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AbstractThis research presents a method of detecting critical situation for longitudinal vehicle dynamics. First, the 

dynamical system is modeled that consists of longitudinal tire force and longitudinal aerodynamic drag force. The longitudinal 

tire force is well known to be highly nonlinear. However, one can classify it in three types of operation : normal zone, critical 

zone and skidding zone. Normal zone represents the linear part of longitudinal tire force while in the critical zone, the vehicle 

does no longer correspond to the linear system. The difference between the nonlinear force and its linear model is considered as 

a fault that has to be detected. The aim of this project is to detect that fault. As the system depends on the speed of the vehicle, a 

Linear Parameter Varying (LPV) dynamical system is considered and an LPV fault detection approach is handled. An extension 

of the parity-space approach for LPV systems is applied to detect the fault on the vehicle. In order to accommodate the existence 

of the faults, the H∞ robust control system has been designed. Afterward, it is found that the controller can accommodate the 

faults. This research have been also implemented on a 1/5th scale vehicle by the simulation. 
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I. INTRODUCTION
1
 

egarding the demand of automotive market in 

comfort and safety aspect that increase during the 

last 30 years, it is important to develop intelligent system 

in these aspects.  Due to the fact that the development of 

process increases, it will be more complex and faults on 

systems can lead to serious consequences. In this part, 

the role of robust control /uncertain modeling is 

important since it permits to omit unmodeled dynamics 

as almost all physical systems are not perfectly known. 

Due to the issue of fault detection and isolation (FDI) 

strategies, different model-based methods have been 

used. Analytical redundancy-based methods are the most 

handled approaches including parity space approach 

implemented by [1].  

The main work of this research is to apply fault 

detection approach which is presented in [1] and design 

H∞ robust control to the LPV system. In this work, the 

1/5th scale vehicle is chosen as LPV system which is 

modeled by LTI system with dependant parameter. For 

this research, the following works should be done. 

a. Modeling non linear system 

b. Implementation fault detection approach 

c. Design an H∞ robust control to the LPV system 

d. Analyzing the stability of the robust control system 

In this paper, it is necessary to divide into three parts 

to introduce these works. The first part represents the 

LPV modeling of the 1/5th scale vehicle. In the second 

part, the methods which are used will be presented. It 

consists of parity space approach for fault detection and 

an H∞ robust synthesis to control to the LPV system. 

The result is presented in the third part. Finally, in the 

last part, the conclusion of the whole work is presented 

II. SYSTEM DESCRIPTION AND MODELING 

A. Linear Parameter Varying (LPV) 

The first step of the LPV approach consists in 

"translating" (if necessary) the nonlinear model into a 

LPV one. The general idea consists in finding a 
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transformation that turns the nonlinear model into a 

linear parameterized one. This parameterized (LPV) 

model should match the whole nonlinear system state 

space range. 

A nonlinear system can be described, in a non unique 

way, as a LPV system. The general aim is to find 

 )(xσρ Pρ such that the LPV model is equivalent to 

the nonlinear one, i.e.: 

),())(())(( wxfwxσBxxσA   

where xwxf ),(  is the nonlinear dynamical system 

equation and )(xσρ  is known and depends on the 

measured signal. The main problem is obviously to find 

such (.)σ function. 

According to the previous nonlinear and LTI 

dynamical system definitions, a natural extension of the 

LTI definition lies in the LPV system description which 

gives somehow a trade-off between nonlinear and LTI 

formulations, as described thereafter.  

Given the linear matrix functions 
xnnnxnnxn zw CBA  ,, and wz xnn

D  , a Linear 

Parameter Varying (LPV) dynamical system (ΣLPV) can 

be described as: 

ΣLPV :



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where )(tx is the state which takes values in a state space 

)(, twX n
  is the input taking values in the input 

space wn
W   and )(tz  is the output that belongs to 

the output space sn
Z  . Then, (.)σρ   is a varying 

parameter vector that takes values in the parameter space 

Pρ (a convex set) such that, 

Pρ  lT
lρρρ  (.)](.)[:(.): 1   and 

  lρρρ iiii ,,1  

where l  is the number of varying parameters. Then, 

from a general viewpoint, 

R 
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a. ρρ (.)  a constant value, ΣLPV is a Linear Time 

Invariant (LTI) system. 

b. )((.) tρρ  , ΣLPV is a Linear Time Varying (LTV) 

system, where the parameter is a priori known. 

c. ))(((.) txρρ  , ΣLPV is a quasi-Linear Parameter 

Varying (qLPV) system. 

d. )((.) tρρ   and an external parameter, ΣLPV is an 

LPV system. 

An LPV system has a linear state space representation 

but the matrices are dependent on the varying 

parameters. Then, a LPV system can be viewed as a 

combination of LTI systems, or, in some specific cases 

as a Linear Differential Inclusion (LDI). 

The advantage of such a representation, among others, 

is that it allows to model nonlinear parameters 

description, while keeping the linear structure. Then it 

allows the use of tools of the linear control theory (with 

some slight modifications). In other words, LPV systems 

can model nonlinear plants through the linearization of 

these nonlinear models along the trajectories of ρ. The 

difference between LTI (Linear Time Invariant) and 

LPV (Linear Parameter-Varying) lies on the scheduling 

parameters. 

B. Modeling of The System 

The vehicle dynamics are influenced by longitudinal 

tire forces, aerodynamic drag forces, and gravitational 

forces. Figure 1 represents longitudinal forces acting on 

a vehicle moving on an inclined road. A force balance 

along the vehicle longitudinal axis yields  

aeroxx FFVm   

ix TRFωI   

where m represents mass of the vehicle. Vx and ω is 

respectively a longitudinal speed and rotational speed of 

the vehicle. With I being the wheel moment of inertia, R 

being the tire radius in meter, and Ti being the torque in-

wheel motor. Fx is longitudinal tire forcé Moreover, Faero 

is the equivalent longitudinal aerodynamic drag force 

where the definition of Faero is  

xaeroaero VkF   

where kaero is the aerodynamic drag coefficient. One of 

the most used in the community is the model of Pacejka 

or longitudinal force Fx is given as a function of the 

angle of drift wheel,  

)))]arctan((arctan(sin[ λBλBEλBCDFx   

This model is based on experimental measurement that 

used to refine parameters B, C, D, E and where λ is 

longitudinal slip ratio. The graphic representation of this 

function is presented in Figure 2. From this model, one 

finds three operation areas(Figure 2): 

a. normal : where the tire friction is proportional to the 

slip ratio λ. Note that remaining in this zone is nice 

for control purpose since it is kept advantage of the 

linear structure. 

b. critical : this is the area where the tire friction is 

almost maximal. 

c. skidding zone : in this area, the tire friction 

decreases. 

Thus, in normal operation, the expression of 

longitudinal tire force Fx is  

ijx CF   

where the Cij is the slope of the linear part. In this work 

is considered the accumulative tire stiffness among the 

four tires. Longitudinal tire/road models, that defines the 

longitudinal friction force between the road and the tire 

contact path. Such a force is mainly characterized by the 

slip ratio (λ) which defines the relative speed between 

the longitudinal speed of the wheel and the linear 

rotational speed of the wheel, defined as  


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During accelerating, linear rotational speed (Rω) must 

be greater than the longitudinal speed (Vx). While during 

breaking, linear rotational speed (Rω) must be smaller 

than the longitudinal speed (Vx). In order to take non-

linear aspect of the tire, the longitudinal tire force 

contains linear and non-linear part. Then, it can be 

defined as 

Γ xx FF  

We note that in the linear area (normal), the difference 

between the two models is small, while in the critical 

area, the difference is much more significant. 

From the model given, longitudinal vehicle dynamics 

can be represented as  
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The parameter variant ρ = 
 

  
 for braking and ρ = 

 

  
 

for accelerating. The problem of detection of the critical 

situation is a problem of faults detection where Γ is 

faults which is detected. Therefore, the practical 

observation is done to obtain the parameter shown in 

Table 1. 

III. FAULT DETECTION AND ROBUST CONTROL 

METHODOLOGIES 

In this work, there are two problems. The first problem 

is the fault detection to detect the nonlinear tire force. 

This problem will be handheld by the parity space 

approach which is presented in the first section. 

Afterwards, the second problem is how to accommodate 

the fault or how to run in the normal zone. The H∞ robust 

control is proposed to solve the problem. It will be 

presented in the second section. 
A. Parity Space Approach for Faults Detection 

Fault detection and isolation are important to improve 

the safety and reliability of practical control systems. 

The fault informators called residuals are small if the 

system is operating normally, but are large if there are 

faults in the system. This report evaluate the parity space 

approach in detecting faults in a discrete state space 

system. The goal is to detect faults that exists in LPV 

system. The system is represented by, 
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)()()()1( kEfkBukAxkx   

)()()()( kFfkDukCxky   

Applying parity-space approach, the output y is 

expressed along a horizon s. It is obtained the following 

expression: 

)()()()( kFGkxHkUGkY sAEFossabds   
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x(k) and Fs(k) have the similar formula with Ys(k). And 

we can make GAEF by seeing the formula of GABD.  

a. Definition 1: 

The parity equation at time k is given by: 

)))(()(())(( sABDs
T UkρGkYkρWr   

where, r(k) is the residual. r(k) is decoupled from the 

system state when the system is normal and it is 

identically zero if the unknown non linear terms are 

identically zero. Otherwise, r(k) is nonzero, it means that 

there are faults. 

b. Definition 2: 

Matrix W is selected as a basis for the nullspace of Hos 

(orthogonal by Hos, W⊥H). Therefore, 

0os

T HW  

B. H∞ Robust Control System 

The objectives of any control system [Skogestad and 

ostlethwaite(1996)] is to shape the response of the  

system to a given reference and get (or keep) a stable 

system in closed-loop, with desired performances, while 

minimising the effects of disturbances and measurement 

noises, and avoiding actuators saturation, this despite of 

modeling uncertainties, parameter changes or change of 

operating point.  

In this paper, it is chosen a method of performance 

analysis using sensitivity function. Then, small gain 

theorem is applied to observe the stability of close loop 

system. 

IV. METHOD 

Acquired data for this study are from an air 

reciprocating compressor, with the following 

specification: 

a. Type   :  single stage, single acting 

b. Speed  :  630 rpm 

c. Power  :  2 HP 

d. Drive  :  electrical motor 380 volt, 

          1430 rpm 

e. Working pressure :  7 kg/cm2 

f. Speed reduction :  belt transmission 

 

The two variables being measured are vibration 

acceleration of a cylinder head and a pressure of a 

cylinder chamber. Both variables are taken 

simultaneously, and then are plotted against a crank 

angle. Measurement at the same time is triggered by used 

of a tachometer. Measurement data are recorded by a 

data logger, which in turn are downloaded to a digital 

computer, so that cylinder chamber pressure and 

vibration graphs can be displayed. Varied working 

pressures are conducted to verify the effects of modified 

valve seat profiles. 

On the outer side of a cylinder head is placed an 

accelerometer equipped with a magnetic base to measure 

the ensuing vibration. A hole is drilled in the cylinder 

head to place a pressure transducer, so that a chamber 

pressure can be measured. The vibration and the cylinder 

chamber pressure are measured at the same time, i.e. 

both signals are measured at the corresponding crank 

angle. Data are taken for different discharge valve seat 

designs, as shown by Figure 7. Each design is applied on 

the compressor, in order to know its effect on the 

compressor. 

Given a SISO system as Figure 3, The output and the 

control input performances can be studied through 4 

"sensitivity" functions only.  

From Figure 3, it is obtained the output performance 

equations below, 

inyr GdGKdGK
sKsG

sy 



)()(1

1
)(  

or it can be represented as Figure 4 where S is sensitivity 

function, T is complementary sensitivity function, and 

S(s) + T (s) = 1. 

From Figure 4, the plant output y(t) can track the 

reference r(t) by making the complementary sensitivity 

function T(s) equal to 1. In the other side, the effect of 

the output disturbance dy (t) on the plant output y(t) can 

be made small by making the sensitivity function S(s) 

small, the same manner applies to di(t). Lastly, the effect 

of the measurement noise n(t) on the plant output y(t) can 

be made small by making the complementary sensitivity 

function T(s) small. 

While, with the same manner, it is obtained the input 

performance equations as  

inyr KGdKKdK
sGsK

su 



)()(1

1
)(  

or it can be represented as Figure 5. 

From Figure 5, The transfer function KS(s) should be 

upper bounded so that u(t) does not reach the physical 

constrains, even for a large reference r(t). 

In the other side, the effect of the input disturbance 

di(t) on the plant input u(t) can be made small by making 

the sensitivity function S(s) small. Then, the effect of the 

measurement noise n(t) on the plant input u(t) can be 

made small by making the sensitivity function KS(s) 

small (in high frequencies). 

From the explanation above, it can be concluded that 

there is trade-off that can be reached with one aims: 

a. to reject the disturbance effects in low frequency  

b. to minimize the noise effects in high frequency 

We will require : 
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a. S and SG to be small in low frequencies to reduce 

the load (output and input) disturbance effects on the 

controlled output 

b. T and KS to be small in high frequencies to reduce 

the effects of measurement noises on the controlled 

output and on the control input (actuator efforts) 

In terms of control synthesis, all these specifications can 

be tackled in the following problem: find K s.t 

1


SGW

TW

KSW

SW

SG

T

u

e

 

where, W∗(s) is a selected weighting function on each 

template on sensitivity function. However, the simpler 

following one is often studied such as, find K s.t 

1


KSW

SW

u

e  

since the latter allows to consider the closed-loop output 

performance as well as the actuator constraints. 

C. Small Gain Theorem 

In order to assure that the system is stable, the small 

gain theorem approach is chosen. Consider the system 

shown by Figure 6. Then, the small gain therorem is 

defined as, 

c. Definition 3.  

Small Gain Theorem: Suppose M ∈ RH∞. The 

closed-loop system is well-posed and internally 

stable for all ∆ ∈ RH∞ such that: 

1. δ


Δ if and only if δ/1M(s) 


 

2. δ


Δ if and only if δ/1M(s) 


 

The first step which is taken to analyse stability of the 

system is deciding the type of uncertainties. There are six 

types of uncertainty. In this report, only the output 

multiplicative uncertainty is presented. Figure 7 

represents the block diagram of the system with 

uncertainty. With the output multiplicative uncertainty, it 

is assumed nominal stability is achieved, i.e M ∈ RH∞. 

Then, the closed-loop system is robustly stable, i.e 

internally stable for all ∆O ∈ RH∞ such that 1O 


yTω or 

it can be formed as :  

1:;1Δ..;)( O 
 yOOOOp TωCNStsGωIG ΔΔ  

where Gp is system with all the possible uncertainties. Ty 

is complementary sensitivity function and ∆ is the 

parametric uncertainty. 

V. IMPLEMENTATION METHOD FOR THE SYSTEM 

The implementation method for the system is focused 

on the vehicle which run during acceleration. This 

chapter consists of two sections. The first section 

presents the residual synthesis for fault detection. The 

second section presents the H∞ controller synthesis. 

Then, some analysis of the robust stability are presented 

in that section. Afterwards, the close loop response 

system will be presented. 

A. Detection of critical situations 

The system of longitudinal vehicle dynamics that 

depends on the scheduling parameter, ρ(k) is given by 

)()()()()()1( kEfkuρBkxρAkx   

)()()()( kFfkDukCxky   

Considering that the uncertainties change slowly in time, 

the observability matrix of the system is given by : 
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C
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This system is observable with 
ωR

ρ
1

 . Using only the 

wheel speed measurement, the matrix Hos of the system 

with horizon s = 3 is : 
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Then, the matrix Hos is decomposed as : 
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Then, the formula of the residual for this case is 

r(k) = W (ρ(k))
T
 (Ys(k) − GABD(ρ(k))Us) 

In addition, it is necessary to determine the threshold 

(rk). The value of the threshold is chosen by the 

observation of the linear system in normal condition. 

Since, the condition of the system depends on the control 

input (ui), it is chosen 0.03 as an control input. Then, the 

fault detection approach shows that the residual remain 

small. It also indicates the limit of the residu is 0.023. 

Therefore, it can be decided that the threshold (rk) is 

0.023. 

In order to evaluate the performance of the detector of 

critical situation, 2 cases has been studied. The critical 

situation depends on the control input. One can clearly 

feel that abrupt wheel torque will cause critical situation. 

In this case, 2 situations are considered. 

Firstly, a small input of ui= 0.05 is considered. The 

force is presented in the first figure in Figure 8. It can be 

shown that the force remains close to the linear one. The 

fault detection approach shows that the residual remain 

small. 

Secondly, a more abrupt input, ui = 0.1 is considered. 

In this condition, the system run in normal area, critical 

area and skidding area as the left figure in Figure 9 

shows. In this case, the system has some faults because 

of critical condition.  

B. H∞ Controller Synthesis 

In this section, it is presented the response of the 

closed loop system. There are two kinds of observation. 

Firstly, the observation about performance analysis using 

sensitivity function with the position of template is 

represented by Figure 10. This observation is applied to 

the linearized system with the operating point ρ0 = 0.27. 

Therefore, the matrices of the linear system are presented 

as : 
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Secondly, the stability of the LPV system is proved 

thanks to the small gain theorem. In order to synthesis 

the controller, we use the theorem of performance 

analysis using sensitivity function. The weights are 

applied to the system as Figure 10 where The S, SG, T 

and KS curve are shown in Figure 11 with the 

configuration shown in Figure 10. 

From the result, it is found that T is small in high 

frequencies. But KS is high in high frequencies. It means 

that the controller cannot reduce the effects of 

measurement noise on the controlled output and on the 

control input (actuator). In the other side, S and SG are 

small in low frequencies. It shows that the controller can 

reduce the load (output and input) disturbance effects on 

the controlled output. This result is not the best 

performance because it runs for a linear system. 

Considering that the plant is non linear, it is necessary to 

manipulate the bandwidth, in order to be able to cope the 

nonlinearity of the system. 

In the section, the small gain theorem is used to 

analyse the robust stability. Due to the case that output 

multipicative uncertainty is applied to the system, then 

the nominal stability is reached when . 

In order to apply the theorem, it is defined all the 

possibility of the scheduling parameter (ρ) where ρ = ρ0 

+ ∆. ρ is scheduling parameter where ρ0 is nominal 

scheduling parameter and ∆ is uncertainty. The first step, 

one must define boundary of rotational speed. For this 

vehicle, we define lower bound, ω = 36.036 rad/s and 

upper bound ω = 83.333 rad/s. It is important to define 

the nominal rotational speed where . In this case, one 

choose ω0 = 49.383 so that ρ0 = 0.27. 

Finally, one check robust stability using small gain 

theorem. The aim of that is applying a given controller 

K, we determine whether the system remains stable for 

all plants in the uncertainty set. 

Using small gain theorem, one got the Figure 8. Gp is 

all possibility of plant. From these figure, it is shown that 

condition nominal stability is reached because  

T
WsG

sGsG p




1

1
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Δ
 

Afterward, the controller is simulated to the plant. The 

first experiment is to detect the normal and critical 

condition based on the input speed of the system. Based 

on the Figure 13, the greater the speed, the greater the 

faults even though the residual has relative small 

differences with the threshold. 

Next, we observe the response of the system compared 

with applying other controller to verify the perfomance 

of the system in term of vehicle speed tracking. It is 

obtained the output of the system and residual of the 

system which are represented on Figure 14 and 15.  

In this section, it is given the reference 10 km/h for 

first 25 seconds, afterward, it is increased to be 20 km/h. 

From this figure, it is shown that there are faults when 

the reference changes. The first figure represents the 

closed-loop system with the LQR controller, and the 

second figure represents the closed-loop system with the 

H∞ robust controller. LQR controller cannot cope 

nonlinearity of the system, therefore, the faults occured 

after changing the reference. IAE (Integral Absolute 

Error) of this system is 28.25. In the other hands, when 

the H∞ robust controller is applied to the system, the 

faults occured for 0.1 seconds even though it has high 

overshoot. And IAE of this system is 2.704. Thus, the 

implementation of the H∞ robust controller for 

longitudinal dynamics system has better result than 

implementation of LQR controller. 

VI. CONCLUSION  

In this work, the problem of fault detection and 

accommodate the fault for LPV system have been 

solved. The longitudinal tire system is a non linear 

system which has two kinds of operation zone, normal 

and critical zone. The parity space approach detects the 

existence of faults on the critical zone. Therefore, the 

H∞ robust controller has been implemented to the plant 

in order to accomodate the faults. 

The H∞ robust controller is designed for linear system 

with manipulate the bandwidth ωb and ωbc in order to 

cope non linear problem. However, the result has been 

verified by small gain theorem and shows that the 

closed-loop system is nominal stable for all the 

possibility of schedulling parameter. 

In order to test whether the performance of the closed-

loop system is good, the LQR controller is applied to the 

system. And the result shows that the response H∞ 

robust control is better than its LQR control system 

because H∞ robust controller can keep the system run on 

the normal zone. 
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Figure 1. Longitudinal forces acting on a vehicle  

moving on an inclined road 

 

 
Figure 2. Longitudinal tire force 

 

 
Figure 3. Control System Configuration 

 

 
Figure 4. Output Performance 

 

 
Figure 5. Input Performance 

 

 
Figure 6. System with uncertainty

 

 
Figure 8. Condition 1 of The System 

 

 

 
Figure 9. Condition 2 of The System 

 
Figure 10. The system with some weigths
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Figure 11. Performance Analysis using Sensitivity Function 

 

 
Figure 12. Analysis Robust Stability using Small Gain Theorem 

 

 
Figure 13. Analysis of Critical Situation 

 
Figure 14. Output of the control system (1) 

 

 
Figure 15. Output of the control system (2) 

 

 


