Identification the Highest Risk of Performance Based Contract in Bojonegoro-Padangan Road Projects

Eko Prihartanto¹, M. Djaya Bakri¹

Civil Engineering Departement, The Borneo Tarakan University¹

Abstract— Development of road facilities and infrastructure in order to meet the need to improve the welfare of the community. Contract of project activity is carried out to bind both parties in this case, Owner and contractor as an interested party has the purpose to bind the rights and responsibilities in completing project activities. Performance based contracts are the innovative contracts presented by the Indonesian government to improve the quality of construction of road construction. The risk of applying this type of contract will be investigated so that it will be known to the highest risk, given the performance based contract has 4 stages such as design, build, operate, and maintenance. The project that implements the performance based contract under study is the Bojonegoro-Padangan road project, East Java. In the process of knowing the highest risk variable that occurs in the implementation, the researcher uses a simple probabilistic concept to determine the highest risk of each stage of a performance based contract. The correspondent of the contractor is PT Pembangunan Pembangunan (Persero) Tbk - PT Basuki Rahmanta Putra (Joint Operational) on the road construction project Bojonegoro – Padangan, East Java. The results obtained from this study from the implementation of performance-based contracts on the Bojonegoro-Padangan road construction project with the highest risk event gain is at the Design stage: Project budget. Build Stage: The vendor's offer price is higher than estimated. Operate Phase: Cashflow delay. Maintenance Stage: Short-term focus fails to minimize long-term costs..

Keywords—Construction, Contract, Maintenance, Road.

I. INTRODUCTION

The Indonesian government has implemented a performance based contract as a form of contract that is expected to provide innovation on the quality of construction. The adoption of this contract has not been fully implemented as performance-based contracts are still under probation, the risks of their application are not fully known. Performance based contracts have 4 stages, such as Design, Build, Operate, and Maintenance. All of these stages have different risks when applied. The implementation of the Bojonegoro-Padangan road construction that has implemented this contract becomes the object of the researcher to know the risks that occur at each stage. Projects that have entered this maintenance phase will also provide an overview of the dominant risks that occur during implementation. Unknown information about the risks that arise from the implementation of performance based contracts is an opportunity for research, and developed to determine the probability of events. Therefore, it can be used as a consideration for the government to be applied in various regions in Indonesia.

I.1 Problem Formulation

How is the highest risk of each stage of performance based contracts implemented in the Bojonegoro-Padangan road construction project be known?

I.2 Aim

Aims to perform the highest risk analysis of each stage of performance based contracts implemented in the Bojonegoro-Padangan road construction project.

I.3 Limitations of research

- a. Risks that occur in Performance Based Contract for road projects.
- b. Respondents in this research is the provider of goods / services that is the main contractor in the activities on the national road project using Performance Based Contract.
- c. Details of the risks and studied were obtained from preliminary literature and surveys.

II. LITERATURE STUDY

II.1 Forms of Construction Contracts The form of construction contract according to (1) can be reviewed from various aspects, namely:

- a. Aspect Of Cost Calculation
 - 1. Fixed Lump Sum Price
 - 2. Unit Price
- b. Aspect of Service Calculation
 - 1. Cost Without Fee
 - 2. Cost Plus Fee
 - 3. Cost Plus Fixed Fee
- c. Aspects of Payment Method
 - 1. Monthly Payment
 - 2. Stage Payment
 - 3. Contractor's Full Prefinanced
- d. Task Division Aspects
 - 1. Conventional Contract
 - 2. Specialist Contract
 - 3. Design Construct / Build, Turnkey
 - 4. Engineering, Procurement and Construction
 - 5. Build, Operate and Transfer
 - 6. Force Account

II.2 Performance Based Contract

Performance Based Contract (PBC) is a type of contract with a clear objective and indicator that bases payments on the fulfillment of minimum performance indicators. Critical elements of effective PBC are well defined and clearly defined job statements in order to achieve performance standards (2)

II.3 Risk

(3) explained in his book entitled Risk Management for contractors, which explained that Risk is a variation in things that may occur naturally in a situation. Meanwhile, according to (4) Risk is a threat to life, property or financial benefits due to the dangers that occur. In general, risk is associated with probability of occurrence beyond the expected events

II.4 Risk Relationship on Performance Based Contracts According to (5) explains To know the relationship of risk at the Performance Based Contract stage identified risk will be known first variables and factors to be analyzed at each stage.

II.5 Road

Government Regulation No. 34 Year 2006 describes the Road is a land transportation infrastructure covering all parts of the road, including auxiliary buildings and equipment intended for traffic, located on the surface of the soil, above ground level, below ground and / or water, and On the water surface, except for railroads, lorries, and cable roads.

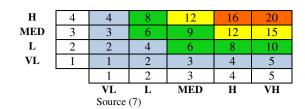
II.6 Simple Probabilistic Concepts

According to (6) an approach is developed using two criteria that are important to measure risk, namely:

- Probability is the possibility of an undesirable event.
 Impact is the level of influence or size of the impact
- on other activities, if unexpected events occur.

According to (7) the value of risk is the result of multiplication of the probability value of risk with the value of risk impact.

Table. 1 Score of Impact


Risk assessment can be formulated as follows: R = P x I Where : R = Risk level P = potential risk

		Impact	on Project	_	
Description	• I mescale		Cost (% increase)	Score	
VLO	<10%	<10%	<5%	1	
LO	10-30%	10-20%	5-10%	2	
MED	30-50%	20-40%	10-15%	3	
HI	50-70%	40-50%	15-30%	4	
VHI	>70%	>50%	>30%	5	

I = the level of risk impact

With this formula the risk assessment is not based on absolute estimation, but Use the interval class as shown in table 1 as follows:

Table. 2							
Probability Impact Grid							
b a	VH	5	5	10	15	20	25

Table. 3 Risk Level Score Risk 1-5 Very Low 5-10 Low 10-15 Medium 15-20 High 20-25 VeryHigh

Source (8)

III. METHOD

The concept of this descriptive study to perform the highest risk analysis at each stage of Performance Based Contract on the project that has been implemented.

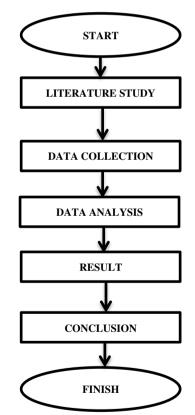


Figure.1 Flowchart of Research

III.1 Data collection

(1)

Data collection has been carried out from research references related to the subject and object of research, from the references such as journals, textbooks, theses, seminars and research reports.

Primary data collection has been done by researchers by:

1. Interview

2. Questionnaire

Data has been obtained after the construction phase during the maintenance service period with 1643 calendar days from the year 2015 until 2019 on the Bojonegoro-Padangan road project.

III.2 Respondent

Respondent in this research is contractor who apply contract or Performance Based Contract in East Java area is PT Pembangunan Pembangunan (Persero) Tbk - PT Basuki Rahmanta Putra (Joint Operational).

IV. RESULTS AND DISCUSSION

Assessment analysis for risk has been obtained from questionnaires that have been processed from risk variables arising from contractors who have implemented.

Table. 4 Risk Event Analysis						
No	VARIABLES OF RISK	Р		Ι		RISK
	OF KISK	Total	Avg	Total	Avg	- EVENT
	PT	PP (CC	ONTRAC	CTOR)		
Α	DESIGN					
1	Accuracy scope of work	20	2.857	23	3.286	9.388
2	Qualification engineer	21	3	18	2.571	7.714
3	Engineering communication with procurement	21	3	17	2.429	7.286
4	Use of technology for working methods	23	3.286	17	2.429	7.980
5	Project budget	23	3.286	22	3.143	10.327
6	Project implementation schedule	19	2.714	19	2.714	7.367
7	Design changes	15	2.143	17	2.429	5.204
8	Incomplete specs	15	2.143	17	2.429	5.204
9	Shop Drawing incomplete	16	2.286	17	2.429	5.551
10	Lack of design accuracy	19	2.714	18	2.571	6.980
11	Less sophisticated design and engineering	15	2.143	13	1.857	3.980
В	BUILD					
1	The vendor's offer price is higher than estimated	24	3.429	26	3.714	12.735
2	Availability of materials and human resources	8	1.143	15	2.143	2.449
3	Delays in the supply of materials and tools	15	2.143	11	1.571	3.367
4	Identification of materials and equipment	15	2.143	11	1.571	3.367
5	Vendor Quality Control	9	1.286	8	1.143	1.469

6	Procurement of control documents	15	2.143	7	1	2.143
7	Manufacturing process	15	2.143	12	1.714	3.673
8	Vendor	11	1.571	7	1	1.571
9	Performance Material	12	1.714	13	1.857	3.184
10	warranty Late approval	14	2	11	1.571	3.143
11	from the owner Disputes from	11	1.571	11	1.571	2.469
11	third parties Less experience	11	1.3/1	11	1.3/1	2.409
12	in inspection and shipping	14	2	7	1	2.000
С	OPERATE					
1	Site conditions different from	18	2.571	14	2	5.143
2	Restricting working hours	14	2	11	1.571	3.143
3	Quality control	10	1.429	11	1.571	2.245
	and ansurance The design can					
4	not be applied in the field	15	2.143	11	1.571	3.367
5	Additional time due to rework	13	1.857	15	2.143	3.980
6	Design changes	14	2	19	2.714	5.429
7	The supply of materials from third parties does not meet specifications	12	1.714	14	2	3.429
8	Forced mature	12	1.714	15	2.143	3.673
9	Friendship supervisor in making decisions	14	2	15	2.143	4.286
10	Cash flow delay	19	2.714	19	2.714	7.367
11	Disturbance from the surrounding environment	21	3	16	2.286	6.857
12	Disputes regarding the definition of specifications and documents	16	2.286	17	2.429	5.551
13	Duration in project implementation	12	1.714	15	2.143	3.673
14	Differences in availability of budgets with work progress	19	2.714	18	2.571	6.980
15	Quality of work does not meet the job	15	2.143	15	2.143	4.592
16	Unpredictable soil conditions	16	2.286	16	2.286	5.224
17	Inadequate specifications	14	2	15	2.143	4.286
18	Delayed payment termin progress	19	2.714	17	2.429	6.592
19	Licensing and regulation	16	2.286	17	2.429	5.551
20	The postponement is entangled in disputes	14	2	14	2	4.000
21	Differences in terms of	14	2	14	2	4.000

Regional Conference in Civil Engineering (RCCE) The Third International Conference on Civil Engineering Research (ICCER) August 1st-2nd 2017, Surabaya – Indonesia

	calculating the quantity of work					
22	Unexpected weather conditions	19	2.714	15	2.143	5.816
23	HSE Problems	17	2.429	17	2.429	5.898
24	Technical issues	18	2.571	13	1.857	4.776
25	The occurrence of differences between work sequences and performance indicators	13	1.857	11	1.571	2.918
D	MAINTENANC	E				
1	The quality of construction is ugly	12	1.714	21	3	5.143
2	Unexpectedly severe conditions	16	2.286	17	2.429	5.551
3	Short-term focus that fails for the long term	18	2.571	22	3.143	8.082
4	Difficulties in power resources	15	2.143	15	2.143	4.592
5	Occurrence during the warranty period	16	2.286	15	2.143	4.898
6	Traffic damage occurred	11	1.833	10	1.667	3.056
7	Fines due to response Attractive less quickly	11	1.571	10	1.429	2.245
8	Age design does not fit the plan	13	1.857	10	1.429	2.653

	Table. 5 Rankin	g of Risk					
DESIGN							
No	Scale	Ranking					
1	11 - 8.8	1					
2	8.8 - 6.6	2					
3	6.6 - 4.4	3					
4	4.4 - 2.2	4					
5	2.2 - 0	5					
	BUILD						
No	Scale	Ranking					
1	13 - 10.4	1					
2	10.4 - 7.8	2					
3	7.8 - 5.2	3					
4	5.2 - 2.6	4					
5	2.6 - 0	5					
	OPERATE						
No	Scale	Ranking					
1	8 - 6.4	1					
2	6.4 - 4.8	2					
3	4.8 - 3.2	3					

4	3.2 - 1.6	4
5	1.6 - 0	5
	MAINTENAI	NCE
No	Scale	Ranking
1	9.00 - 7.20	1
2	7.20 - 5.40	2
3	5.40 - 3.60	3
4	3.60 - 1.80	4
5	1.80 - 0	5

Risk event results have been known variable that has the highest risk ranking with the value entered in the scale. So it is known the highest variable of each stage in Performance Based Contract.

Table. 6 The Highest Risk of each stage on Performance Based Contract

A	DESIGN
1	Project budget
2	Accuracy scope of work
В	BUILD
1	The vendor's offer price is higher than estimated
С	OPERATE
1	Cash flow delay
2	Differences in availability of budgets with work progress
3	Disturbance from the surrounding environment
4	Delayed payment termin progress
D	MAINTENANCE
1	Short-term focus that fails for the long term

V. CONCLUSION

The results of the Highest Risk analysis of each stage of Performance Based Contract, such as:

- 1. Design :
 - a. Project budget (RE: 10,327)
 - b. Accuracy scope of work (RE: 9,388)
- 2. Build:

4.

- a. The vendor's offer price is higher than estimated (RE: 12.735)
- 3. Operate:
 - a. Cash flow delay (RE: 7.367)
 - b. Differences in availability of budgets with work progress (RE: 6.980)
 - c. Disturbance from the surrounding environment (RE: 6.857)
 - d. Delayed payment termin progress (RE: 6.592) Maintenance:
 - a. Short-term focus that fails for the long term (RE: 8.082)

VI. REFERENCES

- [1] **YASIN, NAZARKHAN.** KONTRAK KONSTRUKSI DI INDONESIA EDISI KEDUA. JAKARTA : PT GRAMEDIA PUSTAKA UTAMA, 2014.
- [2] ASIYANTO. MANAJEMEN RISIKO UNTUK KONTRAKTOR. JAKARTA : PT. PRADNYA PARAMITA, 2009.
- [3] **Soeharto.** *Manajemen Proyek Jilid 1.* Jakarta : Erlangga, 2001.
- [4] **PMI.** A GUIDE TO THE PROJECT MANAGEMENT BODY OF KNOWLEDGE (PMBOK GUIDE). S.L. : PROJECT MANAGEMENT INSTITUTE, 2008.
- [5] Perbandingan kontrak konstruksi di Indonesia dengan kontrak konstruksi Internasional. Lestari, I Gusti Agung Ayu Istri. 2013, GaneÇ Swara, pp. 64-69.
- [6] Pemodelan Hubungan Risiko Performance Based Contract Dengan Interpretive Structural Modeling (Studi Kasus Proyek Infrastruktur Jalan Di Wilayah Jawa Timur). Prihartanto, Eko and Wiguna, I Putu Artama. Surabaya: Institut Teknologi Sepuluh Nopember, 2015. Seminar Nasionas Teknik Sipil ITS XI. p. 63.
- [7] *Risk Management Infrastructure*. Williams, T. M. 1993, International Journal of Project Management, Vol. 11, pp. 5-10. 1.
- [8] *Extending The Risk Process to Manage Opportunities.* Hillson, D. 2002, International Journal of Project Management.