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AbstractNumerical Weather Prediction (NWP) has not yet been able to produce the weather forecast accurately. In order to 
overcome that, one approach could be taken is ensemble postprocessing. Ensemble is a combination of several methods to 
improve its accuracy and precision yet still possesses underdispersive nature. Bayesian Model Averaging (BMA) is intended to 
calibrate the ensemble prediction and create more reliable interval, though, does not consider spatial correlation. Unlike BMA, 
Geostatistical Output Perturbation (GOP) reckons spatial correlation among many locations altogether. Analysis applied to 
calibrate the temperature forecast at eight meteorological sites within Jakarta, Bogor, Tangerang and Bekasi (Jabotabek) are 
BMA and GOP. The ensemble members of BMA are the prediction of PLS, PCR, and Ridge. For training period over 30 days 
and based on some assessment indicators, BMA is better than GOP in terms of accuracy, precision, and calibration.  
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I. INTRODUCTION1 
n past few years, BMKG Indonesia began to apply 
numerical weather forecast, that is Numerical Weather 

Prediction (NWP), to aid the forecasters. However, its 
forecast bias was quite great since it has not been able to 
capture the dynamic atmosphere [1]. Hence, statistical post-
processing needs to be applied to NWP output by using 
ensemble, such as combination of NWPs from several 
meteorological authorities. Though in many cases, 
ensemble forecast still possesses underdispersive nature, 
that is the forecast tends to concentrate at a point with low 
variance causing the observation outside the predictive 
interval, then as a consequence they need to be calibrated 
[2]. In order to handle such case, BMA and GOP could be 
applied to calibrate the ensemble forecast, among others. 

As in [3], BMA combines the whole ensemble member 
forecast based on weighted mean, posterior probabilities, 
that depends to some statistical models instead of the single 
one. The BMA weights reflecting each member’s relative 
skill then form the predictive PDFs. Despite its advantage, 
BMA merely considers weather forecast at single location 
and ignores the spatial correlation which frequently occurs 
[4]. Besides, two parameters, the weights and variances, 
could not be estimated by Maximum Likelihood and need 
the iterative approach like Expectation-Maximization (EM) 
algorithm.  

GOP is a method of weather forecast being able to 
generate ensemble prediction of any size based on spatial 
association identified from the error correlation [5].  
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This method perturbs the outputs of NWP models 
spatially, such as error model, rather than their inputs. In 
other words, the simulated error has to be added to the 
regression linear forecast such that one would get spatially 
calibrated forecast. Like BMA, GOP also needs iterative 
approach, Limited-Memory BFGS (L-BFGS), to estimate 
its spatial parameters due to faster convergence when 
parameters being interest are large in size [6]. 

This research is intended to calibrate the ensemble 
temperature forecast at eight meteorological sites within 
Jabotabek, Indonesia using BMA and GOP to obtain better 
method being able to utilize NWP for short-range forecast, 
along with the brief derivation on how to obtain the 
parameter estimation of both methods. As this research is 
not equipped with enough NWP from various sources, the 
member of BMA consists of several statistical models, that 
is Partial Least Square Regression, Principal Component 
Regression, and Ridge Regression.      

This paper is organized as follows. The materials section 
reviews the BMA, GOP and the indicator used to assess 
both method. The method section provides the data 
information and the way to do parameter estimation and 
calibrated forecasting. The results section presents the more 
detailed way of each method parameter estimation and 
forecasting. Finally, the last section gives the conclusion. 

II. MATERIALS 
A. Bayesian Model Averaging (BMA) 

BMA is a method to calibrate the underdispersive, 
overdispersive, and biased ensemble forecast where those 
might cause the forecast being less reliable, particularly the 
underdispersive one. The predictive PDF of BMA is linear 
combination of several competing model in which each of 
them has different weight to the PDF, relative to other 
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member [3]. They are called the posterior probabilities due 
to their changing value over sliding training period. 

Suppose y is the observation of weather quantities with 
𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑀𝑀 are different M-forecast models where m = 1, 
2, ..., M. Each member m forecast can be corrected using 
one of many possible methods that yields bias-corrected 
forecast fm. The forecast fm corresponds to a conditional 
PDF, g𝑚𝑚(𝑦𝑦|𝑓𝑓𝑚𝑚), which could be defined as the conditional 
PDF of y on fm if fm is the best member [7]. 

As in [3], BMA predictive density is obtained using Eq. 
(1). 
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where wm is the m ensemble member weight or posterior 
probability recognized as the “best” one which is non-
negative and sums up to 1, that is 𝑤𝑤1 + 𝑤𝑤2 + ⋯+ 𝑤𝑤𝑀𝑀 = 1. 
The weight wm depends on forecast fm’s performance in 
training period. 

In the case of normally distributed forecast fm, then the 
interest y’s posterior distribution given fm is the best 
member is shown in Eq. (2). 

( )2
0, 1,| ,m m m my f N fβ β σ+

  (2) 

Based on [3], the BMA predictive mean, deterministic 
forecast, the weighted average of fitted member forecast, is 
given by Eq. (3). 
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Following the BMA mean, the BMA variance is shown in 
Eq. (4) 
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With 𝛼𝛼𝑚𝑚 = �̂�𝛽0,𝑚𝑚 + �̂�𝛽1,𝑚𝑚𝑓𝑓𝑚𝑚 Based on Eq. (4), it could be 
said that the BMA variance is greater than both term on the 
right-hand side.    

Unlike the bias-corrected coefficient β0 and β1, the weight 
wm and variance σ2 could not be estimated by MLE and 
replaced by iterative approach, that is Expectation-
Maximization (EM) algorithm. It alternates between two 
steps, the Expectation or E step and the Maximization or M 
step [3]. This algorithm utilizes unobserved, latent variables 
zmt , where zmt = 1 if member m is the best forecast for time 
t, otherwise zmt = 0.  

For the normally distributed BMA model, the E step is 
written on Eq. (5). 
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The superscript i in Eq. (5) refers to the i-th iteration with 
the density g𝑚𝑚�𝑦𝑦𝑚𝑚�𝑓𝑓𝑚𝑚𝑚𝑚 ,𝜎𝜎(𝑖𝑖−1)�  is normal with mean �̂�𝛽0,𝑚𝑚 +
�̂�𝛽1,𝑚𝑚𝑓𝑓𝑚𝑚𝑚𝑚  and standard deviation σ(i-1) evaluated on 
observation yt [3]. In the next M step, iterative estimation of 
wm and σ2 is calculated based on current estimate of latent z 
in Eq. (5). Hence, exist Eq. (6)  
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where T is the number of observation in the training period. 
Both E and M step are iterated to convergence, which is no 
change greater than tolerance limit in terms of parameter 
value and zmt in one iteration [8].    
B. Geostatistical Output Perturbation (GOP)  

GOP is a spatial method modifying and perturbing NWP 
deterministic outputs by taking the errors correlation among 
locations of interest into account [5]. Such errors were 
obtained through geostatistical simulation to get calibrated 
weather field forecast which is reliable and sharp as well. 
Considering multivariate among sites, let 𝐲𝐲𝑚𝑚 =
[𝑦𝑦1𝑚𝑚 ,𝑦𝑦2𝑚𝑚, K,𝑦𝑦𝑠𝑠𝑚𝑚]′ and 𝐱𝐱𝑚𝑚 = [𝑥𝑥1𝑚𝑚 , 𝑥𝑥2𝑚𝑚, K,𝑥𝑥𝑠𝑠𝑚𝑚]′ denote the  𝑠𝑠 × 1 
vector of observed weather quantity and vector of interest 
NWP output, respectively, where t = 1,2,K,T. Then, GOP 
model is represented in Eq. (7) 

0 1  ,t t tβ β= + +y 1 x ε  (7) 

where 1 is an s x 1 unity vector and εt is residual vector. As 
in [4], error εt in Eq. (7) follows the normal distribution 
which has covariance Σ relying on covariance structure of 
error spatially. From here on, error is referred to the 
difference between observation and bias-corrected forecast. 

Given C (si,sj) is stationer and isotropy exponential 
correlation function, the (ij)th element of Σ is obtained 
based on Eq. (8).  

( ) ( )( ) ( )( )2 21 var 1 ,  ,
2 i j i jCε ε ρ σ− = + −s s s s  (8) 

where ρ2 is nugget effect, that is the variance of 
measurement error as well as small-scale variability [4]. 
Then, the marginal variance of error is known as sill, 
obtained from ρ2 + σ2. As in Eq. (8), the error correlation 
might be identified through common exponential 
semivariogram, denoted in Eq. (9) 

( ) ( )( )2 2 1 exp  ,rγ ρ σ= + − −dd   (9) 

where d is obtained from �𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑗𝑗� denotes the Euclidean 
distance between set of pair of location si and sj. Range r (in 
km) indicates the distance from which the spatial error 
correlation began to diminishing exponentially [4]. 

In order to estimate ρ2, σ2, and r, the applied approach is 
the iterative one using Limited-Memory BFGS (L-BFGS). 
It minimize the objective function as shown in Eq. (10), 
derived from weighted least square 
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where nl is number of location pair in bin Bl and N is 
number of obtained bin [4].  
C. Verification Method 

This subsection presents some methods used to assess the 
predictive quality obtained from calibrated ensemble 
forecast. Calibration is the consistency between the 
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ensemble forecasts and observations. For the research 
attempting to calibrate the weather forecast, RMSE or 
MAE is not sufficient to conclude the best model in terms 
of accuracy. It also needs other tools, such as CRPS and 
coverage, to verify the bias correction level and sharpness. 
RMSE and CRPS is expected as little as possible, while 
coverage is expected much closer to 50% and 90 %, 
respectively for BMA and GOP in this research. 
1) Root Mean Square Error (RMSE) 

As an accuracy indicator, RMSE in Eq. (11) is calculated 
from squared root of MSE, the average of sum of square of 
difference between forecast and verifying observation, 

( )2
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= = −∑   (11) 

where n is the number of observation [9]. 
2) Coverage 

The sharpness of ensemble forecast could be verified 
from coverage by comparing the standard coverage and 
empirical coverage. If an observation lies within the 
ensemble range, then it could be said that the observation is 
inside the coverage [9]. The standard coverage is given by 
Eq. (12).  
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The notation M denotes the number of ensemble member. 
The ensemble forecasts is calibrated if the empirical 
coverage is much closer to the standard coverage.    
3) Continuous Rank Probability Score (CRPS) 

CRPS is used to verify how reliable or precise the 
predictive interval obtained from BMA or other 
probabilistic forecast. The less the CRPS, the more reliable 
the prediction interval [7]. CRPS is written on Eq. (13) 
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where n is the number of observation, i is the time basis, 
𝐹𝐹𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑚𝑚(𝑦𝑦)and 𝐹𝐹𝑖𝑖𝑓𝑓𝑜𝑜𝑠𝑠(𝑦𝑦) are the predictive CDF and 

empirical CDF at i-th time, respectively. The CDF 
𝐹𝐹𝑖𝑖𝑓𝑓𝑜𝑜𝑠𝑠(𝑦𝑦) = 1 for observation ≥ forecast, otherwise 0. 

III. METHOD 
The data in this research are obtained from Meteorology, 

Climatology, and Geophysics Agency (BMKG) Indonesia, 
that is NWP Conformal Cubic Atmospheric Model 
(CCAM) output within period January 1st, 2009 until 
December 31st, 2010 or about 708 observation days. The 
meteorological stations of interest within Jabotabek, 
Indonesia are of Kemayoran, Priok, Cengkareng, Pondok 
Betung, Curug, Dermaga, Tangerang, and Citeko, shown on 
figure 1 with red dot.  

 
Figure 1.  Meteorological stations of interest over Jabotabek [1]. 

The predictand (Y) of BMA and GOP is observed 
temperature, consisting of the maximum one and the 
minimum one. To produce deterministic BMA forecast, it 
should define the ensemble members, that is Partial Least 
Square Regression (PLSR), Principal Component 
Regression (PCR) and Ridge fitted value of temperature. 
Such value is obtained first by reducing dimension of each 
32 NWP parameter using Principal Component (PC). Each 
NWP parameter has 9 grids or 3 x 3 in square that 
corresponds to each station, roughly illustrated on figure 2. 

 
Figure 2. Implementation of 3 x 3 grid of NWP parameter. 

As could be seen in figure 2, the middle red dot represents 
the grid nearest to the station and the rests (black dots) 
surround the station itself. Preprocessing using PC might be 
the appropriate way to summary the correlation among 9 
grids solely in each NW P parameter. The short description 
about NWP parameters used to generate calibrated weather 
forecast is given on table 1. 

TABLE 1. 
NWP CCAM PARAMETERS SHORT DESCRIPTION [10]. 

NWP Parameter (code) Level Unit 

Surface Pressure Tendency (dpsdt) Surface hPa 
Water Mixing Ratio (mixr) 1, 2, 4 g/kg 
Vertical Velocity (omega) 1, 2, 4 knot 
PBL depth (pblh) Surface Meter 
Surface Pressure (ps) Surface hPa 
Mean Sea Level Pressure (psl) Surface hPa 
Screen Mixing Ratio (qgscm) Surface g/kg 
Relative Humidity (rh) 1, 2, 4 % 
Precipitation (rnd) Surface mm 
Temperature 1, 2, 4 Celcius 
Maximum Screen Temperature (tmaxcr) Surface Celcius 
Minimum Screen Temperature (tmincr) Surface Celcius 
Pan Temperature (tpan) Surface Celcius 
Screen Temperature (tscrn) Surface Celcius 
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Zonal Wind (u) 1, 2, 4 knot 
Friction Velocity (ustar) Surface m/sec 
Meridional Wind (v) 1, 2, 4 knot 
Geopotential Height (zg) 1, 2, 4 meter 

Besides seven parameters measured at three kind of 
levels, there are eleven parameters measured at surface 
level, 2 meters above sea surface. Thus, one obtain 32 
parameters in total. Since this research seems to involve 
many meteorological variables, which are highly correlated, 
then it should be noted that the ensemble which consists of 
three statistical models is in favor to overcome 
multicolinearity despite the BMKG’s lack of NWP source.  

Thus, the predictor (X) of BMA is temperature forecast 
produced by PLSR, PCR, and Ridge. Meanwhile, the single 
predictor (X) of GOP is tmaxcr and tmincr for maximum 
and minimum temperature forecast, respectively, whose 
grid is very close to the station. This research considers 24-
hour ahead forecast of NWP parameters, hence the BMA 
and GOP have to provide the temperature forecast for the 
same time ahead over 30-day training period. Based on [3], 
such training length gives more stability and ability to adapt 
with dynamical properties of weather.      

IV. RESULTS AND DISCUSSION 
A. Derivation of BMA parameters estimation 

The BMA parameters of each member m are able to be 
classified to two parts, bias-corrected coefficient βm, that is 
β0,m and β1,m, alongside the weight and variance (wm and σ2). 
These parameters are used to yield the calibrated weather 
forecast and predictive interval. Since the weather quantity 
of interest is temperature which is normally distributed, 
then it is easily shown based on [10], either by Maximum 
Likelihood (ML) or Ordinary Least Square (OLS), that the 
estimation of  β0,m and β1,m are expressed on Eq. (14) 

 

( )( )

( )
1 1 1 1

1, 2 2
2

11 1

ˆ

T T T T

mt t mt t mt m t
t t t t

m TT T

mt mmt mt
tt t

T f y f y f f y y

f fT f f
β = = = =

== =

  
− − −  
  = =
  −−  
 

∑ ∑ ∑ ∑

∑∑ ∑
 

 

0, 1,
ˆ ˆ

m m my fβ β= −  (14)
 

Given yt and fmt are temperature and ensemble member 
forecast verified at time t  where t = 1, 2, ..., T. Since BMA 
utilizes the concept of sliding training period, the entire 
parameters, including β0,m and β1,m, changes relative to the 
trend value of observation and ensemble forecast [7]. 

Unlike β0,m and β1,m which easily could be estimated, the 
weight wm and variance σ2 is not able to be estimated by 
ML. In order to overcome that, BMA has to extend the 
derivation using iterative method, for instance using EM 
algorithm which considers the complete-data likelihood 
𝐿𝐿(𝛉𝛉; 𝐲𝐲, 𝐳𝐳) based on incomplete-data likelihood 𝐿𝐿(𝛉𝛉; 𝐲𝐲) [8]. 
The steps needed to yield the estimation of wm and σ2 are 
briefly given below. 

1) Step 1: Obtaining the incomplete-data likelihood 
As usual, the incomplete-data likelihood given on Eq. 

(15) is carried out to estimate the weight of ensemble 
member m wm. 
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Eq. (15) might be transformed to log-likelihood to make 
the estimation easier and the result is expressed on Eq. (16) 
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It might be said that the solution for wm based on Eq. (16) 

is not exist since it is definitely complicated to be derived. 
Therefore, the EM algorithm considering latent variable Z 
where 𝐙𝐙 = 𝐙𝐙1T,𝐙𝐙2T, K,𝐙𝐙TT has to be applied to estimate wm as 
well as σ2 [8]. The subscript T denotes the T-th sliding 
training period where t = 1, 2, ..., T. It is also given that 
𝐙𝐙t = (Z1𝑚𝑚 , Z2𝑚𝑚 , K, Z𝑀𝑀𝑚𝑚). For any t-th time, only one element 
of Zt is 1, otherwise 0. Hence, for k = 1, 2, ..., M, there 
exists Eq. (17) 
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where k denotes the best ensemble member. 
2) Step 2: Obtaining the complete-data likelihood 

As the subsequent step after performing incomplete-data 
likelihood, the complete-data one is obtained by taking 
latent Z into account [8]. By applying indicator function 
𝐈𝐈(𝑍𝑍𝑚𝑚𝑚𝑚=𝑘𝑘)to represent the latent, so that one obtain the 
likelihood on Eq. (18). 
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3) Step 3: Performing Expectation (E) step 
This E step is iteratively conducted to obtain the 

expectation from likelihood or log-likelihood function of 
complete-data. Given i as the i-th iteration, then exists Eq. 
(19).  
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Based on further derivation to the expectation on Eq. (19) 
as in [8], it would be easily shown  
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The latent guess 𝑍𝑍𝑚𝑚𝑚𝑚
(𝑖𝑖)  given by Eq. (20) is the posterior 

probability of the observation at   t-th time of ensemble 
member m [8]. Thus, one would obtain Eq. (21) to proceed 
to the next M step. 
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4) Step 4: Performing Maximization (M) step  
This M step selects θ(i+1) which maximizes  𝑄𝑄�𝛉𝛉�𝛉𝛉(𝑖𝑖)� of 

Eq. (21) such that 𝑄𝑄�𝛉𝛉(𝒊𝒊+1)�𝛉𝛉(𝑖𝑖)� ≥ 𝑄𝑄�𝛉𝛉�𝛉𝛉(𝑖𝑖)� given  𝑤𝑤1 +
𝑤𝑤2 + K + 𝑤𝑤𝑀𝑀 and 𝛉𝛉 = (𝐰𝐰′,𝜎𝜎2)′ [8]. The estimation of w 
might be carried out through first-order derivation of  
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For instance, there are 2 ensemble members so that M = 2, 
then  w2 = 1- w1. It would yield  
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Generally, as in [3], for an ensemble with M in size where 
m = 1, 2, ..., M, there exists Eq. (22) 
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Similar with wm, the M step of which variance σ2 should 
carry out yields the below derivative 
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Therefore, the current estimation of σ2 is given on Eq. 
(23). 
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As could be seen, the estimation of weight wm and 

variance σ2 on Eq. (22) and Eq. (23) is the same with Eq. 
(6) in materials section. For i = 0, 1, 2, ..., convergence 
happened with a sequence of incomplete-data likelihood 
values that are bounded above or in other words, 
𝐿𝐿�𝛉𝛉(𝑖𝑖+1); 𝐲𝐲� ≥ 𝐿𝐿�𝛉𝛉(𝑖𝑖); 𝐲𝐲�. 
B. Derivation of GOP spatial parameters estimation   

Before estimating the spatial parameters ρ2, σ2 and r, the 
first step one should to do is calculating empirical 
semivariogram 𝛾𝛾�(𝑑𝑑1) based on Eq. (24) 
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where k is the number of pair of distance between two 
locations and 𝑑𝑑1 = 𝑑𝑑1(1),𝑑𝑑1(2),𝐾𝐾 is the distance which 
represents the whole pair of two locations being involved 
[4]. The next step is carrying out the estimation of those 
three parameters based on objective function given on Eq. 
(25).  
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Due to complicated derivative, then the step of those 
parameters estimation is only represented by nugget ρ2. By 
applying the first-order derivation of Eq. (25) with respect 
to ρ2, then equals to 0, one would obtain Eq. (26). 
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Eq. (26) shows unclosed-form of ρ2 estimation as it still 
contains partial sill σ2 and range r which are going to be 
estimated as well. Thus, one need L-BFGS approach to 
obtain ρ2, σ2 and r estimation simultaneously. If 𝐳𝐳 =
[𝜌𝜌2, 𝜎𝜎2, 𝑟𝑟2], then exists the gradient vector 
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with the following steps to carry out L-BFGS, where k = 0, 
1, 2, ... denotes the iteration [6]. 
1. Determining the initial value of z and H, that is z0 and 

H0. On k-th iteration, z0 should be non-negative with H0 
is symmetric positive definite matrix, such as identity 
matrix. This first step determines a positive integer m as 
well to seek how long H0 information used to renew 
iteration. Then, determining β and γ where 

0 0.5
1

γ

γ β

< <

< <
 

In general, m should be less than 10 in order that the 
iteration is running shortly as well as effectively. 

2. Calculating ∆𝐳𝐳𝑘𝑘 = −𝐇𝐇𝐤𝐤∇g(𝐳𝐳𝑘𝑘) and 𝐳𝐳𝑘𝑘+1 = 𝐳𝐳𝑘𝑘 + 𝛼𝛼𝑘𝑘∆𝐳𝐳𝑘𝑘 
where ∇g(𝐳𝐳𝑘𝑘) is the gradient at zk with constant 𝛼𝛼𝑘𝑘  
satisfying Wolfe condition. 

3. If �∇g(𝐳𝐳𝑘𝑘+1) − ∇g(𝐳𝐳𝑘𝑘)� < 𝜀𝜀, with ε arguably small 
value, then the current iteration should be terminated. 
Otherwise, the iteration should proceed to next step. 

4. Updating matrix Hk, shown on Eq. (27), based on the 
information from Hessian H0 m times so that one obtain 
Hk+1 with ( )min 1,m k m= +
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5. Returning to the second step to obtain the new ∆𝐳𝐳𝑘𝑘  
and updating 𝐳𝐳𝑘𝑘+1 to check the convergence where k = 
k + 1. 

From here on, the discussion of Dermaga station in 
Bogor, West Java is explained more specific rather than 

other stations since Bogor is not only the location at which 
the weather changes more uncertain, but also the steps 
taken to analyze the PCA pre-processing until produce the 
calibrated forecast using BMA and GOP are similar. 
C. PCA Pre-Processing and Statistical Model Forecast 

As have been said, the NWP parameters should be 
dimensionally reduced by PCA. PCA pre-processing might 
reduce the model complexity as well, so that it enables the 
further analysis and interpretation easier to handle. For 
Dermaga station, table 2 provides the number of PC 
representing each NWP parameter (variable) with its 
cumulative variance. 

TABLE 2. 
PC REPRESENTATION OF EACH NWP PARAMETER AT DERMAGA.  

Variable Num. 
of PC 

Cum. 
Variance Variable Num. 

of PC 
Cum. 

Variance 

dpsdt 1 99.98% temp2 1 93.13% 
mixr1 1 84.80% temp4 1 97.26% 
mixr2 1 92.96% tmaxscr 1 96% 
mixr4 1 95.76% tminscr 1 83.80% 
omega1 2 88.56% tpan 1 88.61% 
omega2 2 87.37% tscrn 1 88.72% 
omega4 2 84.13% u1 1 83.41% 
pblh 1 83.15% u2 1 89.02% 
ps 1 94.77% u4 1 98.63% 
psl 1 99.95% ustar 2 82.29% 
qgscrn 2 86.17% v1 2 87.25% 
rh1 2 92.98% v2 2 88.74% 
rh2 1 91.70% v4 1 95.64% 
rh4 1 95.45% zg1 1 97.55% 
rnd 1 81.76% zg2 1 87.89% 
temp1 1 88.25% zg4 2 98.57% 

 
Figure 3. Trend of ensemble member forecasts and observations for (a) maximum temperature and (b) minimum temperature. 

Table 2 shows the PCA pre-processing yields 41 PCs in 
total from 32 NWP parameters being involved. The 
explained cumulative variances range from 81.76% to 
almost 100%. Therefore, the association of weather 
quantities among 9 grids of each NWP parameter itself is 
extremely high. Those PCs thus would be involved as the 

predictor in three aforementioned statistical models, that is 
PLSR, PCR, and Ridge, which yield the forecasts shown 
only for the first 100 days on figure 3. Figure 3 implied that 
the forecast of each ensemble member initially could have 
been follow the general trend of maximum temperature and 
minimum temperature, they were going up if the observed 
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temperature acted the same and were doing so when it went 
down. But, the lingering problem was under-fitting or over-
fitting which happened on the same day. Such problem 
even was more significantly seen on minimum temperature. 

Based on figure 3, it could be said the forecasts produced 
by those 3 probabilistic models are quite far beyond the 
verifying temperatures even if they could capture the 
pattern of temperature. Therefore, it might be necessary to 
calibrate those models as the ensemble member to produce 
more accurate and precise weather --temperature-- forecast 
as well as being calibrated. The weighting adopted by BMA 
supposedly minimizes the impact of under-fitting or over-
fitting, even of seasonal pattern.         
C. BMA Calibrated Temperature Forecast 

The calibration is performed in order that the variance 
would adapt to inevitably under-dispersive nature 
experienced by ensemble member before. After calibrating, 
one would obtain more reliable forecast with more 
proportional variance and narrower predictive interval. To 
assess whether the ensemble forecast is under dispersive or 
not, the Verification Rank Histogram (VRH) on figure 4 
was necessarily carried out. The under dispersive ensemble 
is recognized from shaped-U histogram, while the over 
dispersive one is recognized from bell-shaped histogram 
[9]. As shown on figure 4, both ensemble forecast, either 
for maximum or minimum temperature, still possess under 
dispersive properties since each VRH resembles U-shape. 
They implied that many verifying temperatures are beyond 
ensemble range, the difference between maximum and 
minimum value of an ensemble forecast. 

Based on figure 4 as well, the empirical coverages 
obtained were 20% and 6.7% for maximum and minimum 
temperature, respectively. It is identified from the 
percentage of observations lie within the second rank and 
the third rank. It could be said that each coverage is far less 
than standard coverage 50% and convinces us that the 
ensemble forecasts are uncalibrated due to under dispersive. 
It would influence the predictive interval to be unreliable, 
so that it needs to be calibrated by BMA. 

The first step of BMA calibration is performing 
regression for each ensemble member (PLSR, PCR, and 
Ridge) with respect to the verifying observation. For 
instance, table 3 presents the regression coefficient and the 
weight of each member along with BMA mean as 
deterministic forecast on November 14th, 2009, particularly 
for Dermaga station based on 30-day training period. 

It should be noted from table 3 that PLSR has the biggest 
contribution to BMA maximum temperature forecast as its 
weight is 0.724, greater than PCR’s and Ridge’s which 
have weight 0.276 and 0, respectively. However, the latter 
has the biggest contribution to BMA minimum temperature 
forecast rather than PLSR and Ridge. It might be said then 
the BMA’s accuracy for both temperatures on that day were 
not significantly distinguished compared to the each 
member forecast. 

The next optional analysis is graphing the BMA 
predictive density to find out how fit the calibration done 
by BMA for maximum temperature at the same station on 
the same day, as shown on figure 5. It could be seen that 
figure 5 shows the observation (vertical solid line) lies 
inside 95% BMA predictive interval (dashed line). 

 

 
Figure 4. VRH for three ensemble members of (a) maximum temperature and (b) minimum temperature, January 31st 2009 – December 31st 2009. 

TABLE 3. 
BMA ESTIMATION AND FORECAST ON NOVEMBER 14TH, 2009. 

Maximum Temperature 

Model β0 β1 w Ensemble Forecast (°C) Obs.(°C) BMA(°C) 

PLS 1.12 0.95 0.72 32.81 

32.6 32.9 PCR -3.31 1.09 0.28 32.24 

Ridge 0.89 0.96 0.00 32.75 

Minimum Temperature 

Model β0 β1 w Ensemble Forecast (°C) Obs.(°C) BMA(°C) 

PLS 12.35 0.47 0.02 22.93 

22.2 23.16 PCR 13.73 0.41 0.01 22.89 

Ridge 10.92 0.53 0.97 22.83 

As indicated by figure 5, BMA yields more reliable 
interval, particularly for November 14th, 2009. The 
maximum temperature observation lies inside the ensemble 
range as well. It means that BMA manages to increase 
each member’s precision, shown from PDF BMA which 
shifts closer to the middle. It likely behaves the same for 
the minimum temperature. One thing should be noted, 
though, is the variance of BMA was somehow always 
larger than each member’s itself due to its role to broaden 
the variance.  
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Figure 5. BMA predictive PDF and its members on November 14th, 

2009. 
Then, one should compare the forecast produced by 

BMA and deterministic NWP merely for Dermaga station 
with 30-day sliding training period, as shown on table 4. 
Based on Table 4, it implied that BMA manages to 
improve the forecast accuracy over 50% as it has less 
RMSE. In addition to the improved accuracy, BMA is able 
to yield the narrower predictive interval rather than raw 
ensemble since it has less CRPS. 

TABLE 4. 
ASSESSMENT FOR THE FORECASTS OVER 30-DAY TRAINING PERIOD. 

 RMSE (°C) CRPS Coverage (%) 

NWP BMA Raw 
Ensemble BMA Raw 

Ensemble BMA 

TMAX. 2.18 0.950 0.653 0.517 20.65 49.41 

TMIN. 1.66 0.777 0.566 0.431 6.7 49.26 

As the main goal, BMA manages to calibrate the 
ensemble forecast for temperature in particular. It could be 
seen from the coverage which advances significantly ever 
than before, 20.65% to 49.41% and 6.7% to 49.26%, 
respectively for maximum temperature and minimum 
temperature. It means that BMA is able to produce the 
weather, in this case temperature, forecast which is more 
consistent. 
D. GOP Calibrated Temperature Forecast 

The first step of GOP is to estimate β0 and β1 bias-
corrected coefficient in order to obtain the residual for 
constructing empirical semivariogram. With 30-day 
training period, the GOP models for both temperature are 
given on Eq. (28). 

, ,

, ,

max.temp 1.785 0.959tmaxscr

min.temp 25.963 0.131tminscr
s t s t

s t s t

= +

= −
 (28) 

In general, for GOP model, the bias-corrected coefficient 
on Eq. (28) is retained. The next step then is to construct 
exponential semivariogram, particularly for the maximum 
temperature, shown on Figure 7. 

 

 
Figure 7. Empirical semivariogram of maximum temperature over 30-

day training period. 
The semivariance on figure 7 is roughly constant after 

reaching the distance about 8.69 kilometres. It implied that 
the maximum temperature between two stations is no 
longer dependent after 8.69 km, with sill recorded at 3.65. 
The high amount of sill might cause the greater variance of 
estimation or influence the forecast. 

Figure 7 also indicates that spatial inconsistency is exist 
upon maximum temperature in particular. On some 
distance pairs, there are few bins which have semivariance 
far greater than others. Since these patterns are seen on 
bins representing distance 50 km or more, it might be 
triggered by Citeko station situated on Puncak plateau. It 
has been the biggest effect on the unexpected 
inconsistency. Regardless of above fact, Table 6 shows the 
forecast along with GOP predictive interval, represented 
by 5th percentile and 95th percentile on January, 31st 2009.    

TABLE 6. 
GOP FORECAST AND ITS CONFIDENCE LIMIT OF MAXIMUM 

TEMPERATURE ON JANUARY 31ST, 2009. 
Station Obs. (°C) NWP(°C) GOP(°C) P5 (°C) P95 (°C) 

Kemayoran 28.8 26.43 26.82 24.28 30.14 

Priok 28.7 26.55 26.48 23.73 30.52 

Cengkareng 28.6 26.42 28.75 24.41 29.75 

Pd. Betung 29.0 26.49 27.80 24.44 30.25 

Curug 28.3 26.26 26.64 23.63 29.66 

Tangerang 29.2 26.34 26.22 23.93 30.79 

Citeko 25.0 26.77 28.73 24.60 31.34 

Dermaga 27.8 26.73 27.60 24.41 31.00 

As shown on Table 6, GOP clearly manages to improve 
the bias correction rate, reflected on the RMSE of GOP 
(2.12° C) which is higher than of NWP (2.18° C), although 
the rate is somewhat less than 5%. It might have been the 
impact of spatial inconsistency mentioned before. It means 
GOP is severely vulnerable and risky in case of inadequate 
location of interest, inappropriate data properties, data 
mishandle, etc. 
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E. The assesment of the best calibration method 
After carrying out both calibration method, BMA and 

GOP, one should verify and compare which method gives 
the better forecast based on few indicator presented on 
Table 7, using the same 30-day training period. Based on 
Table 7, the maximum temperature forecast is more 
accurate using BMA, while the minimum temperature 
using mean ensemble (the average of PLSR, PCR, and 
Ridge). Furthermore, BMA manages to better calibrate 
both temperature than GOP, indicated by less CRPS. 
Hence, BMA would yield the weather forecasts which are 
more accurate and reliable than GOP, particularly on those 
eight stations at Jabotabek.  

TABLE 7. 
THE COMPARATION OF FORECAST METHODS OVER 30-DAY TRAINING 

PERIOD. 
Assessment Method Type of Forecast TMAX. TMIN. 

RMSE (°C) 

NWP 2.745 2.01 

Mean ensemble 1.058 0.805 

BMA 1.053 0.819 

GOP 3.07 2.67 

CRPS 
BMA 0.576 0.451 
GOP 1.54 1.43 

V. CONCLUSION  
Some parameters of BMA and GOP, such as the weight 

and variance of BMA and the spatial parameters of GOP, 
should be estimated by iterative approach, for instance EM 
and L-BFGS respectively. For 30-day training period, the 
accuracy of BMA is not different than of the three 
members, while the former was more reliable, indicated by 
less CRPS. Furthermore, BMA manages to calibrate the 
forecast, indicated by the coverage closer to 50%. Lack of 
fit, though, is still owned by GOP since it has higher 
RMSE. From both method, BMA forecasts apparently 
have greater accuracy and precision. 
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