overall BPNN structure and its
algorithmic process are illustrated in Figure 5.

In BPNN modeling, activation functions play a piv-
otal role in determining each neuron’s output based on its
input. By introducing non-linearity into the network, these
functions enable the model to capture complex patterns
within the data. Commonly employed activation functions
include the sigmoid function, which is suitable for binary
classification tasks as it produces outputs between 0 and 1;
the Rectified Linear Unit (ReLU), which enhances conver-
gence speed and alleviates the vanishing gradient problem;
and the hyperbolic tangent (Tansig), which constrains out-
puts within the range of –1 to 1, providing greater stability
compared to the sigmoid function.
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Figure 5. Backpropagation Algorithmic Scheme

For the training process, the Levenberg–Marquardt
(trainlm) algorithm is employed. This optimization
method integrates gradient descent with Newton’s method
and is selected for its capability to accelerate conver-
gence and improve efficiency compared to conventional
optimization approaches in handling non-linear models
such as BPNN. By enabling faster adaptation to data,
this method enhances the accuracy of predicting machine
health conditions.

2.8. Model Evaluation

The Confusion Matrix is an evaluation technique
that visually represents the performance of a classification
model by comparing predicted outcomes with actual val-
ues [18]. It consists of four key categories: True Positive
(TP), when an unhealthy machine is correctly identified as
unhealthy; True Negative (TN), when a healthy machine
is correctly identified as healthy; False Positive (FP), when
a healthy machine is incorrectly classified as unhealthy;
and False Negative (FN), when an unhealthy machine is
incorrectly classified as healthy.

By analyzing the Confusion Matrix, it is possible
to determine whether the model tends to overlook truly
unhealthy machines (high FN) or frequently misclassify
healthy machines as unhealthy (high FP), which could
result in unnecessary maintenance costs. Moreover, the
Confusion Matrix provides the basis for calculating other
evaluation metrics such as Accuracy, Precision, Recall, and
F1-score, which offer a more comprehensive assessment of
the model’s effectiveness in classifying machine conditions.
Several performance evaluation equations can be derived
from the Confusion Matrix to quantify these metrics.

1. Accuracy

Accuracy = TP + TN

TP + TN + FP + FN
(3)

Accuracy measures how often the model makes
correct predictions across the entire dataset.

2. Precision

Precision = TP

TP + FP
(4)

Precision measures the proportion of positive
predictions that are actually positive, which is crucial
for avoiding false positives.

3. Recall (Sensitivity)

Sensitivity = TP

TP + FN
(5)

Recall indicates the model’s ability to capture
all actual positive cases.

4. F1-Score

F1-Score = 2 × Precision × Recall
Precision + Recall

(6)

F1-score is the harmonic mean of precision and
recall, used to balance the trade-off between them.

3. Results and Discussion
This study analyzes the operational data of the MTU

Series 4000 marine diesel engine, covering key parameters
such as engine speed (RPM), oil pressure and tempera-
ture, fuel pressure, and coolant system temperature. The
Support Vector Machine (SVM) model is applied using
Radial Basis Function (RBF) and Sigmoid kernels, while
the Backpropagation Neural Network (BPNN) is imple-
mented with variations in the number of hidden layers
and neurons per hidden layer. The performance of these
models is then evaluated and compared with previous
research conducted by D. Mohakul (2023), which utilized
SVM with Linear and Polynomial kernels, along with other
approaches.

During the data preprocessing stage, cleaning and
transformation processes were carried out to ensure
dataset quality before analysis. These processes included
checking for missing values and outliers to prevent data
imperfections that could reduce model accuracy. The miss-
ing values check aimed to detect any data loss due to input
errors or format inconsistencies. Analysis results indicated
that the dataset contained no missing values, eliminating
the need for imputation techniques. Subsequently, outlier
identification was performed to detect extreme values that
could affect modeling. The distribution analysis revealed
that the dataset was not normally distributed, as shown in
Figure 6, necessitating further handling steps.

73



Nurdin et al./JMES The International Journal of Mechanical Engineering and Sciences/09/02(2025)

Figure 6. Histogram of Feature Data Distribution in the Dataset.

Since the data distribution is not normal, the In-
terquartile Range (IQR) method is used to detect outliers.
This method is chosen because it is effective in identify-
ing extreme values in data that do not follow a normal
distribution and provides a clear representation of the rea-
sonable value range within the dataset. IQR is calculated
as the difference between the first quartile (Q1) and the
third quartile (Q3), which represent 25% and 75% of the
data, respectively. Data points that fall outside the lower
or upper bounds are considered outliers, calculated as

follows:
IQR = Q3 − Q1 (7)

Lower Bound = Q1 − (1.5 × IQR) (8)

Upper Bound = Q3 + (1.5 × IQR) (9)

Based on this formula, the results of outlier detection
for each feature in the dataset are visualized in Figure 7,
which presents an outlier summary graph along with a
box plot of the outliers.

Figure 7. Histogram of Feature Data Distribution in the Dataset.
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Figure 8. Heatmap of Correlation Between Engine Parame-
ter Features

In addition, an analysis was conducted to examine
the relationship between various operational parameters
of the engine and its health condition, represented by the
Engine Condition variable (healthy or unhealthy). The
analysis was performed on the dataset after the relabeling
process using the Spearman correlation method to assess
the relationships between variables. The correlation re-
sults are visualized in a heatmap in Figure 8.

Correlation analysis indicates that several opera-
tional parameters of the diesel engine significantly cor-
relate with Engine Condition. The negative correlation
of Engine RPM (r = -0.2358) suggests that high RPM ac-
celerates component wear due to increased friction and
temperature. According to Heywood (2018), operating
above 75% capacity increases cylinder friction by up to
40%, while Zhang et al. (2019) reported a 25% rise in
component wear at RPM >1500. Therefore, maintaining
RPM within the optimal range (1500-1800 RPM) is crucial
to reducing degradation. Lubricating Oil Pressure (r =

0.3185) shows a weak positive correlation with engine
condition. Stable pressure (4-6 bar) ensures optimal lu-
brication, whereas low pressure (<2 bar) increases wear
by up to 18% (Kumar et al., 2015). However, high pres-
sure (>7 bar) may indicate system blockage. Regular
inspections, including viscosity testing, are necessary. Fuel
Pressure (r = -0.1517) exhibits a weak negative correla-
tion, indicating that excessive fuel pressure (>2200 bar)
increases injector wear by 12% (Chen et al., 2018), while
low pressure accelerates carbon deposits. Maintaining
optimal pressure (4-10 bar) should be monitored using AI-
based diagnostic systems. Coolant Pressure (r = 0.7481)
has a strong positive correlation, suggesting that stable
pressure (1-2 bar) prevents overheating. A 30% pressure
drop can increase coolant temperature by 15°C, acceler-
ating component damage by 20% (Singh et al., 2017).
Thus, monitoring coolant pressure is crucial. Lubrication
Oil Temperature (r = -0.1495) indicates that high lubri-
cant temperature (>100°C) reduces viscosity by up to
40% (Wang et al., 2016), increasing the risk of bearing
and piston failure. The use of high-quality lubricants and
sensor-based temperature monitoring is recommended.
Coolant Temperature (r = -0.0565) has a minor impact
but remains important, as an increase above 100°C can
lead to thermal distortion and cylinder head failure (Guo
et al., 2019). Overall, engine RPM, oil pressure, and
coolant pressure have the most significant impact on en-
gine condition. Thus, oil pressure and cooling pressure are
the most relevant parameters in predicting the condition
of MTU Series 4000 diesel engines.

The effect of engine operating parameters on the
average engine condition (Engine Condition) is shown in
Figure 9: Main Effects Plot. This graph uses data grouping
(binning) to reduce data irregularity due to continuous
parameter value variations, facilitating analysis of each
parameter’s effect on engine condition.

Figure 9. Main Effect Plot Engine Operating Parameters
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Table 2. Result of ANOVA test Deviance

Model Deviance DF p-value

Full Model 181.06 6 0.0000
Reduction Model 179.905 5 0.0000
LRT -1.111
Chi-Square (df = 1) 3.841

The Main Effects Plot results show that each operat-
ing parameter has an effect on engine condition, especially
oil pressure and coolant pressure. Overall, parameter val-
ues within the optimal range tend to produce healthy
engine conditions, while extreme values (too low or too
high) increase the risk of engine damage. These findings
support the importance of real-time parameter monitoring
in diagnosing and predicting diesel engine health.

Following this, a Deviance ANOVA (Likelihood Ratio
Test, LRT) was applied in a logistic regression analysis,
was used in logistic regression analysis to evaluate the im-
pact of predictor variables on the probability of an event,

such as engine health status. In this context, the anal-
ysis compared a full model that included all predictor
variables with a reduced model containing only the most
significant variables. The results of the Deviance ANOVA
are summarized in Table 2. The LRT results showed a
significant difference between the full and reduced mod-
els, indicating that the additional predictor variables in
the full model contribute meaningfully to predicting en-
gine health. Therefore, the full model is considered more
appropriate for further analysis.

Significance evaluation is evaluated as follows: if
LRT > chi-square, variable reduction is not significant;
if LRT ≤ chi-square, it is significant. The ANOVA results
obtained show LRT = −1.111, which is smaller than chi
square 3.841. Thus, the variable reduction in the reduc-
tion model is not significant, and the full model is better.
The full model yielded a P-value < 0.05, which indicates
that there is at least one variable that has a significant
impact on the health of the diesel engine.

Table 3. Evaluation Metrics for SVM Model Prediction Performance with Sigmoid Kernel

Kernel
Function

Parameter Model Performance

C c y
Avg.

Accuracy (%)
Avg.
MSE

Avg.
Precision

Avg.
Recall

Avg.
F1 Score

Sigmoid 1 0.1 -1 0.01 53.66 0.46 0.00 0.00 0.00
Sigmoid 2 1 0 0.01 82.54 0.17 1.00 0.63 0.77
Sigmoid 3 10 1 0.01 95.52 0.07 0.99 0.84 0.91
Sigmoid 4 0.1 -1 0.1 58.91 0.41 0.00 0.12 0.00
Sigmoid 5 1 0 0.1 94.07 0.06 0.99 0.88 0.93
Sigmoid 6 10 1 0.1 84.43 0.16 0.85 0.80 0.82
Sigmoid 7 0.1 -1 1 87.42 0.13 0.96 0.76 0.85
Sigmoid 8 1 0 1 78.28 0.22 0.80 0.73 0.76
Sigmoid 9 10 1 1 73.53 0.26 0.76 0.64 0.69

Table 4. Evaluation Metrics for SVM Model Prediction Performance with RBF Kernel

Kernel
Function

Parameter Model Performance

C c y
Avg.

Accuracy (%)
Avg.
MSE

Avg.
Precision

Avg.
Recall

Avg.
F1 Score

RBF 1 0.1 - 0.01 53.66 0.46 0.00 0.00 0.00
RBF 2 0.1 - 0.1 53.66 0.46 0.00 0.00 0.00
RBF 3 0.1 - 1 53.66 0.46 0.00 0.00 0.00
RBF 4 1 - 0.01 67.95 0.32 0.00 0.33 0.00
RBF 5 1 - 0.1 67.95 0.32 0.00 0.33 0.00
RBF 6 1 - 1 84.97 0.15 0.95 0.71 0.80
RBF 7 10 - 0.01 67.95 0.32 0.00 0.33 0.00
RBF 8 10 - 0.1 67.95 0.32 0.00 0.33 0.00
RBF 9 10 - 1 86.01 0.14 0.92 0.77 0.83
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This study applies the Support Vector Machine (SVM)
to predict diesel engine health based on relabeled opera-
tional data. SVM was chosen for its ability to generalize
complex data. Two types of kernels were used: Radial
Basis Function (RBF) and Sigmoid, with nine parame-
ter combinations each to determine the best model. The
prediction results are presented in Tables 3 and 4, includ-
ing evaluation metrics such as average accuracy, Mean
Squared Error (MSE), precision, recall, and F1-score dur-
ing the training, validation, and testing phases.

In the Sigmoid kernel, the varied parameters include
Box Constraint (C), constant (c), and gamma (γ) with
combinations of C = 0.1, 1, 10, c = -1, 0, 1, and γ = 0.01,
0.1, 1. The best results were achieved with C = 1, c =
0, and γ = 0.1, yielding an average accuracy of 94.07%,
MSE of 0.06, recall of 0.88, precision of 0.99, and an F1-
Score of 0.93. Meanwhile, for the RBF kernel, the varied
parameters were Box Constraint (C) and gamma (γ), with
combinations of C = 0.1, 1, 10 and γ = 0.01, 0.1, 1. The
best-performing model was obtained with C = 10 and γ
= 1, resulting in an average accuracy of 86.01%, MSE of
0.14, recall of 0.77, precision of 0.92, and an F1-Score of
0.83.

Based on the results, the SVM model with the Sig-
moid kernel demonstrated superior performance com-
pared to the RBF kernel, achieving the highest prediction
accuracy of 94.07%. Its ability to effectively handle com-
plex distributions allows the model to capture nonlinear
patterns that are difficult for other kernels to identify. Ad-
ditionally, the dataset’s characteristics, which likely involve
variable interactions and a non-homogeneous distribution,
support the superiority of the Sigmoid kernel.

The optimal parameter combination for the Sigmoid
kernel (C = 1, c = 0, γ = 0.1) provides a balanced trade-
off between bias and variance. A lower C value prevents
overfitting, while a small γ ensures the model is not overly
sensitive to noise, making it ideal for this dataset. On the
other hand, the RBF kernel achieved a maximum accu-
racy of 86.01%, lower than the Sigmoid kernel. Despite
its good generalization capabilities, its performance was
lower due to:

• Overfitting Parameters: The optimal combination

(C = 10, γ = 1) increased model complexity, leading
to overfitting and reduced generalization.

• Data Characteristics: The RBF kernel is better
suited for local data patterns, whereas this dataset
exhibits more global nonlinear patterns.

This evaluation confirms that the Sigmoid kernel is
more effective in capturing complex patterns within this
dataset, while the RBF kernel is more suitable for localized
data distributions. Therefore, kernel selection should be
tailored to the dataset characteristics. The next method
applied is Backpropagation Neural Network (BPNN) to
predict diesel engine health using various artificial neural
network configurations. The varied parameters include the
number of hidden layers (1–3), the number of neurons per
hidden layer (1–3), and activation functions such as logsig,
tansig, purelin, softmax, satlin, satlins, hardlim, hardlims,
and poslin. The training algorithm used is Levenberg-
Marquardt (trainlm). Prediction results are summarized
in Table 5, which presents the best network configuration
based on the number of hidden layers. Model evaluation
is conducted using average accuracy, MSE, precision, re-
call, and F1-score across training, validation, and testing
stages.

Based on Table 5, the experimental results indicate
that the best configuration is achieved with a neural net-
work containing three hidden layers. The optimal struc-
ture consists of one neuron in the first hidden layer, two
neurons in the second hidden layer, and one neuron in the
third hidden layer, using the "tansig" activation function.
This configuration yields an average accuracy of 97.13%,
MSE of 0.03, recall of 0.94, precision of 1, and an F1-Score
of 0.97. The addition of a third hidden layer enhances
the model’s ability to capture more complex patterns with-
out causing overfitting, whereas a single hidden layer is
insufficient to capture nonlinear relationships in the data.
Additionally, the tansig activation function demonstrates
the best performance due to its flexibility in handling non-
linear data. Its use in both the hidden layer and output
layer proves effective in enhancing model accuracy, align-
ing with findings from previous studies.

Table 5. Evaluation Metrics of BPNN Model Prediction

Network
Configuration

Avg.
Accuracy (%)

Avg.
MSE

Avg.
Precision

Avg.
Recall

Avg.
F1 Score

Layer: 1, Neurons: 1,
Activations: tansig,
OutputFcn: tansig

97.13 0.03 1.00 0.94 0.97

Layer: 2, Neurons: [1 2],
Activations: [tansig tansig],
OutputFcn: tansig

97.13 0.03 1.00 0.94 0.97

Layer: 3, Neurons: [1 2 1],
Activations: [tansig tansig tansig],
OutputFcn: tansig

97.13 0.03 1.00 0.94 0.97
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Table 6. Comparison of SVM and BPNN Prediction Results with Related Studies

Model Accuracy Precision Recall F1-Score Source

SVM (Sigmoid) 94 99 88 93
Propose
Method

SVM (RBF) 86 92 77 83
BPNN 97 100 94 97

Logistic Regression 89 88 87 88

D. Mohakul
2023

SVM (Linear) 89 88 87 88
SVM (Polynomial) 88 87 84 86
KNN 89 88 87 87
Naïve Bayes 83 82 79 80
Decision Tree 74 72 67 68

By comparing accuracy, MSE, recall, precision, and
F1-score with prior studies, the performance improve-
ments achieved can be assessed, along with the key factors
contributing to the model’s enhancement. The comparison
of prediction performance between the proposed method
and related studies is presented in Table 6.

Based on the table above, the BPNN method in this
study demonstrated the best performance, achieving 97%
accuracy, 100% precision, 94% recall, and a 97% F1-score.
Additionally, the SVM method with the sigmoid kernel
also outperformed the SVM model from Mohakul’s (2023)
study, particularly in terms of accuracy—94% compared to
89% for the Linear SVM. This difference indicates that the
approach used in this study is more optimal for predicting
diesel engine health conditions. This advantage can be
attributed to a more suitable model configuration, such as
the use of the sigmoid kernel, which is better at handling
nonlinear patterns, as well as more effective parameter
optimization.

4. Conclusions
This study evaluates the performance of SVM and

BPNN in predicting diesel engine health. SVM with a Sig-
moid kernel achieved 94.06% accuracy but was less sensi-
tive in detecting unhealthy conditions, while BPNN with
a three-hidden-layer (1-2-1) tansig configuration outper-
formed SVM with 97.13% accuracy, demonstrating supe-
rior ability to capture complex patterns. Dataset relabeling
using K-Means also improved BPNN accuracy significantly,
from 72.3% to 97.13%, highlighting the importance of
data balance. Overall, BPNN with optimal configuration
and well-processed data proved to be the most reliable
method for diesel engine health prediction.

Beyond experimental validation, the model offers
practical implications for real-world maintenance. Inte-
grated into a condition-based maintenance (CBM) frame-
work, SVM and BPNN predictions can support early detec-
tion of engine degradation, enabling proactive scheduling,
reducing unplanned breakdowns, and optimizing spare
parts management. In marine applications, this is espe-
cially valuable for ship diesel engines operating under
varying loads and harsh conditions. By monitoring param-

eters such as oil pressure, coolant temperature, and fuel
system behavior, the model can provide early warnings
before failures occur at sea, allowing maintenance during
port calls and improving fleet reliability, efficiency, and
regulatory compliance.

Future research should explore advanced methods
such as Gradient Boosting, XGBoost, alternative ANN ar-
chitectures, and ensemble learning to further improve
predictive performance. Expanding datasets with broader
operational conditions and diverse engine types will also
enhance generalizability and reliability across various con-
texts.
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