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Abstract⎯ Indonesia is one of the countries in the world that is susceptible to various types of natural disasters such as 

earthquakes, floods, and other natural disasters. These events do not occur often, yet can result massive financial loss. This 

risk of loss is referred to be catastrophic risk since it impacts not only the individual but also the government while also posing 

a threat to insurance companies if they do not have sufficient resources to make a payment of claims. However, due to the 

complexity and uncertainty of natural hazards, measuring this risk is quite challenging. This study employs a method for 

estimating catastrophic risk in Indonesia based on the Value-at-Risk (VaR) of total loss from natural disasters. A key issue 

for estimating VaR is to fit an appropriate distribution. Extreme value distribution, such as Generalized Pareto Distribution 

(GPD) has been used to assess the tail behavior of extreme loss. However, this distribution provides no information about the 

central behavior that may affect the estimation of the model parameter in GPD. Therefore, this paper employs mixture models 

that combine the parametric form of loss distributions such as gamma, Weibull, and lognormal distribution with GPD. The 

results reveal that VaR calculations differ significantly depending on the mixture model and confidence level used. In addition, 

the lognormal-GPD model is chosen as the best model that fits data best with the highest value of Log-likelihood. 
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I. INTRODUCTION1 

eing located along the pacific ring of fire, Indonesia 

is known as one of the world's most disaster-prone 

countries along with the United States, China and 

Philippines. Landslides, earthquakes, volcanic eruptions 

even the potential threat of tsunami seem like an endless 

chain of event to hit Indonesia. Over the last few years, 

earthquakes and tsunamis have brought the most serious 

threats to people lives and property in Indonesia. The 

largest magnitude earthquakes in Indonesia’s history 

around nine scales richter triggered by tsunami with waves 

growing as high as 30 meters occurred in Aceh, December 

2004. This massive disaster caused more than 227,000 

deaths in total making it the deadliest natural disaster that 

has occurred in the 21st century. The disaster gained 

international attention with offers of aid and assistance 

coming in from other parts of Indonesia as well as other 

countries. Moreover, the latest tsunami in 2018 claimed 

over 2,000 lives on the island of Sulawesi between 

September 28th and October 1st, 2018. Even worse, 5,000 

people still missing long after the search for survivors was 

called off. In addition, a series of earthquakes shook the 

northern part of Lombok in the same year killed almost 

300 people and injuring hundreds more. Thousands of 

properties were damaged and 150,000 people were left 

homeless. The estimated total losses are around million 

dollars. 

Damage caused by such natural disasters is 

accompanied by a significant amount of financial loss. 

Throughout 2018, Indonesia’s National Disaster 

Mitigation Agency (BNPB stated that the expected 

financial loss would be more than 2.9 billion dollars from 

disaster in Sulawesi and Lombok events. Risks associated 

with such a large-scales disaster that not only caused 

substantial financial loss but also cause considerable 

damage to the systems and infrastructures on which local 

communities and economies rely on are known as 
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Catastrophic risk. This risk is crucial to be assessed as it 

helps to increase understanding of risk for the more 

extreme catastrophes. It supports the insurance industry in 

making decisions, which include the pricing of individual 

contracts, and the overall regulation of the industry [1]. 

However, due to the complexity and uncertainty of natural 

and technological hazards, assessing this risk is quite 

challenging. 

The primary goal of this paper is to calculate the 

catastrophic risk based on Value-at-risk (VaR). That is, 

determining the maximum amount of loss with a certain 

confidence level. This risk measure has become a 

worldwide benchmark concerning risk estimation due to 

its simplicity [2]. Fitting a suitable distribution is a critical 

aspect of estimating VaR. Almost all of financial data are 

not normal and occasionally exhibits heavy-tailed 

behavior. The well-known distribution, such as normal 

distribution and student-t distribution failed to capture the 

heavy-tailed data. Then, [3] proposed the estimation of risk 

measures given that the distributions of losses are heavy-

tailed called Extreme Value Theory (EVT). 

Extreme Value Theory has been used widely in 

financial and insurance field (see [4] and [5]). [4] proposed 

a method combining GARCH model to estimate volatility 

and EVT for estimating the tail to estimate VaR and related 

risk measures of a heteroscedastic financial return series. 

They showed that their procedure gives better 1-day 

estimates of VaR than methods that ignore the heavy tails. 

Then, [5] presented a method to determine the type of the 

asymptotic distribution for the extreme changes in stock 

prices, foreign exchange rates and interest rates based on 

Generalized Pareto Distribution (GPD) and Generalized 

Extreme Value (GEV) distribution. 

However, since EVT only could be used to estimate the 

tail behavior of distributions, the central behavior are 

neglected despite the fact that it may alter model parameter 

estimation. Therefore, some of the literature used extreme 

value mixture models. The mixture models assume that the 
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random variables below the threshold are drown from a 

loss distribution, while those above the threshold are 

drawn from a heavy-tailed distribution. [6] developed a 

mixture model that incorporates a parametric form to 

analyze the central behavior and GPD for the tail of the 

distributions. The parametric forms include Normal, 

Gamma, Weibull and Beta distribution. The mixture 

models have been used to analyze extreme data related to 

natural disaster as presented by [6], [7] and [8]. 

In mixture models, the distribution combination can 

take many different forms. In this study, we only consider 

mixture model of gamma-GPD model, weibull-GPD 

model and lognormal-GPD model in order to modelling 

the financial losses as proposed by [6] and [7]. Then, we 

calculate the Value-at-risk (VaR) for various confidence 

levels. 

II. METHOD 

As previously stated, the mixture model has many 

possible combinations. However, in this case, we only 

consider three combinations, gamma-GPD, weibull-GPD 

and lognormal-GPD. Before proceeding to the analysis, 

this section provides an explanation about the theoretical 

background of the mixture model.  

2.1 Generalized Pareto Distribution 

Let 𝑥 denote total financial damage from natural disaster 

and 𝑌 =  𝑥 − 𝑢 denote the exeedance over a certain 

threshold u. Therefore, [9] and [10] showed that showed 

that the limiting distribution of Y can be modeled by the 

Generalized Pareto Distribution (GPD). The cumulative 

probability function of GPD is given by 

𝐺(𝑥|𝜉, 𝜎, 𝑢) = {
1 − (1 +

𝜉(𝑥−𝑢)

𝜎
)
−1/𝜉

, 𝑖𝑓 𝜉 ≠ 0

1 − 𝑒𝑥𝑝 (−(
𝑥−𝑢

𝜎
)) , 𝑖𝑓 𝜉 = 0

 (1) 

where 𝜉 dan 𝜎 are the shape and scale parameters 

respectively. The uncertainty is involved in the choice of 

threshold, u. We can choose the threshold u by looking at 

the mean excess plot as proposed by [11]. There are some 

drawbacks regarding choosing the right threshold, for 

instance precision and bias. The GPD model only 

considers excesses over the threshold, but it does not 

provide any information below the threshold. There are 

many possibilities for handling both parts (below and 

above threshold) and for combining them. One of 

possibilities to handle both below and above threshold are 

by using a mixture model that combines a parametric form 

for the center or below threshold such as gamma, weibull 

and lognormal distribution and GPD for the tail or above 

threshold. By using this mixture models, inference will 

take into account all observations.  

2.2 Mixture models 

Th mixture models assume that all observation under the 

threshold u come from a parametric distribution denoted 

by 𝐻(. |𝜃1) whereas those above threshold come from a 

heavy-tailed distribution that is GPD 𝐺(𝑥|𝜉, 𝜎, 𝑢). 
Therefore, the distribution function of F can be written as 

𝐹(𝑥|𝜂, 𝜉, 𝜎, 𝑢) =

{
𝐻(𝑥|𝜂),                                                   𝑖𝑓 𝑥 < 𝑢

𝐻(𝑢|𝜂) + (1 − 𝐻(𝑢|𝜂))𝐺(𝑥|𝜉, 𝜎, 𝑢), 𝑖𝑓 𝑥 ≥ 𝑢
           (2) 

For a sample size n, 𝑥  = (𝑥1, … . , 𝑥𝑛) and we assume the 

parameter vector as 𝜽 = (𝜂, 𝜉, 𝜎, 𝑢), the likelihood 

function from (2) is 

L(𝛉; 𝒙) = ∏ ℎ(𝑥|η)∏ (1 − 𝐻(𝑢|η)) (
1

σ
[1 +𝑥𝑖≥𝑢𝑥𝑖<𝑢

                   
ξ(𝑥𝑖−𝑢)

σ
]
+

−(1+ξ)/ξ

)     (3) 

for 𝜉 ≠ 0 and  

L(𝛉; 𝒙) = ∏ ℎ(𝑥|η)∏ (1 −𝑥𝑖≥𝑢𝑥𝑖<𝑢

 𝐻(𝑢|η)) (
1

σ
𝑒𝑥𝑝 [

(𝑥𝑖−𝑢)

σ
])    (4) 

For 𝜉 = 0 where ℎ(𝑥|𝜂) is the density function of the loss 

distribution. Therefore, we can write the combination of 

the loss distribution GPD and the parametric forms, where 

in this case we consider gamma and weibull distribution as 

follows 

 

2.2.1 Gamma distribution and GPD 

The probability density function of Gamma distribution 

is given by 

𝑓𝐺(𝑥|α, β) =
βα

Γ(α)
exp(−β𝑥)𝑥α−1, 𝑥 ≥ 0           (5) 

where 𝛼 is the shape parameter and 𝛽 is the rate. Then, the 

cumulative distribution function can be written as 

𝐹𝐺(𝑥|α, β) =
1

Γ(α)
γ(α, β𝑥), 𝑥 ≥ 0               (6) 

Based on (2) and (3) we can construct the distribution 

function and the likelihood mixture model as follows 

𝐹(𝑥|𝛼, 𝛽, 𝜉, 𝜎, 𝑢) =

{
𝐹𝐺(𝑥|𝛼, 𝛽), 𝑥 < 𝑢  

𝐹𝐺(𝑢|𝛼, 𝛽) + [1 − 𝐹𝐺(𝑢|𝛼, 𝛽)]𝐺(𝑥|𝜉, 𝜎, 𝑢), 𝑥 ≥ 𝑢
,     (7) 

 

𝐿(𝜽; 𝒙) =

{
∏ 𝑓𝐺(𝑥|𝛼, 𝛽)∏ (1 − 𝐹𝐺(𝑥|𝛼, 𝛽)) (

1

𝜎
[1 +  

𝜉(𝑥𝑖−𝑢)

𝜎
]
+

−(1+𝜉)/𝜉

)𝑥𝑖≥𝑢𝑥𝑖<𝑢

∏ 𝑓𝐺(𝑥|𝛼, 𝛽)∏ (1 − 𝐹𝐺(𝑥|𝛼, 𝛽)) (
1

σ
𝑒𝑥𝑝 [

(𝑥𝑖−𝑢)

σ
])𝑥𝑖≥𝑢𝑥𝑖<𝑢 ,

 (8) 

where 𝜽 = (α, β, 𝜉, 𝜎, 𝑢) is the parameter of the mixture 

model that estimated by bayesian.   

 

2.2.2 Weibull distribution and GPD 

Let 𝜆 be the scale parameter and 𝛾 be the shape parameter 

where 𝜆, 𝛾 >  0, the density and probability function of 

the weibull distribution are given as follows 

𝑓𝑤(𝑥|𝜆, 𝛾) =
𝛾

𝜆
(
𝑥

𝜆
)
𝛾−1

exp(−𝑥/𝜆)γ, 𝑥 ≥ 0        (9)    

and 

𝐹𝑤(𝑥|𝜆, 𝛾) = 1 − exp(−𝑥/𝜆)
γ, 𝑥 ≥ 0     (10)       

Therefore, the distribution function and the likelihood 

function of mixture model in (2) and (3) are rewritten as 

𝐹(𝑥|𝜆, 𝛾, 𝜉, 𝜎, 𝑢) =

{
𝐹𝑤(𝑥|𝜆, 𝛾),                                                       𝑥 < 𝑢  

𝐹𝑤(𝑢|𝜆, 𝛾) + [1 − 𝐹𝑤(𝑢|𝜆, 𝛾)]𝐺(𝑥|𝜉, 𝜎, 𝑢), 𝑥 ≥ 𝑢
,    (11) 
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𝐿(𝜽; 𝒙) =

{
∏ 𝑓𝑤(𝑥|𝜆, 𝛾)∏ (1 − 𝐹𝑤(𝑥|𝜆, 𝛾)) (

1

𝜎
[1 + 

𝜉(𝑥𝑖−𝑢)

𝜎
]
+

−(1+𝜉)/𝜉

)𝑥𝑖≥𝑢𝑥𝑖<𝑢

∏ 𝑓𝑤(𝑥|𝜆, 𝛾)∏ (1 − 𝐹𝑤(𝑥|𝜆, 𝛾)) (
1

σ
𝑒𝑥𝑝 [

(𝑥𝑖−𝑢)

σ
])𝑥𝑖≥𝑢𝑥𝑖<𝑢 ,

(12) 

Parameter 𝜽 = (𝜆, 𝛾, 𝜉, 𝜎, 𝑢) is then estimated by bayesian 

approach. 

 

2.2.3 Lognormal distribution and GPD 

Let x be positive random variable with lognormal 

distribution, the probability density function can be written 

as follows 

𝑓𝐿𝑁(𝑥|𝜇, 𝜎𝑙) =
1

𝑥𝜎𝑙√2𝜋
𝑒𝑥𝑝 (−

(𝑙𝑛 𝑥 − 𝜇)2

2𝜎𝑙
2 ) , 𝑥 > 0        

(13) 

where  𝜇 and 𝜎𝑙 is the location parameter and scale 

parameter respectively. Then, the cumulative distribution 

function (CDF) can be defined as 

𝐹𝐿𝑁(𝑥|𝜇, 𝜎𝑙) = Φ (
(𝑙𝑛 𝑥 – 𝜇)

𝜎𝑙
) , 𝑥 > 0             (14)     

where Φ is the CDF of the standard normal distribution. 

Based on (13) and (14) the mixture model lognormal-GPD 

has distribution function as follows 

 
𝐹(𝑥|𝜇, 𝜎𝑙 , 𝜉, 𝜎, 𝑢) =

{
𝐹𝐿𝑁(𝑥|𝜇, 𝜎𝑙),                                                       𝑥 < 𝑢  

𝐹𝐿𝑁(𝑢|𝜇, 𝜎𝑙) + [1 − 𝐹𝐿𝑁(𝑢|𝜇, 𝜎𝑙)]𝐺(𝑥|𝜉, 𝜎, 𝑢), 𝑥 ≥ 𝑢
        (15) 

 

and the likelihood function 
𝐿(𝜽; 𝒙)

=

{
 
 

 
 ∏𝑓𝐿𝑁(𝑥|𝜇, 𝜎𝑙)∏(1 − 𝐹𝐿𝑁(𝑥|𝜇, 𝜎𝑙))(

1

𝜎
[1 + 

𝜉(𝑥𝑖 − 𝑢)

𝜎
]
+

−(1+𝜉)/𝜉

)
𝑥𝑖≥𝑢𝑥𝑖<𝑢

∏𝑓𝐿𝑁(𝑥|𝜇, 𝜎𝑙)∏(1 − 𝐹𝐿𝑁(𝑥|𝜇, 𝜎𝑙)) (
1

σ
𝑒𝑥𝑝 [

(𝑥𝑖 − 𝑢)

σ
])

𝑥𝑖≥𝑢𝑥𝑖<𝑢

,

 

where the parameter 𝜽 = (𝜇, 𝜎𝑙, 𝜉, 𝜎, 𝑢). 
 

2.3 Value-at-Risk 

Value at risk (VaR) is one of the well-known risk 

measures in the financial or insurance field due to its 

simplicity. The definition of Value-at-risk is actually a 

maximum of losses that will not exceed at a certain 

confidence level and period. This kind of risk measure is 

also known as quantile of the distribution function. Let x 

is the loss observation and α is confidence level, then we 

can define VaR as 

𝑉𝑎𝑅(𝑥, 𝛼)  =  𝐹𝑥
−1(𝛼)  ,                     (16) 

where 𝐹𝑥
−1(𝛼) is the quantile of given distribution. 

Therefore, we can say that in the worst-case scenario, the 

probability that losses will exceed l is equal to (1 - α). 

III. RESULTS AND DISCUSSION 

3.1 Descriptive statistics and preliminary results 

The dataset consists of total losses (in million US Dollar) 

of different types of natural disasters in Indonesia for 

around 54 years from 1966 to 2018. The data include total 

loss of natural disasters such as earthquake, volcanic 

activity, landslide, etc. The dataset is obtained from 

https://www.emdat.be/emdat db/, the International 

Disaster Database website based in Belgium. 

 
Figure 1. Natural disasters in Indonesia from period 1966-2018 

 

Figure 1 depicts some major natural disasters that 

occurred in Indonesia from 1966 to 2018. Floods has the 

highest frequency of occurrence and then followed by 

earthquakes and landslides. High rainfall intensity 

throughout the year yields to high frequency of extreme 

floods [12]. For instance, extreme flood just hit East Nusa 

Tenggara in early April this year. Moreover, 

Meteorological, Climatological, And Geophysical Agency  

(BMKG) reported that the frequency of earthquake is 

increasing each year [13].  

In order to understand the distribution of the loss data, 

histogram and Q-Q plot are also presented as follows 

 
Figure 2. Histogram total loss (in million US dollars)  

 

 

 
Figure 3. Q-Q Plot total loss (in million US dollars)  

 

Figure 2 and 3 shows that the loss data may indicate 

skewed and heavy-tailed behavior as the histogram and 

QQ Plot are really far from normal. Therefore, we can use 

extreme value theory such as GPD to analyze the tail 

behavior whereas central behavior can be assessed using 

loss distribution such as gamma, weibull and lognormal. 
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Figure 4. Mean excess plot 

 

The mean excess plot is also given in Figure 4. This plot 

can be used to check whether the loss data came from a 

GPD model or not. The mean excess plot is roughly linear 

over the entire range of loss below the threshold and its 

upward slope, as seen in Figure 4. Then it change to 

gradually linear for the loss over the threshold, indicating 

that the data are from a GPD model with a positive shape 

parameter ξ [4].  As stated by [1], if the mean excess plot 

is close to linear for high values of the threshold, then there 

is no evidence against employing the GPD. Consequently, 

this plot also demonstrates that the loss data exhibits 

heavy-tailed behavior and GPD can be used to deal with 

this extreme behavior. 

 

3.2 Models 

The GPD model only can be used for analyzing the tail 

behavior of the loss data. Meanwhile, the central behavior 

is assessed by gamma, Weibull, and lognormal distribution 

(mixture models). This study fits the loss data with three 

mixture models, and the estimation of each model 

parameter is presented in Table 1. 

TABLE 1. 

ESTIMATION OF PARAMETERS IN THE MIXTURE MODELS 

Model Parameters 

 ξ σ u α β 

Gamma-GPD 0.14 1789.14 928 0.26 1363.39 

 ξ σ u λ γ 

Weibull-GPD 0.15 1785.77 964.45 0.51 40.85 

 ξ σ u μ 𝝈𝒍 

Lognormal-GPD 0.14 1789.71 936.61 2.81 2.19 

 

Table 1 displays estimation parameters for the proposed 

mixture models. There are no significant differences in the 

estimation of GPD parameters in all models. The shape 

and scale parameters are aproximately around 0.15 and 

1789, respectively, meanwhile the threshold is roughly 

900. After model parameters have been estimated, the next 

step is examining and measuring the Value-at-Risk (VaR). 

VaR is generally defined as the maximum potential losses 

at given confidence levels.  Table 2 summarizes the 

findings. These findings can aid an insurance firm or 

government in making risk-based decisions regarding 

catastrophic insurance coverage, reinsurance levels, and 

capital reserves. 

 

 

TABLE 2. 

VAR AT DIFFERENT CONFIDENCE LEVELS 

Model VaR (in million US Dollar)  LL 

 90% 95% 97.5%  

Gamma-GPD 1244 2577 4043 -506.88 

Weibull-GPD 206 344 515 -491.03 

Lognormal-GPD 276 610 1435 -485.48 

Note: The bold values in the table refer to the highest value of LL 

  

 Table 2 shows VaR estimation under different 

confidence levels and mixture models. The proposed 

mixture models, Gamma-GPD, Weibull-GPD, and 

lognormal-GPD estimate VaR differently, as can be seen. 

Gamma-GPD model estimates VaR clearly higher than 

other models for each confidence level, reaching over 4000 

million dollars. Furthermore, another interesting point in 

Table 2 is that there are no significant differences in the 

VaR estimation of the Weibull-GPD and lognormal-GPD 

model under 90% confidence level. On the other hand, the 

VaR estimations are significantly different for both models 

under 95% and 97.5% of confidence level. In addition, the 

riskiness depends on the choice of the confidence level. 

Surely, the VaR estimation at the 99% confidence level is 

lower than the VaR estimation at the 95% and 97.5% 

confidence level.  

    Model selection is based on the highest value of Log 

Likelihood (LL). The lognormal-GPD mixture model 

appears to be the best mixture model that best fits the loss 

data, as shown in Table 2. Moreover, under the selected 

model, we can say VaR 90% 276 million US dollars means 

that if an unprecedented disaster occurs in Indonesia such 

as earthquake, volcanic eruption, flood, etc, we are 90% 

confident that the loss will not exceed 276 million US 

dollars. In other words, the government/insurance 

coverage should be 276 million US dollars to cover 90% 

of the natural disaster’s losses. This is a significant sum of 

money because the catastrophic risk not only affects an 

individual but also the entire system, infrastructure and 

economy as a whole. The same interpretation also applies 

to VaR estimation under 95% and 97.5% confidence level. 

IV. CONCLUSION 

Three mixture models are used to assess loss data from 

natural disasters in Indonesia, and the performance of these 

mixture models is compared using the log-likelihood 

value. According to the findings, the mixture model is 

capable of handling the center and tail behavior of loss data 

that is heavy-tailed. Furthermore, after receiving the 

estimates of the mixture models, VaR for each model is 

also estimated. VaR estimations vary depending on the 

mixture model and confidence level used. Weibull-GPD 

and lognormal-GPD models estimate VaR significantly 

lower than gamma-GPD models. For 95 percent and 97.5 

percent confidence levels, VaR estimations for Weibull-

GPD and Lognormal-GPD reveal a substantial difference. 

In addition, the lognormal-GPD model is chosen as the 

best model that fits data best with the highest value of 

loglikelihood.  
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