The Usage of Fly Ash for Reclaimed Asphalt Pavement (RAP), Asphalt Concrete Binder Course (AC-BC) Filler

Ratna Handayani¹, Ria Asih Aryani Soemitro¹, Herry Budianto¹, and Januarti Jaya Ekaputri¹

Abstract– Material Reclaimed Asphalt Pavement (RAP) and fly ash as waste that whose is abundant. So interesting to be researched. The research will be started by analyze of RAP, be obtained characteristics of aggregates and asphalt, then analyzed on an aggregate gradation; if aggregate gradation does not on gradation envelope will be required the addition of new aggregate. If asphaltdoes notmatch the requirements then also be required the addition of new asphalt. The next will be made the composition of mixdesignfor Asphalt Concrete - Binder Course (AC-BC) with variations addition of fly ash volume as filler. The aim of research to get variations addition of fly ash volume (4%,5% and 6%)

Keywords – Asphalt Concrete - Binder Course (ACBC), Reclaimed Asphalt Pavement (RAP), fly ash.

I.INTRODUCTION

The material potential from *Cold Milling Machine* known as *Reclaimed Asphalt Pavement* (RAP) as the material of the National Road Maintenance in East Java has enough large, \pm 50.000 m³ every year RAP cointainedasphaltandaggregate. Its can be reused as ubstitution of new asphalt and aggregate in road pavement. The material recycling of RAP can save natural resources (aggregate, sand and asphalt) and reduce the rate environmental damage caused by mining (Hassan, 2009)

Fly ash is coal waste that whose is abundant, the number of fly ash wasbe estimated as 13 million tonin2015.

The aim this researchis optimalized the usage of fly ash for *Reclaimed Asphalt Pavement* (RAP), *Asphalt Concrete - Binder Course* (ACBC) filler.

II.METHOD

The steps of this researches are:

- 1. Analysis RAP to getcharacteristics of aggregates and asphalt, then analyzed on an aggregate gradation, if aggregate gradation does not on gradation envelope will be required the addition of new material (aggregate and asphalt).
- 2. If asphaltdoes notmatchthe requirements then also be required the addition of new asphalt.
- 3. Make the composition of mix- designforAsphalt Concrete - Binder Course (AC-BC) with variations addition of fly ash volume as filler.

III. RESULTS AND DISCUSSION

The result of the research are :

A. Characteristics of RAP (aggregate and asphalt)and Characteristics of new material (agregat dan aspal).

RESULT THAT ACCORDING TO REQUIREMENT								
Characteristic of rap (agregat)No	Type of test	Requirement	Result					
1	Soudness (%)	Max 12	3,15					
2	Abrasi (%)	Max.40	20,19					
3	Stickness aggregat to aspal	Min 95	> 95					
4	Specific gravity gr/cm3	-	2,6					
5	Water absorption (%)	-	1,42					

Table 1 shows that all of resultthat according to requirement at Spesifikasi Binamarga 2010 Revisi 3 Figure 1 shows that sieve size 1/2and sieve size 3/8out layer from gradation envelope so it does not meet the requirements spesifikasi Binamarga 2010 Revisi 3. In order to meet requirements its, it is necessary to add new material.

Table 2 shows that all of resultthat according to requirement at Spesifikasi Binamarga 2010 Revisi 3, except in test of penetrasi with result is 49 mm, while required that (60 - 70) mm. Which on requirement (60-70) mm. Table 3shows that all of resultthat according to requirement at Spesifikasi Binamarga 2010 Revisi 3.

Figure 2 shows gradation for Coarse aggregate (CA), Medium aggregate (MA) and Fine aggregate (FA) that will be used as additional materialatRAP (aggregate) so the combined aggregate gradation can be included in "the envelope gradations" that according Spesifikasi Binamarga 2010 revisi 3.

By comparing the physical properties of the new material on the specifications, so it can be concluded that characteristic of aggregates from Asphalt Mixing Plant (AMP) PT surya Marga Utama (SMU) in Pasuruan and Asphalt Pen 60/70 meets the required spesifications so it can be usedasmixture of Asphalt Concrete Binder Course (AC-BC).

The composition of mix- designforAsphalt Concrete -Binder Course (AC-BC) with variations addition of fly ash volume as filler.

In order to requireenvelope gradation according to specifications, so new aggregate is added consisting of:

- a. Coarse agregat(10-20)
- b. Medium agregat(5-10)
- c. Fine agregat (0-5)

¹Ratna Handayani, Ria Asih Aryani, Herry Budianto, and Januarti Jaya Ekaputri are with Departement of Civil Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia. E-mail: ratnay1999@gmail.com; soemitroraa@gmail.com; budiantoherry@yahoo.com; januarti_je@yahoo.com.

presented in table 5 and figure 3.

- d. Fly ash as filler
- B. The first of Combined gradation

Based on gradation of RAP aggregate and new aggregate gradation (CA, MA, FA) and fly ashso be

TABLE 2. Characteristic of rap (asphalt)									
No	Type of test	Requirement	Result						
1	Asphalt content in the mix	-	4%						
2	Penetrasi pada 25°C (mm)	60-70	49						
3	Viskositas 135°C (cSt)	> 300	2.3						
4	Titik lembek (°C)	> 48	55						
5	Daktilitas pada 25°C, (cm)	>100	> 120						
6	Specific gravity (gr/cm3)	> 1,0	1,067						

TABLE 3. CHARACTERISTIC OF NEW AGREGAT									
No	Type of test	Requirement	Result						
1	Soudness (%)	Mak 12	8,04						
2	Abrasi(%)	Mak.40	15,91						
3	Stickness aggregat to aspal	Min 95	> 95						
4	Specific gravity gr/cm3	-	2,84						
5	Water absorption (%)	-	1,26						

done the composition of mix design. The details of its are

Figure 1. Gradation of RAP Agregat

Figure 2. Gradation of NewAgregat

The 2nd International Seminar on Science and Technology August 2nd 2016, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

	TABLE 4.									
	CHARACTERISTIC OF NEW ASPHALT									
No	Type of test	Result								
1	Penetrasi at 25°C (mm)	60-70	62							
2	Viskositas 135°C(cSt)	<u>></u> 300	393							
3	Titik Lembek(°C)	<u>></u> 48	49,1							
4	Daktilitas pada 25°C (cm)	<u>≥</u> 100	> 140							
5	Titik Nyala (°C)	<u>></u> 232	240							
6	SolubilityTrichloroethylene	<u>≥</u> 99(%)	99,82							
7	Specific gravity (gr/cm3)	<u>≥</u> 1,0	1,03							
	Residu Test of	FFOT Result								
8	Weight Loss (%)	<u>≤</u> 0.8	0,21 %							
9	Penetrasi at 25°C (mm)	<u>≥</u> 54	58 %							
10	Daktilitas pada 25°C (cm)	≥100	100							

TABLE 5.
COMBINED AGGREGATE GRADATION WITHFLY ASH OF4 %

	Proporsition	Sieve Size									
Explanation	(%)					(%L	olos)				
Inch		3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
Mm	-	19.0	12.5	9.5	4.75	2.36	1.18	0.600	0.300	0.150	0.075
Data of Aggregate Grading											
- RAP		100	100	85,34	51,64	35,91	27,08	20,88	15,56	10,18	5,00
- CA		90,43	45,89	27,02	13,98	13,27	13,18	0	0	0	0
- MA		100	99,55	94,12	23,70	2,26	1,56	1,41	1,33	1,26	0,85
- FA		100	100	100	99,88	65,80	38,99	23,19	14,19	8,78	3,49
- Fly Ash		100	100	100	100	100	100	100	100	100	100
Agregat Combinated											
- RAP	20	20	20	17,07	10,33	7,18	5,42	4,18	3,11	2,04	1,00
- CA	20	18,09	9,18	5,40	2,80	2,65	2,64	-	-	-	-
- MA	31	31,00	30,86	29,18	7,35	0,70	0,48	0,44	0,41	0,39	0,26
- FA	25	25,00	25,00	25,00	24,97	16,45	9,75	5,80	3,55	2,20	0,87
- Fly Ash	4	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
Total of mix	100	98,09	89,04	80,65	49,44	30,99	22,28	14,41	11,07	8,62	6,14
Gradation Envelope Spek.											
Maks.		100	90	82	64	49	38	28	20	13	8
Min		90	75	66	46	30	18	12	7	5	4
Ideal Gradation		95,0	82,5	74,0	55,0	39,5	28,0	20,0	13,5	9,0	6,0

Figure 3. combined aggregate gradation withflyashof4 %

Figure 4. Combined Aggregate Gradation withFly Ashof5 %

 TABLE 6.

 COMBINED AGGREGATE GRADATION WITHFLY ASH OF5 %

	Proporsition	Sieve Size									
Explanation	(%)	(% Lolos)									
Inch		3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
Mm		19.0	12.5	9.5	4.75	2.36	1.18	0.600	0.300	0.150	0.075
Data of Aggregate Grading											
- RAP		100	100	85,34	51,64	35,91	27,08	20,88	15,56	10,18	5,00
- CA		90,43	45,89	27,02	13,98	13,27	13,18	0	0	0	0
- MA		100	99,55	94,12	23,70	2,26	1,56	1,41	1,33	1,26	0,85
- FA		100	100	100	99,88	65,80	38,99	23,19	14,19	8,78	3,49
- Fly Ash		100	100	100	100	100	100	100	100	100	100
Agregat Combinated											
- RAP	20	20	20	17,07	10,33	7,18	5,42	4,18	3,11	2,04	1,00
- CA	19	17,18	8,72	5,13	2,66	2,52	2,50	-	-	-	-
- MA	31	31,00	30,86	29,18	7,35	0,70	0,48	0,44	0,41	0,39	0,26
- FA	25	25,00	25,00	25,00	24,97	16,45	9,75	5,80	3,55	2,20	0,87
- Fly Ash	5	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00	5,00
Total of mix	100	98,18	89,58	81,38	50,30	31,85	23,15	15,41	12,07	9,62	7,14
Gradation Envelope Spek.											
Maks.		100	90	82	64	49	38	28	20	13	8
Min		90	75	66	46	30	18	12	7	5	4
Ideal Gradation		95,0	82,5	74,0	55,0	39,5	28,0	20,0	13,5	9,0	6,0

Figure 3 shows that the addition of the aggregate with the composition according to table 5 can result the combined aggregate gradation that according to specifications. Based on table 5, the composition of the combined aggregate torequire envelope gradation is RAP (Reclaimed Asphalt Pavement) 20%, CA (Coarse Aggregate) 20%, MA (Medium Aggregate) 31%, FA (Fine Aggregate) 25% and fly ash 4%.

The 2nd International Seminar on Science and Technology August 2nd 2016, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

The second of combined gradation. С.

Based on gradation of RAP aggregate and gradation of new aggregate (CA, MA, FA) and fly ashso be done the composition of mix design. The details ofits are presented in table 6 and figure 4. Figure 4 shows that the addition of the aggregate with the composition according to table 6 can result the combined aggregate

gradation that according to specifications. Based on table 6, the composition of the combined aggregate torequire envelope gradation is RAP Reclaimed Asphalt Pavement)20%, CA (Coarse Aggregate) 19%, MA (Medium Aggregate) 31%, FA (Fine Aggregate)25% and fly ash 5%.

		Сомы	NED AGGI	REGATE GI	RADATION	WITHFLY A	ASH OF6 %				
	Proporsition	Sieve Size (% Lolos)									
Explanation	(%)										
Inch		3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
Mm		19.0	12.5	9.5	4.75	2.36	1.18	0.600	0.300	0.150	0.075
Data of Aggregate Grading											
- RAP		100	100	85,34	51,64	35,91	27,08	20,88	15,56	10,18	5,00
- CA		90,43	45,89	27,02	13,98	13,27	13,18	0	0	0	0
- MA		100	99,55	94,12	23,70	2,26	1,56	1,41	1,33	1,26	0,85
- FA		100	100	100	99,88	65,80	38,99	23,19	14,19	8,78	3,49
- Fly Ash		100	100	100	100	100	100	100	100	100	100
Agregat Combinated											
- RAP	20	20	20	17,07	10,33	7,18	5,42	4,18	3,11	2,04	1,00
- CA	28	25,32	12,85	7,57	3,91	3,72	3,69	-	-	-	-
- MA	26	26,00	25,88	24,47	6,16	0,59	0,41	0,37	0,35	0,33	0,22
- FA	20	20,00	20,00	20,00	19,98	13,16	7,80	4,64	2,84	1,76	0,70
- Fly Ash	6	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00
Total of mix	100	97,32	84,73	75,10	46,38	30,65	23,31	15,18	12,29	10,12	7,92
Gradation Envelope Spek.											
Maks.		100	90	82	64	49	38	28	20	13	8
Min		90	75	66	46	30	18	12	7	5	4
Ideal Gradation		95,0	82,5	74,0	55,0	39,5	28,0	20,0	13,5	9,0	6,0

TABLE 7

D. The third of combined gradation

Based on gradation of RAP aggregate and gradation ofnew aggregate (CA, MA, FA) and fly ashso be done the composition of mix design. The details of its are presented in table 7 and figure 5.

Figure 5. Combined Aggregate Gradation withFlyAsh of6 %

Figure 5 shows that the addition of the aggregate with the composition according to table 7 can result the combined aggregate gradation that according to specifications. Based on table 7, the composition of the

combined aggregate torequire envelope gradation is RAP (Reclaimed Asphalt Pavement)20%, CA (Coarse Aggregate) 28%, MA (Medium Aggregate) 26%, FA (Fine Aggregate) 20% and fly ash 6%.

IV. CONCLUSION

Result from the usage of fly ash for RAP, AC-BC filler that according to Bina Marga Specification at 2010 Revisi 3 are :

- 1. The composition of the combined aggregate is RAP (Reclaimed Asphalt Pavement) 20%, CA (Coarse Aggregate) 20%, MA (Medium Aggregate) 31%, FA (Fine Aggregate) 25% and fly ash 4%.
- 2. The composition of the combined aggregate is RAP (Reclaimed Asphalt Pavement)20%, CA (Coarse

Aggregate) 19%, MA (Medium Aggregate) 31%, FA (Fine Aggregate) 25% and fly ash 5%.

3. The composition of the combined aggregate is RAP (Reclaimed Asphalt Pavement)20%, CA (Coarse Aggregate) 28%, MA (Medium Aggregate) 26%, FA (Fine Aggregate) 20% and fly ash 6%.

REFERENCES

- [1] Direktorat Jenderal Bina Marga, Kementrian Pekerjaan Umum, "Spesifikasi Umum Edisi 2010 Revisi 3, 2010.
- [2] NAPA Education Foundation, Hot Mix Asphalt Materials Mixture Design and Construction, 1996