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Abstract
Corrosion inspection of industrial assets is still dominated by subjective and inconsistent visual inspec-
tions. This study develops and validates a deep learning-based corrosion area detection system on
metal surfaces in the context of heavy equipment through a binary segmentation task (corrosion vs.
non-corrosion). Three architectures were compared: UNet, VGG16–Random Forest, and VGG16–UNet,
using 600 annotated images measuring 512 × 512 pixels taken under lighting conditions of 50–150
lux. The workflow included preprocessing, augmentation, training for 30, 50, and 100 epochs, and
evaluation of accuracy, precision, recall, IoU/Jaccard, Dice, and confusion matrix per pixel (positive
= corrosion). The results show that VGG16–UNet provides the best performance; in the 150 lux
test, it achieved 98.96% accuracy, 0.9934 precision, and 0.994 recall, with good consistency across
lighting variations and data scales. These findings confirm the effectiveness of a pre-trained encoder
combined with skip connections to recover fine corrosion boundaries and produce reliable corrosion
maps. The proposed approach has the potential to standardize the inspection process and accelerate
decision-making in reliability-based maintenance practices.
Keywords: corrosion, deep learning, accuracy, VGG16-UNet, automatic inspection

1. Introduction
Corrosion is chemical and electrochemical process

that damages metals, which is the main cause of asset
damage, safety incidents, and increased life cycle costs
in industrial sectors, such as heavy equipment operations
and civil infrastructure, including pipelines, bridges, and
telecommunications towers [1–3]. Visual inspection dur-
ing normal routines remains the most commonly used
inspection method due to its simplicity and ease of use,
but this method is labor-intensive, operator-dependent,
and increasingly performed under less than ideal or even
hazardous conditions, making consistency and repeata-
bility difficult. These limitations have driven the devel-
opment of camera-based automated inspection methods
that can be applied to large assets and produce auditable
output, supporting current maintenance and compliance
processes [4–8].

However, eye-based visual assessment is inefficient,
experience-dependent, and can even be deadly when the
circumstances of the structures are hazardous [9, 10].
Hence, automatic visual inspection is highly desirable
for addressing the limitations of the human-based visual

method. Various approaches for efficiently assessing in-
frastructure have been studied [11, 12]. Most research
on damage detection focuses on image processing tech-
niques [13,14]. This computer vision-based approach can
detect specific types of damage, such as cracks, concrete
spalling, and steel faults [4,9]. Furthermore, automatic
damage detection algorithms have been effectively used
in autonomous moving platforms [7,8].

Machine Learning (ML) offers an alternative to man-
ual corrosion detection, which primarily relies on visual
inspection for maintenance and assessment. Ensuring
the dependability and effectiveness of inspection systems
is crucial for public safety and economic efficiency. ML
introduces new methods to understand and quantify data-
intensive processes, especially in agriculture. When com-
bined with big data and high-performance computing, ML
is described as a scientific discipline enabling machines
to learn without explicit programming [15]. A machine
model can learn spatial characteristics of corrosion, such
as color or texture, which reduces the time necessary for
detection. Recent research classifies machine learning into
three categories: supervised, unsupervised, and reinforce-
ment learning [16].
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Supervised learning methods rely on labeled data
samples to model the characteristics of behavioral size
distribution in various applications. These methods are
categorized into classification and regression tasks. Clas-
sification involves categorical output variables, such as
color or health status. This study focuses on supervised
learning using Convolutional Neural Networks (CNNs), a
type of Deep Learning (DL) method that allows machines
to analyze raw data and automatically determine the nec-
essary representations for classification or detection. Deep
learning architectures can be single, using one approach,
or double, combining two methods [17–20].

This work is positioned in a growing literature on
corrosion segmentation that spans from conventional to
DL-based methods and consistently encounters sensitiv-
ity to dataset organization, illumination, and annotation
density. Corpus-specific research, such as RustSEG, demon-
strates the capability of automatic corrosion segmentation,
highlighting that raw performance is a function of label
quality and scene diversity [21]. The robust performance
of UNet on its dataset is illustrated by the "Application
of Deep-Learning Architecture for Image Analysis-based
Corrosion Detection" research, which supports the value of
encoder–decoder architectures and highlights the effects
of data scale and training depth [22]. Direct quantita-
tive comparison across studies remains limited by various
tasks, acquisition processes, and definitions of ground
truth; hence, in this paper, deployability and field realism
are introduced as the emphasis to provoke conclusions
translatable into practice.

This paper presents three results under this specified
context. Firstly, it provides a pixel-annotated corrosion
image dataset normalized to 512×512-pixel, acquired un-
der inhomogeneous illumination, and provides a realistic
benchmark for segmentation under field-like conditions.
Second, it gives a direct comparison of UNet, VGG16-RF,
and VGG16-UNet in terms of accuracy–efficiency trade-
offs suitable for running on modest hardware, and sep-
arates the contribution of pretrained encoders and skip-
connected decoders. Third, it constructs and employs a
validation scheme involving pixel-level confusion-matrix
analysis and overlap measures under illumination varia-
tion that yields interpretable evidence of robustness for
operational deployment. The remainder of the paper ex-
plains the dataset, annotation scheme, and model parame-
ters; presents quantitative and qualitative results on data
sizes and lighting; connects the findings to previous work
and discusses applications; and concludes with limita-
tions, particularly the current binary scope. The main
objective of this study is to develop and validate a deep
learning-based corrosion area detection system on metal
surfaces through binary segmentation, and to compare
UNet, VGG16-RF, and VGG16-UNet at various data scales
and illuminations.

2. Experimental/theoretical method
Details materials, equipment, and experimental pro-

cedure, or details theoretical or calculation procedure.
The experimental section shall provide the necessary in-
formation for reproducing the results.

2.1. Types of Corrosion

It is critical to understand the type of corrosion since
it is required to locate testing materials for studies. Ac-
cording to [23], some examples of corrosion types that
can occur on iron plates include:
• Uniform Corrosion

Uniform corrosion refers to corrosion that hap-
pens uniformly across a material’s whole surface. It
produces a constant and equitable reduction in thick-
ness. This type of corrosion is more predictable and
easier to handle than localized corrosion since the mate-
rial deterioration rate can be anticipated more precisely.
Uniform corrosion happens when a corrosive agent is
evenly dispersed and affects the full surface area of the
material exposed to it.

• Pitting Corrosion
Pitting corrosion is a type of corrosion that causes

microscopic, often undetectable pits or holes on a ma-
terial’s surface. This sort of corrosion is very harmful
since it can cause extensive structural damage while
only impacting a small region. Pitting corrosion is com-
monly seen in metals, particularly stainless steel and
aluminum, and is frequently induced by exposure to
chloride ions or other aggressive chemicals. Pits can
penetrate deep into the material, resulting in probable
failure without significant material loss.

• Stress Corrosion Cracking
Stress Corrosion Cracking (SCC) is a type of lo-

calized corrosion caused by the combination of tensile
stress and a corrosive environment. It causes the cre-
ation of cracks in materials, particularly metals, which
can spread quickly, resulting in unexpected and catas-
trophic failure. SCC is sometimes difficult to identify
because it can develop beneath surface coatings and in
locations that are inaccessible for inspection. The pres-
ence of residual or applied tensile strains, the kind of
material, and the unique chemical environment are all
factors that contribute to SCC. Chlorides, caustic solu-
tions, and hydrogen sulfide are common environmental
causes of SCC.

• Erosion Corrosion
Erosion corrosion is a type of corrosion that re-

sults from the combined effects of mechanical wear and
chemical attack on a material’s surface. This process is
most common in areas with high fluid flow rates, such
as pipelines, pumps, and turbines. The fast-moving
fluid dissolves the material’s protective oxide coating,
exposing the naked metal to the corrosive atmosphere.
This leads to accelerated material loss, which can cause
substantial damage over time. Some example images of
the above corrosion are shown in Figure 1 below.
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(a) (b)

(c) (d)

Figure 1. (a) Uniform Corrosion, (b) Pitting Corrosion, (c)
Stress Corrosion Cracking, (d) Erosion Corrosion.

The images utilized are 600 images, 512×512-
pixel images labeled inside the corrosion area. They
were selected to represent four main types of corrosion,
i.e., uniform corrosion (240 images; 40%), pitting corro-
sion (180 images; 30%), stress corrosion cracking (SCC)
(90 images; 15%), and erosion corrosion (90 images;
15%). This work depicts the kind of prevalence most
likely in industrial equipment, where pitting corrosion
and uniform corrosion are most common compared to
SCC and erosion corrosion. In every type, we have in-
cluded changes in material, roughness of the surface,
condition of coating/paint, light, and image takeout
distance.

2.2. Preparing the Dataset

Figure 2. Dataset File for Input Image Before Labeling
The dataset of corrosion photos was created by an-

notating each pixel. Initially, the dataset was divided into
folders, with a total of 600 photos. The acquired data
included photos of corroded iron. Some iron corrosion
datasets were labeled as shown in Figure 2, with a size of
512x512-pixel and taken using a camera under various
lighting conditions. To build the defect identification sys-
tem, the image dataset was separated into 200, 400, and
600 training datasets, with 20% of each being used for
testing. The acquired dataset was then carefully selected
to achieve the best detection results. Images having iden-
tical patterns, supplied from many samples of varied sizes,
underwent traditnal preprocessing, which included resiz-
ing to standardized input in accordance with the specified

architecture. The required image input size was 512 x 512
pixels, which was collected by capturing and download-
ing metal photographs with corrosion on the internet. As
a result, the dataset developed by the researcher is not
publicly available, and the dataset utilized is solely the
researcher’s creation.

To discriminate between rust and background, area
segmentation was performed with LabelMe, an Anaconda
software tool. The images that had been modified to the
input architecture were then labeled for each pixel based
on the label class. The technique typically employs two
labels, rust and background, to establish the label class
for each pixel. Figure 3 shows that the backdrop class is
black, and the rust is red. To make segmentation easier at
this step, polygon tools might be employed to follow the
contour of the corrosion.

Figure 3. Labeling Input Dataset Using LabelMe

2.3. Selection of Specific Architecture

• UNet

UNet is a commonly used semantic segmentation
architecture, selected in this study for its simplicity and
popularity . The UNet design is a fully connected net-
work with encoders and decoders. Convolutional layers
use filters to extract low and high-dimensional charac-
teristics through iterative training. This architecture pri-
marily encodes images using a CNN for down-sampling.
UNet concatenates the down-sampling and up-sampling
parts to decode a segmentation mask [24]. Figure 4
below, adapted from previous research [2] by the same
researcher, illustrates the VGG16 scheme.

Figure 4. Unet Architecture Model

• VGG16-RandomForest
VGG is a pre-trained model and has 138 million

parameters. VGG trains on over 14 million images with
up to 1000 classes and learns to detect common features
from the images.
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Figure 5. VGG16-RandomForest Architecture Model

There are 16 and 19 weight layers in the network for
VGG-16 and VGG-19, respectively. This research uses
VGG-16 as a base model and modifies it to create dif-
ferent networks. When VGG16 reaches a certain test
accuracy on ImageNet, and therefore high performance,
the pre-trained weights are retained, and only three
Fully Connected Layers or Dense Layers are modified
to fine-tune the neural network. In this work, the fea-
tures extracted from VGG16 are provided as input to RF
to reduce the training time and improve classification
accuracy. Figure 5 explains the VGG16 schematic. All
resized images in this model are 512x512-pixel.

• VGG16-Unet
VGG16-Unet is a variation of the UNet architec-

ture that uses the VGG16 network as an encoder. The
VGG16 network, notable for its deep convolutional lay-
ers, extracts high-level information from input images.
In the VGG16-UNet design, the encoder (VGG16) is
followed by a decoder network that reconstructs the
segmented image using these high-level features. This
combination takes advantage of VGG16’s robust feature
extraction capabilities and UNet’s efficient segmentation
skills, making it ideal for jobs such as biomedical picture
segmentation. Figure 6 below, adapted from previous
research [25] by the same researcher, illustrates the
VGG16 scheme.

Figure 6. VGG16-UNet Architecture Model

2.4. Hyperparameter Tuning

Hyperparameter tuning is the process of tweaking
the hyperparameters of a machine learning model to in-
crease its performance. Unlike model parameters, which
are learned during training, hyperparameters are selected
before training and have a substantial impact on the
model’s capacity to learn effectively. Common hyperpa-
rameters include learning rate, batch size, epoch count,
and architecture-specific settings like the number of layers
or units in neural networks.

Based on Table 1, Adam is an optimization algorithm
that combines the advantages of two other optimization
algorithms: AdaGrad and RMSProp. Adam maintains mo-
mentum calculations and adaptive learning rates for each
parameter, which helps the model converge faster and
more efficiently. The choice of a learning rate of 0.001 is
used for the stability of the training process, and with a
value that is not too large, the risk of overshooting around
the minimum is reduced, allowing the model to approach
the minimum loss more stably. Increasing the number of
epochs during deep learning model training can bring sig-
nificant benefits in terms of convergence, model training,
generalization ability, and validation metric monitoring.
However, we must be cautious when increasing the num-
ber of epochs, as the model may begin to overfit if training
continues for too long. This can be monitored through
techniques such as early stopping, regularization, and
cross-validation, which ensure that increasing the num-
ber of epochs yields optimal results without the risk of
overfitting on the training data.

Table 1. Hyperparameter Tuning

No Hyperparameter Parameter Type

1. Optimizer Adam Optimizer (Adaptive
Moment Estimation)

2. Learning Rate 0.001

3. Epoch 30, 50, 100

4. Batch Size 14

5. Loss Function Parameters Smooth 100

6. Early Stopping Parameters Patience 3
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Batch size is a critically important parameter that influ-
ences a wide range of aspects in the deep learning model
training process. There is no one-size-fits-all solution;
the optimal batch size will depend on several factors, in-
cluding dataset size, hardware memory capacity, and the
model’s specific objectives. In this study, a batch size of 14
was required to obtain a good model for the segmentation
process.

2.5. Model Training and Validation

To train the network, input images and segmentation
masks or ground truth are fed into deep learning-based
implementations of the UNet, VGG16-RandomForest, and
VGG16-UNet architectures. A total of 200, 400, and 600
photos, representing 20% of the training dataset, were set
aside for testing and validation, using segmented masks de-
veloped on Jupiter Notebook. The number of epochs was
30, 50, and 100. A batch separates each parameter, deter-
mining the number of points that must be processed before
the model’s internal parameters are updated. Epochs are
used to determine how many times the learning algorithm
will run throughout the training. The model was trained
on data for approximately 14 hours, achieving consistent
accuracy across prediction and validation. The model was
successfully trained, with 92.46% binary training accuracy,
7.68% training loss, 98.96% binary validation accuracy,
and 1.04% validation loss. The trained model was eval-
uated on a 10% validation dataset, and the prediction
covered the corroded portion of the picture data; when
it comes to model performance, the loss function is key.
A universal loss function cannot be used for complex ob-
jectives such as segmentation. Thus, binary cross-entropy
is the optimal technique for pixel-level classification is-
sues [26, 27]. Data testing and validation are shown in
Figure 7, as performed in previous studies [25] by the
same researcher.

Figure 7. Examples of Validation Data Results

2.6. Confusion Matrix

The confusion matrix calculated in segmentation dif-
fers slightly from that calculated in object classification
segmentation, in that the confusion matrix is calculated for
pixels that have been detected. Corrosion will be included
in the calculation of true positive corrosion, as shown in
Figure 8 below is adapted from previous research [25] by
the same researchers.

Figure 8. Confusion Matrix

3. Results and Discussion
3.1. Training Methods VGG16-UNet, VGG6-
RandomForest, UNet with Different Hyperparameters

Table 2 below shows the training results for hyper-
parameter variations to determine the best parameters to
use and to enable use on laptops/PCs with limited spec-
ifications, and reduce overfitting in a model generated
from the training that has been carried out. Table 2 be-
low shows the results of hyperparameter tuning with a
comparison of batch sizes 12 and 14 using 30 epochs
and the same dataset size of 200 images and 600 images.
For the 200-image dataset, 30 epochs, and batch size 14,
the VGG16-UNet method achieved an accuracy of 92%,
the VGG16-RandomForest achieved an accuracy of 90%,
and UNet achieved an accuracy of 89.81%. Then, on the
200-image dataset, 30 epochs, and batch size 12 for the
VGG16-UNet method, the accuracy was 89.59%, VGG16-
RandomForest achieved an accuracy of 89.03%, and UNet
achieved an accuracy of 88.13%. In addition to accuracy,
Table 22 below also concludes that hyperparameter tuning
can be used to optimize training so that it can be per-
formed on laptops with limited specifications and reduce
model training time, so that it does not take too long.

Table 2 below aggregates the performance of three
architectures, VGG16-UNet, VGG16-RF, and UNet, trained
on 30 epochs with Adam on some data size and batch
size cases; on 200 images and batch size 14, VGG16-
UNet performed 92% accuracy (loss 8%, ValAcc 85.66%,
Valloss 14.29%) and outperformed VGG16-RF (90%, 10%,
82.67%, 17%) and UNet (89.81%, 10.19%, 77.72%,
22.48%), a pattern that persisted when the batch size
was reduced to 12 (VGG16-UNet 89.59% against VGG16-
RF 89.03% vs UNet 88.13%); when scaled to data of
600 images (batch 12), the VGG16-UNet accuracy in-
creased to 93.67–95.50% with loss 6.33–4.50% and ValAcc

82.52–84.66% (Valloss 17.36–15.22%), demonstrating the
benefit of using more data to generalization, while com-
putational cost also increased from around 3 hours 21–28
minutes (200 images) to ±11 hours 15–21 minutes (600
images) on an Intel Core i5 gen-8 CPU with 63–88% uti-
lization; Generally, VGG16-UNet performed best through-
out, VGG16-RF was worse but relatively light, UNet was
worst, and batch size change only slightly affected com-
pared to data scale effect.
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Table 2. Training Table for VGG16-UNet, VGG6-RandomForest, and UNet Methods with Different Hyperparameters

Metode
VGG16-

UNet
VGG16-

RF UNet VGG16-
UNet

VGG16-
RF UNet VGG16-

UNet
VGG16-

UNet

Optimizer Adam Adam Adam Adam Adam Adam Adam Adam
Accuracy 92% 90% 89.81% 89.59% 89.03% 88.13% 93.67% 95.5%

Loss 8% 10% 10.19% 10.41% 10.98% 11.76% 6.33% 4.5%
Val_Acc 85.66% 82.67% 77.72% 84.16% 84.10% 76.71% 82.52% 84.66%
Val_loss 14.29% 17% 22.48% 15% 15.56% 23.38% 17.36% 15.22%

Batch Size 14 14 14 12 12 12 12 14
Epoch 30 30 30 30 30 30 30 30
Image

Dataset 200 200 200 200 200 200 600 600

Total
training

time
03:31:44 03:27:06 03:25:31 03:28:29 03:24:23 03:21:31 11:15:42 11:20:55

Performance
CPU

(Intel(R) core (TM)
i5

8th)

73%-80% 73%-80% 73%-80% 63%-70% 63%-70% 63%-70% 68-78% 76-88%

Quantitatively, VGG16–UNet outperformed UNet
and VGG16–RF in all cases, with test accuracy being
93–95% when the data size was increased to 600 images,
while increasing the number of epochs reduced loss and
enhanced boundary clearness without a huge increase in
training time. This is consistent with early research that
pretrained encoders combined with skip connections have
a pattern of improving boundary precision in corrosion
images [24]. Relative to the RustSEG, which achieved
<90% performance because of scene diversity and label
quality [21,28], our performance is better on this dataset,
but cross-study comparison has to be read with caution
because tasks, data curation, and evaluation protocols

are different. One other UNet paper on STCR also listed
>90% on its outcome [22], our finding using VGG16–UNet
reinforces that using a pretrained encoder does, in fact,
provide a real benefit on small–medium sized datasets.
Our strongest setup (VGG16–UNet) beats an unadorned
UNet baseline on our dataset, as found previously that pre-
trained encoders combined with skip connections enhance
boundary restoration [29,30].

3.2. Results of Learning & Testing using the UNet,
VGG16-RandomForest, and VGG16-UNet methods to ob-
tain the best method

Table 3. Overall results of learning & testing using the UNet, VGG16-RandomForest, and VGG16-UNet methods with a dataset
of 200 images

Result Parameter
VGG16-UNet
200 images
30 Epoch

VGG16-RF
200 images
30 Epoch

UNet
200 images
30 Epoch

Train Accuracy 0.9246 0.900 0.8915

Train Loss 0.0768 0.19 0.1091

Train Accuracy
Validation

0.8461 0.81 0.8299

Train Loss
Validation

0.1555 0.1963 0.1709

K-Fold Cross
Validation Acc

0.87 0.8514 0.83

K-Fold Cross
Validation Loss

0.47961 0.4768 0.4513

Test Accuracy 0.87 0.8603 0.83

Test Loss 0.42 0.3606 0.48
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Table 4. Segmentation Result

Description
VGG16-UNet

200 Images 30 Epoch
VGG16-RF

200 Images 30 Epoch
UNet

200 Images 30 Epoch

Input Image

Prediction

Overlay

Table 3 above shows the overall results of learning
and testing that have been carried out using the UNet,
VGG16-RandomForest, and VGG16-UNet methods using
200 images for training and 25 images for testing, totaling
225 different images. However, during training and test-
ing, each method must use the same images during the
process to determine which method is the best and most
accurate for use as a corrosion detection method. From the
quantitative results shown in Table 3 above, it can be con-
cluded that VGG16-UNet outperforms the other methods,
with VGG16-UNet achieving the highest training accuracy
of 92.46%. After cross-validation using the K-Fold cross-
validation, VGG16-UNet also achieved the best accuracy
of 87%. The purpose of cross-validation is to evaluate the
performance of machine learning models more accurately.
After the cross-validation process, a testing process was
also conducted, and the VGG16-UNet method was found
to be more accurate than other methods, with a testing
accuracy of 87%. It can be concluded that the best method
is the double architecture using the VGG16-UNet method.
In addition to the quantitative results, the segmentation
results using the three methods will also be shown in Table
4 below.

Table 4 below shows the corrosion segmentation
results obtained using the UNet, VGG16-RandomForest,
and VGG16-UNet methods, using 200 images for training
and 25 images. The segmentation results above indicate

that the UNet method does not effectively segment all the
corrosion effectively. The VGG16-RandomForest method
can perform segmentation effectively, but still has seg-
mentation errors. The VGG16-UNet method produces
segmentation that is nearly perfect.

3.3. Overall Results of Learning & Testing using the
VGG16-UNet method 400-Images Dataset

In this step, the training image dataset used con-
sisted of 400 images, and the testing image dataset used
consisted of 50 images. The dataset was trained using a
double architecture method, namely VGG16-UNet, with
the epoch increased to 50, and 100. The training results
can be seen in Table 5, which shows the highest accuracy
value of 95% and a loss of 4.95%. In this case, the ac-
curacy value obtained is already over 90%. To test the
success of the training, evaluate the trained network on
the test set. After increasing the epoch by 50, the training
results can be seen in Table 5, with the highest accuracy
value of 96.4% and a loss of 3.62%. In this case, the accu-
racy value obtained is more than 90%. To test the success
of the training, test the neural network on the held-out
split. Then, after increasing the epoch by 100, the training
results can be seen in Table 5, with the highest accuracy
value of 98.03% and a loss of 1.97%. In this case, the
accuracy value obtained is more than 90%. To test the
success of the training, evaluate the trained network on
the test set.
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Table 5. Overall Results of Training and Testing VGG16-UNet 400-Image Dataset

Result Parameter
VGG16-UNet
400 Images
30 Epoch

VGG16-UNet
400 Images
50 Epoch

VGG16-UNet
400 Images
100 Epoch

Train Accuracy 0.95 0.964 0.9803

Train Loss 0.0495 0.0364 0.0197

Train Accuracy
Validation

0.82 0.83 0.83

Train Loss
Validation

0.18 0.17 0.16

K-Fold Cross
Validation Acc

0.93 0.93 0.94

K-Fold Cross
Validation Loss

0.31 0.362 0.35

Test Accuracy 0.93 0.9348 0.94

Test Loss 0.31 0.3331 0.37

Table 6. Segmentation Result

Description
VGG16-UNet

200 Images 30 Epoch
VGG16-RF

200 Images 30 Epoch
UNet

200 Images 30 Epoch

Input Image

Prediction

Overlay

From the quantitative results obtained with the same
dataset but with an increased number of epochs, it was
found that 100 epochs yielded the best results, with a
training accuracy of 98.03% and a testing accuracy of
94%. Table 6 below shows that VGG16-UNet using the
400-image dataset and 100 epochs obtained better results
because the training accuracy was the highest at 98.03%,
which is in line with the theory that the better the training
accuracy, the better the segmentation results. The table

above shows the effect of the number of epochs on the
segmentation output: the first row is the input image, the
second row is the binary prediction mask (white = rust),
and the third row is the overlay mask on the original im-
age. At 30 epochs, the prediction is still fragmented with a
significant false positive in the dark background area, and
the rust contours on the pipe lip are not yet merged; this
can be seen from the white islands that do not follow the
geometry of the rust. At 50 epochs, the continuity of the
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rusted area increases, leakage to the background begins
to decrease, and the intermaterial boundaries are more
consistent, although some thin parts at the edge of the rust
are still disconnected (local under-segmentation). At 100
epochs, the rust contours become most complete and the
thin texture on the inner surface of the pipe is captured
more (increased recall); however, there is a slight expan-
sion into clean areas in some parts (minor false positives),
indicating the onset of overfitting, so model selection must

still refer to validation metrics (IoU/Dice/precision-recall)
and not just visuals. Overall, this visual trend supports the
interpretation that adding epochs improves convergence
and boundary accuracy, with a saturation point that needs
to be controlled through early stopping and validation-
based threshold selection.

3.4. Overall Results of Learning & Testing using the
VGG16-UNet method 600 Images Dataset

Table 7. Overall Results of Training and Testing VGG16-UNet 600 Image Dataset

Result Parameter
VGG16-UNet
600 Images
30 Epoch

VGG16-UNet
600 Images
50 Epoch

VGG16-UNet
600 Images
100 Epoch

Train Accuracy 0.955 0.9614 0.9890

Train Loss 0.045 0.0386 0.0111

Train Accuracy
Validation

0.8172 0.82 0.8244

Train Loss
Validation

0.1812 0.18 0.1739

K-Fold Cross
Validation Acc

0.9308 0.9456 0.95

K-Fold Cross
Validation Loss

0.3374 0.1344 0.1

Test Accuracy 0.9268 0.94 0.95

Test Loss 0.3037 0.16 0.1

Table 8. Segmentation Result

Description
VGG16-UNet

200 Images 30 Epoch
VGG16-RF

200 Images 30 Epoch
UNet

200 Images 30 Epoch

Input Image

Prediction

Overlay
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During this stage, the model was trained on 600
images and evaluated on 75 test images using the VGG16-
UNet architecture. The overall results are shown in Table 7.
Results of training grew more accurate with rising epochs:
95.55% (30 epochs), 96.14% (50 epochs), up to 98.90%
(100 epochs). Testing showed maximum accuracy at 95%
when using 100 epochs. Unlike other studies, where 20%
of the test data was used, this one used only 12.5%. The
results indicate that using 100 epochs provides the best
results, as hypothesized by the idea that high training ac-
curacy will yield better segmentation, as shown in Table
8.

The following figure shows the result of VGG16-UNet
trained on 600 images at 30, 50, and 100 epochs; the first
row in each column is the input image, the second row is
the binary prediction mask (white = rust), and the third
row is the overlay mask on the original image. At 30
epochs, segmentation is still disjoint, and there is leak-
age to the background so that the rust ring on the pipe
lip has not yet appeared (lots of local false positives and
false negatives). At 50 epochs, the rust area more reliably
joins together to form an inner ring, leakage into the back-
ground becomes less, and the border is neater, indicating a
superior precision–recall trade-off compared to 30 epochs.
At 100 epochs, the rust coverage is maximally thorough,
and fine details on the inner surface become more visible
(recall improves).

3.5. Validating the Model Obtained After Learning

Testing of the VGG16-UNet model architecture that
has been trained on metal corrosion data, with visual-
izations illustrated under various surface conditions and
materials. The batch size used was only 14. To measure
the success rate of visualizations from semantic segmenta-
tion on small objects like thin “rust,” which is not as accu-
rate as the “background” that dominates the frame. The
number of overlaps per class can be measured using the
intersection-over-union (IoU) metric, also known as the
Jaccard index. The Jaccard function is used to calculate
image intersections, which can be binary images, labeled
images, or categorized images. The Jaccard similarity co-
efficient is returned as a numerical scalar or numerical
vector with values in the range [0, 1]. A similarity of 1
means that the segmentation in the two images is a perfect
match. If the input array is: image labels, the similarity is
a vector, where the first coefficient is the Jaccard index for
label 1, the second coefficient is the Jaccard index for label
2, and so on. Test results for the pre-trained VGG16-UNet
model. As shown in Figure 9, the image with a brightness
of 150 lux will be tested.

Figure 9. Comparison between Ground Truth and Predic-
tion at brightness 150 lux

This shows the comparison between the ground truth
and the prediction randomly selected by the system, which
is able to segment the location of corrosion defects by seg-
menting the corrosion defect area using white color. This
indicates that the model has been able to learn the defect
patterns according to the data provided. As can be seen in
Figure 10, this image will be tested with a brightness of
100 lux.

Figure 10. Comparison between Ground Truth and Predic-
tion at brightness 100 lux

This shows the comparison between the ground truth
and the prediction randomly selected by the system, which
is able to segment the location of corrosion defects by seg-
menting the corrosion defect area using white color. This
indicates that the model has been able to learn the defect
patterns according to the data provided. As can be seen in
Figure 11, this image will be tested with a brightness of
50 lux.

Figure 11. Comparison between Ground Truth and Predic-
tion at brightness 50 lux

This shows that the comparison between ground
truth and predictions randomly selected by the system is
capable of segmenting corrosion defect locations by seg-
menting the corrosion defect area using white color. This
indicates that the model has been able to learn the defect
patterns according to the data provided. From the three
simulation experiments above in various lighting condi-
tions, it can be seen that lighting also affects the corrosion
segmentation process.
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3.6. System validation to detect 4 types of corrosion
(Uniform Corrosion, Pitting Corrosion, Stress Corrosion
Cracking, Erosion Corrosion)

This subsection also presents the results of segmen-
tation from model testing on various types of corrosion
found in materials. The types of corrosion that will be
tested are pitting corrosion, uniform corrosion, stress cor-
rosion cracking, and erosion corrosion. Figure 12 below
shows the segmentation results for pitting corrosion.

Figure 12. shows segmentation results to evaluate pitting
corrosion

Figure 12 shows that the model trained using the
VGG16-UNet method can perform segmentation well on
pitting corrosion occurring on iron plates. Figure 13 shows
the segmentation results for evaluating Uniform Corro-
sion.

Figure 13. shows segmentation results to evaluate uniform
corrosion

Figure 13 shows that the model trained using the
VGG16-UNet method can perform segmentation well on
stress corrosion cracking that occurs on iron plates. Figure
14 shows the segmentation results for evaluating erosion
corrosion.

Figure 14. shows segmentation results to evaluate Stress
Corrosion Cracking

Figure 14 shows that the model trained using the
VGG16-UNet method can perform segmentation well on

stress corrosion cracking that occurs on iron plates. Figure
15 shows the segmentation results for evaluating erosion
corrosion.

Figure 15. shows the segmentation results for evaluating
erosion corrosion

Figure 15 shows that the model trained using the
VGG16-UNet method can perform segmentation well on
erosion corrosion occurring on iron pipes.

3.7. Confusion Matrix Validation Results

Figure 9 shows the results from training a corrosion
detection model using the VGG16-UNet architecture. The
results of the Confusion Matrix are shown in Table 9 be-
low. This model combines VGG16 for feature extraction
and UNet for precise pixel-level segmentation, making it
highly suitable for identifying rust on metal surfaces. The
visual outputs show strong agreement between ground
truth and predictions, with clear and accurate detection of
rust areas. Due to its semantic segmentation problem, it
is assessed pixel-wise with corrosion as the positive class;
hence, reported accuracy, precision, and recall are the ratio
of correctly labeled pixels, and IoU/Jaccard and Dice are
spatial overlap measures between the prediction mask and
ground truth [21,24,26]. At 150 lux, the best-performing
model exhibited high recall (the clean metal was not com-
monly misclassified) and high precision (corrosion was
not commonly missed), and the same was true at 100 and
50 lux, demonstrating immunity to the lighting variations
typical in field acquisition. After viewing the segmentation
results in Figure 9, the system then calculates the confu-
sion matrix. The confusion matrix calculation is shown in
Table 9 below.

Table 9. Confusion Matrix Results at 150 lux brightness

Formula Result

Accuracy
T P + T N

T P + F P + F N + T N
0.9896

Precision
T P

T P + F P
0.9934

Recall
T P

T P + F N
0.994
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Table 10. Results of detection validation conducted at PT STP.

Input Image
Prediction Image

System

1

detected corrosion

2

detected corrosion

3

detected corrosion

4

No corrosion detected

The model achieved high performance with an accu-
racy of 98.96%, precision of 99.34%, and recall of 99.4%.
This indicates the model is both reliable and sensitive,
correctly identifying nearly all rust areas while avoiding
false detections. The use of skip connections in UNet
helps preserve fine details, allowing the model to detect
even small corrosion spots. In practical applications, this
model can support real-time rust detection in pipelines,
machines, or structures using handheld devices or drones.
Its efficiency also allows deployment on lower-powered
hardware. Compared to traditional approaches with color
thresholding or hand-tuned features sensitive to lighting,
background, and surface and requiring retuning at each

location, the DL approach with pretrained encoders + skip
connections achieves improved cross-scene portability and
more robust recovery of fine-scale structure (as seen in
overlays and overlap measures) [19,24,31,32]; results are
consistent with modern DL critique reports and standards
on industrial images.

The system validation conducted at PT STP, as shown
in Table 10, successfully proved that the corrosion detec-
tion system is effective in identifying various types of cor-
rosion, including subtle corrosion that is difficult to detect
with the naked eye, and can distinguish between corrosion
and visual anomalies such as scratches or marks. The sys-
tem is also highly sensitive to complex damage patterns,
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such as fine cracks. In images that were not corroded, the
system never reported false positives, which is a measure
of the balance between sensitivity and accuracy. Overall,
the system proved to be consistent, reliable, and accurate
under varying surface conditions, and has great potential
for application in automated industrial inspection, aiming
to improve the efficiency and speed of damage detection.
Lines 1-3 indicate true positives, meaning that corrosion
was detected, while line 4 indicates a true negative, which
means that the metal was not corroded. Additional test-
ing with larger and more diverse datasets may improve
the system’s capabilities, including in the classification
of corrosion severity. The generated pixel masks can be
compressed into area/coverage indicators, linked to work
orders, and tracked between visits to facilitate RCM/RBI.
The efficient CPU computational profile and stability at 50,
100, and 150 lux open up opportunities for edge deploy-
ment (laptop/UAV) in digital inspection workflows [7–9].

4. Conclusions
This research demonstrates the successful develop-

ment of an automated corrosion detection system using
deep learning-based semantic segmentation, specifically
leveraging the VGG16-UNet architecture. By training and
validating models across datasets of 200, 400, and 600
images with varying epochs, the VGG16-UNet consistently
outperformed UNet and VGG16-RandomForest in both
training and testing accuracy. The highest performance
was achieved with a dataset of 600 images and 100 epochs,
reaching a training accuracy of 98.90% and a test accuracy
of 95%, as well as a precision and recall exceeding 99%.
These results demonstrate the model’s strong generaliza-
tion capability and robustness under varying lighting con-
ditions and surface characteristics. The system was further
validated with real-world industrial data, proving effective
in detecting various types of corrosion while minimizing
false positives. These findings highlight the potential of
integrating VGG16-UNet into real-time industrial applica-
tions, offering a reliable, efficient, and accurate alternative
to manual corrosion inspection processes.
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