The 6th International Seminar on Science and Technology (ISST) 2020 July 25th 2020, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Analysis of the Factors Affecting Delay in Housing Projects in XYZ Group)

Panji Bawono Saputro and I Putu Artama Wiguna Departement of Technology Management, Institut Teknologi Sepuluh Nopember, Surabaya *e-mail*: panbws@gmail.com

Abstract-Success in completing projects on time is one of the essential goals, both for the owner and the contractor. XYZ Group, a holding of several companies in the real estate, has delayed more than 53% of housing projects. The impact of delays is time overrun, cost overrun, deviations in the quality, disputes, negative social consequences, arbitration, and idling resources. This paper studied a list of construction delay causes gathered from the literature. It starts by exploring factors causing project delays from the research and finding 48 causative factors, followed by distributing preliminary questionnaires to expert respondents to obtain 23 causes for housing project delays. The primary survey held on 55 respondents consisting of technical directors, project managers, project engineers, quality control, logistics, and project planners. Relative Importance Index (RII) calculated, and according to the highest values, the top five delay causes of housing projects are determined. Objectives of project delays from the owner and contractor are "Late issuing of approval of design documents by the owner," and "Changing government political/economic situation or policy." The cause of project delays from the owner is "Shortage of labour from the contractor," "Changes to work completed by the owner," and "Failure of the contractor to complete the work." Meanwhile, "Slow delivery of resources required by the contractor," "Changes in details by the owner," "Rework due to quality and final results by the contractor," is the cause of project delays from the contractor.

Keywords—Cause of Delay, Contractor, Housing, Owner, Project Delay.

I. INTRODUCTION

YZ Group is a holding of several companies which have main activities in real estate services. The main activity of these companies is the construction of residential areas and public facilities in residential locations in East Java. Based on data from the engineering department, in January 2016 -September 2019, there were more than 53% of the delay in completion of housing project work. Different definitions of delay were found, and the delay is the most common, costly, complicated and risky problem encountered in construction projects. Delay is the time overrun either beyond the completion date specified in a contract or beyond the date that the parties agreed upon for delivery project, Assaf and Al-Hejji [1].

Kikwasi, Sambasivan and Soon in research on the impact of delays in construction projects in Tanzania and Malaysia, explain the impacts of delays such as time overrun, cost overrun, dispute, negative social impact, arbitration, total abandonment, litigation and idling resources [2-3]. The purpose of this study is to identify and analyze factors that are thought to cause delays in the implementation of housing projects in the XYZ Group.

Proboyo explained 45 factors causing a delay which was divided into several aspects, namely planning and scheduling, scope and work documents, organizational system, coordination and communication, preparedness/resource prepared, inspection system, control and evaluation work, and other (outside the ability of owners and contractors) [4].

Marzouk and El-Rasas focused on the causes of construction delays in the Egyptian construction industry [5]. The main objective of the research is to identify and rank the major causes of delays for engineering projects. The research was used interview and questionary survey to 33 experts in Egypt, identified 38 delay factor and classified under seven groups: owner, consultant, contractor, material, labour and equipment, project, and external.

Aziz and Abdel-Hakam in exploring delay causes of road construction projects in Egypt, identified 239 factors and determined the most significant factors [6]. It was classified under the following 15 primary classifications. Main factors of delays are owner financial problems/client finance/financial ability for the project, shortage in equipment/insufficient numbers, inadequate contractor experience (work) causing an error, shortage (availability) in construction materials, and equipment failure (breakdown).

Fallahnejad explored delay causes in Iran gas pipeline projects [7]. The researcher examined the previous 24 projects, including contract documents, correspondence, progress reports, minutes of meetings and final contractor reports regarding delays. It has identified 43 delay factors that divided into nine groups: the low ability of the contractor to provide imported material, unrealistic contract durations imposed by the client, slow delivery of material by the client, slow land expropriation due to resistance from occupants, clients' change orders, large quantities of extra work, type of project bidding and award, delays in contractor's payment by the client, obtaining permits from governmental organization, delays in suppliers and subcontractors' work, and contractor's poor cash flow management.

Hwang, Zhao, & Ng on the research in critical factors affecting schedule in public housing projects in Singapore, identified 18 causes of a delay from the questionnaire from 115 respondent consist of the contractor, consultant and owner [8]. Top five causes of delays are site development, finance by contractor, coordinating parties, planning and scheduling, contractor experience.

Sweis et al explored the causes of delay in construction projects in Jordan [9]. Data on the study variables have been

July 25th 2020, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

	Categorized groups that cause delay in projects					
S/N	Stage		Category group item	Related ID	cause	Total number of causes
01 Dianaina			Planning and scheduling related cause group	01:06		6
01	Flaining		Scope and work documents (contract) related cause group	07:10		4
02	Procurement		Resource prepared related cause group	11:17		7
03	Construction		Organizational system, coordination and communication related cause group	18:31		14
04	Control Monitoring	and	Inspection system, control and evaluation work related cause group	32:41		10
05	External		Other (outside the ability of owners and contractors) related cause group	42:48		7
05	External		Other (outside the ability of owners and contractors) related cause group	42:48		7

Table 1. Categorized groups that cause delay in project

collected through a structured questionnaire from 30 construction, consultant firms and owner located in Jordan. Significant causes of delays are bad planning and scheduling, lack of finance by contractor, change order from the owner, poor of labour skill and lack of competency by an engineer.

Sambasivan and Soon in causes and effects of delays in the Malaysian construction industry, identified 28 causes of a delay from the interview and questionnaire surveys from 30 consultants, owner and contractor [3].

Primary causes are contractor's improper planning, contractor's poor site management, inadequate contractor experience, client's finance and payments for completed work, problems with subcontractors, shortage in material, labour supply, equipment availability and failure, lack of communication between parties, mistakes during the construction stage.

Based on the synthesis of previous studies, 48 causes of delays were obtained and were divided into six (6) major groups and stages according to the project cycle, as shown ini Table 1 that causes delay in construction project, which are used in this paper, as follows; (1) Uneffective and unrealistic project schedule by owner; (2) Incomplete identification of work by the contractor; (3) Uncontrolling sequence work planning by the owner; (4) Unrealistic duration of work by owner; (5) Owner and contractor's improper planning; (6) Ineffective construction method by the contractor; (7) Incomplete/conflicts of design drawings details and specifications; (8) Slow in design by owner; (9) Late issuing of approval of design documents by the owner; (10) The disagreement on design between contractor and owner; (11) Slow delivery of resources required by the contractor; (12) Shortage of labour from the contractor; (13) Shortage of material for contractor; (14)Shortage in equipment/insufficient numbers by contractor; (15)Financing by contractor during construction; (16) Owner financial problems; (17) Lack of material or equipment by owner; (18) The slowness of the owner decision-making process; (19) Difficulty of coordination between various parties (contractor and subcontractor) working on the project by owner; (20) Late land handover by owner/slow site clearance; (21) Insufficient communication between the owner and contractor or other parties; (22) Accidents during construction - labor injuries - infectious disease; (23) Unlimited pending by owner; (24) Additional order by owner during construction; (25) Changes to work completed by the owner; (26) Delay by sub-contractor from the contractor; (27) The contractor does not schedule the submission of sample material; (28) Delay in request and approval material samples by owner; (29) Slow permit by owner; (30) Changes in details by the owner; (31) Changes in scope of work by owner; (32) Slowly material test by owner; (33) Failure of the contractor to complete the work; (34) Rework due to quality and final results by the contractor; (35) Slowness progress evaluation by owner; (36) Inadequate supervision and regulation work by the owner; (37) The low productivity level of labours; (38) Poor qualification of the contractors technical staff; (39) Inefficient inspection and control of work by the owner; (40) Owner's personal managerial skill and qualification; (41) Skill and motivation labour's by contractor; (42) Unforeseen site conditions; (43) Restricted access at site; (44) Act of God (Fire, flood, storm, earthquake); (45) Labour demonstration; (46) Riot, plague, war; (47) Vandalism by third party; (48) Changing government political/economic situation or policy [3-9].

This research aimed to identify the most important cause of delay that affects housing projects in XYZ Group, from owner and contractor perspective based on Relative Importance Index (RII) analysis.

II. RESEARCH METHODS

The methodology of this paper is listed as the following items; (1) Gathering the causes: The thoroughness of the literature review gathers several of 48 causes; (2) Defining the causes into groups: Different numbers of groups were found in the literature review, and it was found that for a particular cause, it can be placed in research in a group different from the other research; (3) The questionnaire survey: For the 48 different delay factors were identified. The questionnaires were developed into two major: Preliminary survey and main survey; (4) Distribute a preliminary survey and interview with six experts; (5) Distribute the primary survey, to get significant factors that cause delays in housing project XYZ Group. A 55 respondent that consist of technical directors, project managers, project engineers, quality control, logistics, and project planners. A five-point Likert scale ranging from 1 (not important) to 5 (extremely important) was used to categorize the importance of causes; (6) Take an instrument test: validity and reliability test; (7) Data are gathered and computing by using a RII, taking in view of owner and contractors. Agreement on the ranking of the importance of the causes of delay between the parties is analyzed.

III. RESULT AND DISCUSSION

A. The Preliminary Survey

The preliminary survey is held to eliminate the irrelevant causal factor found in the literature, which indicated never

July 25th 2020, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Table 2.				
	Preliminary survey e	expert data		
ID	Position	Last Education		
Exper	t 1 Technical Director	Bachelor Engineering		
Exper	rt 2 Project Managers 1	Bachelor Engineering		
Exper	rt 3 Project Managers 2	Bachelor Engineering		
Exper	rt 4 Project Managers 3	Bachelor Engineering		
Exper	rt 5 Project Managers 4	Bachelor Engineering		
Exper	t 6 Project Planner	Master Engineering		
	Table 3.			
	Result of prelimina	ry survey		
ID	Indicator			
X1	Owner and contractor's improp	ber planning		
X2	Slow in design by owner			
X3	Late issuing of approval of des	ign documents by the owner		
X4	The disagreement between v contractor and owner	working drawings between		
X5	Slow delivery of resources requ	uired by the contractor		
X6	Shortage of labour from the con	ntractor		
X7	Shortage of material for contra	ctor		
X8	The slowness of the owner dec	ision-making process		
X9	Changes to work completed by	the owner		
X10	Delay by sub-contractor from t	he contractor		
X11	The contractor does not schedu material	ile the submission of sample		
X12	Delay in request and approval	material samples by owner		
X13	Slow permit by owner			
X14	Changes in details by the owne	r		
X15	Failure of the contractor to con	plete the work		
X16	Rework due to quality and fina	results by the contractor		
X17	Inadequate supervision and reg	ulation work by the owner		
X18	The low productivity level of la	abours		
X19	Inefficient inspection and contr	ol of work by the owner		
X20	Unforeseen site conditions	-		
X21	Changing government political	economic situation or policy		
X22	Religious holiday			
X23	X23 Rice planting season			

happened and caused delays in the XYZ Group, involved six experts with working experience is more than 15 years in XYZ Group. Expert data can be seen on Table 2. From 48 causal factor that found, 27 factors eliminated dan adding two elements (Table 3). It can be seen in Table 3.

B. The Main Survey

A number of 55 respondents (technical directors, project managers, project engineers, quality control, logistics, and project planners) were distributed and valid responses valid responses were obtained. The collected data were analyzed through Relative Importance Index (RII) method. The analysis included ranking the different causes according to the relative importance indices. The analysis revealed the most contributing factors causing delays.

The causes of delay in housing projects will be looked at from different perspectives. Respondents profiles are included in the following Table 4 about the professionalism. The owner and contractor`s data are shown in Table 5 and Table 6.

C. Validity Test

Validity test conducts to assess the validity of the questionnaire variables represented the measuring function of research. It using Pearson Product Moment Correlation 2-tailed, significant factor 5%, rtable: 0,2656.

Table 4. Profession of respondent				
S/N	Profession of respondents	Number of respondents	Percentage (%)	
1	Owners	25	46	
2	Contractors	30	54	
Total		55	100	
2 Total	Contractors	55	100	
Table 5.				

Owner respondent data				
S/N	Category		Number of respondents	Percentage (%)
1	Age	\leq 30 years old 31 - 45 years old \geq 46 years old	4 17 4	16,00 68,00 16,00
2	Last Education	Senior high school/ below Diploma/Bachelor degree Master/ Doctorate	11 12 2	44,00 48,00 8,00
3	Years of Experience	degree ≤ 5 years 6 - 10 years 11-20 years ≥ 21 years	5 10 9 1	20,00 40,00 36,00 4,00

Contractor respondent data				
S/N	Category		Number of respondents	Percentage (%)
		\leq 30 years old	3	10,00
1	Age	31-45 years old	15	50,00
		\geq 46 years old	12	40,00
		Senior high		
		school/below	17	56,67
2	Last	Diploma/Bachelor		
2	Education	degree	13	43,33
		Master/ Doctorate		
		degree	0	0,00
		\leq 5 years	3	10,00
3	Years of	6 - 10 years	10	33,33
	Experience	11-20 years	11	36,67
		\geq 21 years	6	20,00

Each factor that causes a delay in the primary survey calculated by Eq. 1.

$$\mathbf{r} = \frac{n \sum XY - \sum X \sum Y}{\sqrt{(n \sum X^2 - (\sum X)^2)(n \sum Y^2 - (\sum Y)^2)}}$$
(1)

Where *r* is Pearson Correlation; *n* is the total number of respondents; X is Independent Variable (score for each question); Y is the Dependent Variable (total score for every question). The result of validity test can be seen on Table 7. Value of Pearson Correlation each factor computed and compared to r_{table} . If the value of the Pearson Correlation is less than r_{table} , this factor becomes not valid and will be eliminated from this research.

Validity test eliminates two invalid factors (X13 and X23) because Pearson Correlation/r less than r_{table} . There are 21 delay factors for this research (Table 7).

D. Reliability Test

Reliability test using a Cronbach-alpha method. Twentyone factors from validity test, compute using Eq. 2 and result of reliability test can be seen on Table 8.

$$r = \left(\frac{n}{n-1}\right) \left(1 - \frac{\sum \sigma_t^2}{\sigma_t^2}\right) \tag{2}$$

July 25th 2020, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Table 7.				
		Result of va	lidity test	
ID	Pearson Correlation/r	Result	Conclusion	Mean
X1	0.4535	$r > r_{table}$	Valid	3.3273
X2	0.3774	$r > r_{table}$	Valid	3.3636
X3	0.3381	$r > r_{table}$	Valid	3.6364
X4	0.4928	$r > r_{table}$	Valid	3.0000
X5	0.4922	$r > r_{table}$	Valid	3.2364
X6	0.4297	$r > r_{table}$	Valid	3.3636
X7	0.5983	$r > r_{table}$	Valid	2.9091
X8	0.4497	$r > r_{table}$	Valid	3.0364
X9	0.5627	$r > r_{table}$	Valid	3.2909
X10	0.4253	$r > r_{table}$	Valid	3.2182
X11	0.4104	$r > r_{table}$	Valid	2.9273
X12	0.3851	$r > r_{table}$	Valid	3.0182
X13	0.1158	$r < r_{table}$	Not Valid	3.4727
X14	0.4905	$r > r_{table}$	Valid	3.1455
X15	0.4714	$r > r_{table}$	Valid	3.1273
X16	0.3530	$r > r_{table}$	Valid	3.4000
X17	0.4836	$r > r_{table}$	Valid	2.8727
X18	0.5820	$r > r_{table}$	Valid	3.0727
X19	0.3346	$r > r_{table}$	Valid	2.9636
X20	0.3114	$r > r_{table}$	Valid	3.0182
X21	0.4331	$r > r_{table}$	Valid	3.4182
X22	0.3382	$r > r_{table}$	Valid	2.7818
X23	0.0061	$r < r_{table}$	Not Valid	2.6909

Where r is Cronbach-alpha; n is the total number of question item; $\Sigma \sigma_t^2$ is the total score of variances each item; σ_t^2 is total variance. If alpha score > 0.60, variable in this questionnaire is reliable, if alpha score > 0.60, variable in this questionnaire is not reliable. The reliability test found that 21 factors are reliable and these factors used on research (Table 8).

E. Ranking of Delay Causes

To provide a degree of importance for each delay cause, an important index was calculated in the same way as shown in Eq. (3).

$$RII = \sum_{i=1}^{N} WiFi/(A * N)$$
(3)

Where RII is Relative Importance Index of each factor for each group of respondents; Wi is the weighting given to each factor by the respondents (ranging from 1 to 5); Fi is the frequency of respondent for each weight; A is the highest weight and N is the total number of respondents.

This formula was used by Aziz and Abdel-Hakam, Gebrehiwet and Luo, Aibinu and Odeyinka and Doloi et al. [6, 10-12]. The result of analysis Relative Importance Index (RII) can be seen on Table 9.

1) Ranking of Delay Causes Under Each Group

RII analysis was conducted on 25 respondents from the owner and 30 respondents from the contractor. RII calculation is done on 21 variables divided into several stages of the project to get the highest-ranking factor to the lowest.

Based on Table 9, there is a common perception between the owner and the contractor based on RII's calculations about the cause of the delay in housing projects in the XYZ Group on the planning stage. From the owner and contractor, the essential cause is filled by variable X3, namely "Late issuing of approval of design documents by the owner" with a calculated RII (Relative Importance Index) value of 0.760 from the owner's side and a calculated RII value of 0.700 of contractor side.

Table 8. Result of reliability test						
Cronbach's Alpha N of items		8	Con	clusion		
Alpha 21			Reli	able		
Table 9. Result of RII on planning stage						
Cause			Ow	ner	Conti	ractor
Cause	, ,		RII	Rank	RII	Rank
Delay	group: plannin	g and schedu	ıling			
X1	Owner and c improper planr	ontractor`s	0,712	3	0,693	2
Delay	group: scope a	nd work doc	uments (o	contract)		
X2	Slow in design	by owner	0,728	2	0,660	3
X3	Late issuing of design doc the owner	f approval uments by	0,760	1	0,700	1
X4	The dis between drawings contractor and	sagreement working between owner	0,664	4	0,547	4
Table 10.						
	Resu	lt of RII on p	procurem	ent stage		
			Owner		Contra	rtor

Causa		Owner		Contractor	
Caus	e	RII	Rank	RII	Rank
Dela	y group: resource prepared				
	Slow delivery of				
X5	resources required by the	0.672	2	0.673	1
	contractor				
X6	Shortage of labour from	0.704	1	0.667	2
70	the contractor	0.704	1	0.007	2
X 7	Shortage of material for	0 664	3	0 560	3
11/	contractor	0.004	5	0.500	5

On Table 10, there are differences between the owner and the contractor regarding the most influence the cause of the delay. From the owner, the most crucial cause is filled by variable X6, namely "Shortage of labour from the contractor" with the calculated RII (Relative Importance Index) value of 0.704. Whereas from the contractor, it was the X5, " Slow delivery of resources required by the contractor " with a calculated RII (Relative Importance Index) of 0.673.

As seen in Table 10, there are differences in perceptions between the owner and the contractor regarding the delay in housing projects in XYZ Group based on the results of RII calculations. From the owner's point of view, an essential cause is filled by variable X9, namely " Changes to work completed by the owner " with a calculated RII (Relative Importance Index) value of 0.672. Whereas from the contractor's point of view, it was found that the variable X14, namely " Changes in details by the owner," was the most crucial cause with the calculated RII (Relative Importance Index) value of 0.660.

As seen in Table 11, found differences between the owner and the contractor regarding an essential cause of the delay based on analyzing of RII. From the owner, the most crucial cause is X15, "Rework due to quality and final results by the contractor" with a calculated RII of 0.744 (Table 12). While from the contractor, it was found that the X16, "Performing rework related to quality and final results by the contractor," was the most crucial cause with RII calculation value of 0.627.

July 25th 2020, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

TT 1 1 1 1

Table 11.					
	Result of RII on c	onstructi	on stage		
Causa		Owner		Contrac	tor
Cause		RII	Rank	RII	Rank
Delay	group: organizational	systen	n, coc	ordination	and
comm	unication				
	The slowness of the				
X8	owner decision-making	0.616	4	0.620	3
	process				
vo	Changes to work	0.672	1	0.653	2
Λ)	completed by the owner	0.072	1	0.055	2
X 10	Delay by sub-contractor	0.656	3	0.620	3
710	from the contractor	0.050	5	0.020	5
	The contractor does not				
X11	schedule the submission	0.544	6	0.600	6
	of sample material				
	Delay in request and				
X12	approval material	0.608	5	0.607	5
	samples by owner				
X14	Changes in details by	0 664	2	0.660	1
1117	the owner	0.004	-	0.000	1

Table 12.

	Result of RII on control and monitoring stage				
C		Owner		Contra	ctor
Cause	3	RII	Rank	RII	Rank
Delay	group: inspection system, c	ontrol and	l evaluat	ion work	related
cause	group				
X15	Failure of the contractor	0 744	1	0.580	5
1115	to complete the work	0.744	1	0.500	5
	Rework due to quality				
X16	and final results by the	0.728	2	0.627	1
	contractor				
	Inadequate supervision				
X17	and regulation work by	0.568	5	0.613	2
	the owner				
X18	The low productivity	0.632	3	0 593	3
1110	level of labours	0.052	5	0.575	5
	Inefficient inspection				
X19	and control of work by	0.616	4	0.593	3
	the owner				

There is a common perception between the owner and the contractor based on the results of RII calculations, according to Table 13. The essential cause is variable X21, "Changing government political/economic situation or policy" with a calculated RII value of 0.712 from the owner's side and a calculated RII value amounting to 0.640 from the contractor Based on the results of the RII analysis found eight dominant factors causing delays in housing projects in the XYZ Group, both from the perspective of the owner and from the contractor. All these factors are presented in Table 14.

IV. CONCLUSSIONS

Based on analysis of RII, identified eight significant factors cause of delays in XYZ Group. The cause of project delays from the owner and contractor are "Late issuing of approval of design documents by the owner," and "Changing government political/economic situation or policy." The owner has significant factors for delays. It is "Shortage of labour from the contractor,"Changes to work completed by the owner," and "Failure of the contractor to complete the work." The cause of project delays from the contractor, is "Slow delivery of resources required by the contractor," "Changes in details by the owner," "Rework due to quality and final results by the contractor."

Table 13 Result of RII on external stage Owner Contractor Cause RII Rank RII Rank Delay group: other (outside the ability of owners and contractors) related cause group Unforeseen site 0.640 X20 2 0.633 2 conditions Changing government X21 political/economic 0.712 1 0.640 1 situation or policy

0.600

3

0.620

3

X22

Religious holiday

Table 14. Result of RII analysis			
Stage	Owner	Contractor	
A. Planning	Scope and work documents X3: Late issuing of approv by the owner, RII: Rank 1 Resource prepared	(contract) al of design documents	
B. Procurement	RII: Rank 2	X5: Slow delivery of resources required by the contractor, RII: Rank 1	
	X6: Shortage of labor from the contractor, RII: Rank 1	RII: Rank 2	
	Organizational system, communication	coordination and	
C. Construction	x9: Changes to work completed by the owner, RII: Rank 1	RII: Rank 2	
	RII: Rank 2	X14: Changes in details by the owner, RII: Rank 1	
	Inspection system, control a X15: Failure of the	and evaluation work	
D. Control and	work, RII: Rank 1	X16: Rework due to	
Monitoring	RII: Rank 2	quality and final results by the contractor, RII: Rank	
E. External	Other (outside the abi contractors) X21: Changing governm situation or policy, RII: Ran	lity of owners and ent political/economic nk 1	

REFERENCES

- S.A. Assaf and S. Al-Hejji, "Causes of delay in large construction projects," *International Journal of Project Management*, 2006, pp. 349–357.
- [2] G.J. Kikwasi, "Causes and Effects of Delays and Disruptions in Construction Projects in Tanzania." *Australasian Journal of Construction Economics and Building - Conference Series*, 2012, pp. 52-59.
- [3] M. Sambasivan and Y. W. Soon, "Causes and effects of delays in Malaysian construction industry." *International Journal of Project Management*, 2007, pp. 517-526.
- [4] B. Proboyo, "Keterlambatan Waktu Pelaksanaan Proyek : Klasifikasi Dan Peringkat Dari Penyebab-Penyebabnya". Dimensi Teknik Sipil, Vol. 1, no.1, pp. 49–58, Maret 1999.
- [5] M.M. Marzouk and T.I El-Rasas, "Analyzing Delay Causes in Egyptian Construction Projects." *Journal of Advanced Research*, 2014, pp. 49–55.
- [6] R.F. Aziz and A.A. Abdel-Hakam, "Exploring delay causes of road construction projects in Egypt," *Alexandria Engineering Journal*, 2016, pp. 1515-1539.
- [7] M.H. Fallahnejad, "Delay causes in Iran gas pipeline projects," *International Journal of Project Management*, 2013, pp. 136–146.

July 25th 2020, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

- [8] B.G. Hwang, X. Zhao and S.Y. Ng, "Identifying the critical factors affecting schedule performance of public housing projects." Habitat International, 2013, pp. 214-221.
- [9] G. Sweis, R. Sweis, A. Abu Hammad, and A. Shboul, "Delays in construction projects: The case of Jordan," International Journal of Project Management, 2008, pp. 665–674.
 [10] T. Gebrehiwet and H. Luo, "Analysis of Delay Impact on Construction
- Project Based on RII and Correlation Coefficient: Empirical Study." in

Creative Construction Conference 2017 (CCC 2017), 2017, pp. 366-374.

- [11] A. Aibinu and H. Odeyinka, "Construction delays and their causative factors in Nigeria," Journal Construction Engineering Management, 2006, pp. 667-677.
- H. Doloi, A. Sawhney, K.C. Iyer, S. Rentala, "Analysing factors [12] affecting delays in Indian construction projects", International Journal Project Management, 2012, pp. 479-489.