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Abstract Eugenol is the main component of clove oil, while the main impuritis of it is β-caryophyllene. Eugenol with a purity 
higher than 98% has a higher price than low purity eugenol. Thus, further eugenol purification process is needed. Common 
purification processes are extraction and distillation. In the design and simulation of the distillation process it requires a 
knowledge of Vapor-Liquid Equilibrium (VLE) data from a mixture of components to be separated (eugenol and ethanol) as 
the result of extraction process. In this work, the experimental VLE data were measured for binary mixtures of ethanol(1) + 
eugenol(2) at 400 and 760 mmHg. The apparatus used for this experiment is an othmer still equipped with a vacuum pump and 
a manometer. The experiments were performed to obtain equilibrium data (T), component concentrations in liquid phase (x), 
and in vapor phase (y). The binary VLE data were correlated with the Wilson, NRTL and UNIQUAC models to obtain the 
binary parameters. The reliability of these models were tested by comparing with experimental results using Root Mean Square 
Deviation (RMSD). For the system and the operation condition studied, the Wilson, NRTL and UNIQUAC models suited well 
and give satisfactory results based on the RMSD values.  
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I.  INTRODUCTION1 
love oil is a kind of essential oil that produced in 
Indonesia. Eugenol is the main compound of the clove 

oil, it is valuable and widely used in flavor and fragrance 
industry due to its distinctive scent. In commercial 
production by farmer, the content of eugenol in clove oil is 
approximately 70-90 % [1], [2]. Higher purity eugenol 
more than 98% is more expensive, the price is about three 
times higher rather than low purity eugenol with 70 % 
purity [3]. In order to obtain eugenol with desired purity, 
extraction and distillation steps (vacuum distillation was 
preferred) should be included in the production process. In 
the extraction process, alcohol compounds especially 
ethanol is commonly used as solvent to separate eugenol 
from their impurities [4]. Eugenol purification from ethanol 
as the result of the extraction process through vacuum 
distillation is needed to avoid eugenol degradation. In the 
design and simulatin of the purification of ethanol and 
eugenol mixture, the VLE data at low pressures were 
necessary. Some VLE data for the binary mixture at 
vacuum condition were already reported [5], [6]. 
Unfortunately, as our knowledge, the VLE data for ethanol 
and eugenol were not available in literature at the moment.  

In order to obtain the data for engineering and industrial 
applications, the isobaric VLE data for ethanol and eugenol 
at low pressure 400 mmHg and atmospheric pressure 760 
mmHg were conducted.  
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These binary VLE data from experimental results were 
correlated with the Wilson [7], the Non-random Two-
Liquid (NRTL) [8], and the Universal Quasichemical 
Activity Coefficient (UNIQUAC) [9] equations to obtain 
the binary interaction parameters for each models and its 
pressures. 

II. METHOD 
A. Materials 

The materials used were eugenol and ethanol supplied by 
Merck Co. and PT. Indesso Niagatama, respectively. All 
the chemicals were used without further purification and 
their description appears in Table 1. 

TABLE 1. 
MATERIAL DESCRIPTION 

Chemicals Purity* Source Purification Method 

Eugenol 99.9 % PT. Indesso Niagatama None 
Ethanol 99.8 % Merck Co None 

*Mol fraction purity 

B.  Apparatus 
 In this work, the apparatus of  Vapor-Liquid Equilibrium 

data at constant pressure were measured using an Othmer 
still. It was composed of a boiler cell, a condenser, two 
sample ports (for the liquid and vapor phases), a vacuum 
pump, heater wire, a magnetic stirrer, thermocouple and 
temperature sensors. The pressure was controlled using a 
valve and was kept constant through a desire pressure line 
with a manometer that connected to stabilizer tank. The 
experimental apparatus were shown in Figure 1. 

C 
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Figure 1. Schematic diagram of the apparatus: (T) thermocouple, (R) 

stabilizer tank, (C) condenser, (W 1-2) cooling water inlet and outlet, (F) 
feed inlet, (H) regulator voltage, (P) vacuum pump, (V 1-2) vacuum pump 

valve, (V) vapor phase sample port, (L) liquid phase sample port, (B) 
boiler cell, (UP) manometer. 

C. Procedure 
To obtain the phase equilibrium data, the liquid binary 

mixtures with known composition were introduced into  the 
boiler cell. The total volume occupied by the liquid solution 
in the boiler cell was around 500 cm3. The vacuum pump 
was started  to reach the desired pressure then the sample 
was heated by the heating wire and both vapor and liquid 

phases were continuously circulating in the still to provide 
intimate contact of the phases. The equilibrium state was 
reached when the temperature remain constant for about 15 
minutes and then both liquid and vapor phases were 
sampled. To change the mixture composition, the different 
amounts of ethanol or eugenol were introduced into the 
still, the mixture was stirred and the procedure was 
repeated. After that, the liquid and vapor phases were 
analyzed by measuring refractive index using an Abbe-type 
Refractometer by ATAGO NAR-1T [10], with an 
uncertainty of measurement ± 0,0002. A calibration curve 
of the refractive index was obtained using the binary 
systems. 

III. RESULTS AND DISCUSSION 
A. Validation of Experiment 

In order to validate the reliability and the accuracy of the 
apparatus used in this work, the vapor pressures of pure 
ethanol at various composition were measured and 
compared with the reported data calculated with the 
Antoine equation. The deviations of the experimental and 
reported data were calculated using Eqs. 1 and 2 [11].  

𝐴𝐴𝐴𝐴 =  [𝑇𝑇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒𝑒𝑒𝑒𝑒) −  𝑇𝑇𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙)] (1) 

𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴 = ∑ �((𝑇𝑇𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒𝑒𝑒𝑒𝑒)− 𝑇𝑇𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠(𝑒𝑒𝑒𝑒𝑒𝑒))2

𝑛𝑛
�𝑛𝑛

𝑖𝑖=1

0.5
 (2) 

where superscripts lit and exp represent reported values and 
the experimental data, respectively.  n is the number of data 
points. The results are presented in Figure 2. It shows that 
the measured data agree with the literature data. The Root 
Mean Square Deviation (RMSD) of ethanol with lit a and b 
[12], [13] are 0.880 and 0.633, repectively. Thus, these 
values indicate that the measurements applied in this 
apparatus are reliable. 
 

 
Figure 2.  Vapor pressures of pure ethanol compared with reported data. 
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TABLE 2.   
EXPERIMENTAL VLE DATA AND  ACTIVITY COEFFICIENTS OF SYSTEM ETHANOL(1) + EUGENOL(2) AT 400 AND 760 MMHG 

P = 400 mmHg  P = 760 mmHg 

T (K) x1 y1 γ1  γ2  T (K) x1 y1 γ1  γ2 

354.5 1.000 1.000 1.00 

 

 339.8 1.000 1.000 1.00  

357.6 0.902 0.980 0.96 63.11  339.9 0.902 0.980 1.08 111.32 

360.0 0.762 0.979 1.04 23.05  340.8 0.760 0.979 1.24 43.37 

369.2 0.558 0.979 1.02 7.89  342.9 0.623 0.979 1.38 24.67 

373.6 0.418 0.979 1.17 4.93  349.0 0.474 0.979 1.41 12.72 

380.6 0.321 0.978 1.20 3.12  359.8 0.321 0.978 1.37 5.66 

414.8 0.176 0.972 0.78 0.81  377.1 0.217 0.977 1.10 2.27 

440.3 0.131 0.949 0.54 0.57  420.8 0.157 0.975 0.41 0.37 

522.6 0.000 0.000 

 

1.00  434.3 0.129 0.973 0.36 0.24 

 

    

 505.4 0.000 0.000   1.00 

B. Experimental Data and Thermodynamic Consistency. 
The experimental vapor liquid equilibrium data for the 

binary system ethanol(1) + eugenol(2) at pressures 400 and 
760 mmHg are shown in Table 2. The activity coefficients 
γi in Table 2 were calculated by Eq. 3 [13]:  

γi = P yi 
Pi
sxi

 (3) 

Since the experiments were conducted at such low 
pressure, the vapor phase was assumed as the ideal gas. In 
order to ensure the reliability of the VLE experimental data, 
the thermodynamics consistency was tested by a 
semiempirical method suggested by Herington [14]. The 
values of D and J were calculated as 

𝐴𝐴 = 100 
�∫ 𝑙𝑙𝑥𝑥=1
𝑥𝑥=2 𝑛𝑛 �γ1γ1

�𝑑𝑑𝑒𝑒1 �

∫ 𝑙𝑙𝑥𝑥=1
𝑥𝑥=2 𝑛𝑛 �γ1γ1

�𝑑𝑑𝑒𝑒1
 (4) 

𝐽𝐽   = 150 |𝑇𝑇𝑚𝑚𝑠𝑠𝑥𝑥− 𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚|
𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚

 (5) 

where Tmax and Tmin were the maximum and minimum 
boiling temperatures in the studied systems, respectively. 
Herington suggested that the experimental points were 
considered to be thermodynamically consistent if the value 
of  D < J or (D −J) < 10 [15]. The D value was obtained 
from a Ridich-Kister equation regressed from the ln(γ1/γ2) 
and x1 data. The test results were presented  in Table 3 
which indicated that the experimental data satisfied the 
testing criterion. 

TABLE 3. 
THE RESULTS OF THERMODYNAMIC CONSISTENCY TEST USING THE 

HERINGTON METHOD. 
System Pressure, mmHg D (%) J (%) |D-J| % Consistency 

Ethanol(1) + 
eugenol(2) 

400 75.39 73.05 2.34 ( + ) 

760 76.17 71.14 5.04 ( + ) 

C. Correlation of VLE Data 
The experimental data were correlated with the Wilson, 

NRTL and UNIQUAC models to obtain the binary 
parameters by minimizing the objective function as   

∑∑
= = 
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cal
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2
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exp

exp

γ
γγ  (6)  

where i represent the number of data from 1 to N and j 
denote the number of componet in the system. In order to 
evaluate the reliability of the interaction parameters, the 
Root Mean Square Deviations (RMSD) of the vapor mole 
fraction and bubble-point temperature between the 
experimental and the calculated values are indicated. The 
correlation results and the RMSD are shown in Table 4 and 
illustrated graphically in Figs. 3–4. It can be seen that the 
Wilson, NRTL, and UNIQUAC models describe well the 
vapor phase mole fraction and bubble-point temperature. 
Comparatively, the Wilson model represents the best 
calculation results where the RMSD values of T and y1 for 
the binary system of ethanol (1) + eugenol (2) using the 
Wilson models are 4.962, 0.017, and 9.271, 0.020 at 400 
and 760 mmHg, respectively. From the view of industrial 
applications, the Wilson, NRTL, and UNIQUAC models 
can be used to calculate the VLE data of the binary 
systems. 

TABLE 4. 
BINARY INTERACTION PARAMETERS AND RMSD FOR THE SYSTEM 

ETHANOL (1) + EUGENOL (2) 

Model 
Parameters 

 
RMSD 

Aij Aji α 
 

T (K) y1 

P = 400 mmHg 

Wilson  -1916.511 -1534.04 -   9.271 0.02 
NRTL  -1058.165 816.279 0.3   9.675 0.02 
UNIQUAC  -604.059 465.007 -    11.388 0.296 

P = 760 mmHg 

Wilson  1898.662 -1454.904 -   4.962 0.017 
NRTL  -993.816 728.3 0.3   5.969 0.017 
UNIQUAC  -480.548 270.342 -    6.736 0.967 
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Figure 3. VLE data for the binary systems ethanol (1) + eugenol (2) at 400 mmHg: experimental data (■) liquid phase and (▲) vapor phase; calculated 

data with (-- -) Wilson model, (-----) NRTL model, and (—) UNIQUAC model. 

 
Figure. 4. VLE data for the binary systems ethanol (1) + eugenol (2) at 400 mmHg: experimental data (■) liquid phase and (▲) vapor phase; calculated 

data with (- -) Wilson model, (-----) NRTL model, and (—) UNIQUAC model. 

IV. CONCLUSION 
The isobaric vapor liquid equilibria of the system ethanol 

and eugenol were experimentally measured at pressures of 
400 and 760 mmHg. These data are thermodynamically 
consistent based on the thermodynamics consistentcy using 
the Herington method.  

The activity coefficients evaluated with the Wilson, 
NRTL and UNIQUAC equations show a good correlation 
of the experimental data. 
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