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Abstract―The high accuracy of software fault prediction can 

help testing effort and improving software quality. Previous 
researchers had proposed the combination of Entropy-Based 
Discretization (EBD) and Cluster-Based Classification (CBC). 
However, the irrelevant and redundant features in software fault 
dataset tend to decrease the prediction accuracy value. This 
study proposes improvement of CBC outcomes by integrating 
filtering feature selection methods. Filtering feature selection 
methods that will be integrated with CBC i.e. Information Gain 
(IG), Gain Ratio (GR), and One-R (OR). Based on the research 
using 2 datasets NASA public MDP (i.e. PC2 and PC3), the 
result shows that the combination of CBC and IG yields the best 
average accuracy value compared to GR and OR. It generates 
67.52% average of probability detection (pd) and 37.42% 
average of probability false alarm (pf). While CBC without 
feature selection yields 65.38% average pd and 49.95% average 
pf. It can be concluded that IG can improve CBC outcomes by 
increasing 2.14% average pd and reducing 12.53% average pf. 
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I. INTRODUCTION1 
Software fault prediction is very important to do, because 

the allocation of cost and testing resources are limited. In 
addition, software fault prediction can make testing process 
focus on fault-prone modules, so that test resources can be 
saved for other faulty-prone modules. Software fault 
prediction is the most efficient quality assurance activity, as 
it can reduce testing time by saving test resources [1].  

Previous researchers have proposed several methods to 
predict software fault, i.e. Genetic Programming, Decision 
Tree, Neural Network, Density-based Clustering, Case-
based Reasoning, Fuzzy Logic, Logistic Regression, and 
Naive Bayes [2]. In general, methods that can produce high 
predictive values tend to use a simple modeling technique 
i.e. Naive Bayes [3]. Naïve Bayes (NB) can generate about 
71% probability detection (pd) and 25% probability false 
alarm (pf) in 8 datasets of NASA public MDP [4]. When 
NB compared to the Cluster-based Classification (CBC) 
[2], then CBC can produce better predictive result, i.e. 
83.3% pd and 40% pf in 7 datasets of NASA public MDP. 
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However, some researchers have described that predictive 
models with irrelevant features as well as redundant 
features can generate lower predictive values. In previous 
research [5], filtering feature selection methods were used 
to improve NB result in predicting software fault using 
Turkish white-goods manufacturer datasets. Filtering 
feature selection methods used in the previous research 
were Gain Ratio (GR), Information Gain (IG), and One-R 
(OR). The result shows that the combination of NB and OR 
can yield the highest prediction accuracy value compared to 
NB and IG, NB and GR, and NB without feature selection. 

This study is proposed to improve CBC prediction values 
by using three methods of filtering features selection i.e. 
GR, IG, and OR. From that combinations, an analysis will 
be performed to find the best combination of CBC which 
can generate the highest pd and the lowest pf, and the best 
number of features used as input in CBC. The experiment 
was performed in 2 datasets NASA public MDP i.e. PC2 
and PC3. The combination of CBC and filtering feature 
selection methods are expected to improve software fault 
prediction result. 

II. LITERATURE REVIEW 
This chapter is described about related research on 

software fault prediction. In addition, there are also a 
description of software fault, NASA public MDP dataset, 
and basic supporting theories. The basic theories used in 
this chapter are entropy-based discretization (EBD), 
filtering feature selection (GR, IG, OR), and cluster-based 
discretization (CBC). 
A. Previous Research 

Systematic literature review by [6], [7], and [1] that 
discuss about finding solution on software fault prediction. 
The results show that solution by statistical method for 
predicting software fault has started to be abandoned, while 
the research area using data mining to predict software fault 
is the most popular. This is due to the wide variety of 
methods in data mining to improve the accuracy of 
software fault predictions. Data mining methods that can 
produce high prediction accuracy tend to use simple 
methods, such as NB. 

[4] was proposed a NB method for predicting software 
fault. The proposed method is applied to 8 NASA public 
MDP datasets by performing a log number preprocess 
combined with IG feature selection method. The results 
showed values of 71% pd and 25% pf.  

[8] proves that the classification of k-NN with 
discretization of numerical data using EBD in preprocess 
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can improve prediction accuracy. This is supported by hand 
geometry datasets that contain numerical data. In addition, 
the EBD method can reduce the possibility of over-fitting 
prediction models and process predictions more rapidly 
than continuous (numeric) data. 

[9] have tried a combination of NB with a preprocess 
EBD on two embedded software system fault datasets 
obtained from NASA's public MDP. The results show that 
EBD can help improve the accuracy of NB in predicting 
software fault. This study also proves that the 
characteristics of several embedded software system 
datasets on NASA public MDP are suitable for 
discretization with EBD. 

[10] and [11] propose a CBC method for predicting 
software faults. The first study combines CBC with EBD 
on three software fault datasets obtained from Turkish 
white good manufacturer Software Company. The results 
show that the accuracy of the CBC method with EBD is 
superior to the ANN method. While the second study did 
the same with the first study, but with the dataset used more 
diverse i.e. 7 datasets of software fault from NASA public 
MDP. The results showed that CBC and EBD yielded a 
higher degree of accuracy when compared to NB which 
previously tended to produce high accuracy values. The pd 
value increases to 83% and the pf value becomes 40%. 

[12] used a feature selection method to improve predicted 
accuracy results in NB. The study was conducted on the 
Turkish software industry dataset. The results showed that 
the OR feature selection method yielded the best value 
compared to the other four selection methods of IG, GR, 
RFF, and SU. 

[13] proposes a combination of NB methods with GR. 
The results show that the accuracy of software fault 
prediction on NASA public MDP dataset can be enhanced 
by the selection of GR features. To support a cooperative 
NB method on discrete data, the software fault data is first 
discretized into five categories at random point. 

[14] examines the effect of feature selection on the NB 
prediction model. The researcher uses five datasets 
obtained from UCI repository namely mushroom. Some 
feature selection methods that are integrated with NB are 
IG, GR, SU, OR, RFF, and chi-squared (CS). The results 
show that OR is the highest feature selection method in 
improving the accuracy of the NB method of classification. 
B. Software Fault 

Software fault are a major problem in software systems 
that need to be minimized to ensure it reliability [15]. Any 
software fault can always be observed during the testing 
process. Software fault can lead to software failures 
resulting in increased costs and attempts to correct the fault. 
Software failure signifies the low level of quality of the 
software. To improve the software quality level, software 
fault need to be minimized. The prediction of software fault 
is the predictability of fault-prone modules in the next 
release stage by using prediction metrics and software fault 
data in previous versions. In general, the prediction process 
of software fault can be seen in figure1. 
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Figure 1. Software fault prediction.  
C. Nasa Public MDP Dataset 

Software fault prediction is one of the important factors in 
improving quality in software development process. As 
mentioned earlier, that to predict software fault required 
some metrics and software fault data from previous 
software versions. The software metrics is a simple 
quantitative measure of each attribute in the software 
lifecycle. The software metrics allows researchers to 
measure and predict software processes, required resources, 
and work products relevant to software development 
efforts. Software metrics often used by researchers to 
measure the complexity of program code are line of code 
(loc), mcCabe complexity, and halstead complexity [9]. 

Various datasets containing metric variations have been 
used to predict software fault, and some are private. Due to 
the lack of access to use private datasets, this research will 
utilize public datasets that can be accessed by all 
researchers and can be used for various purposes. One of 
the most commonly researched software fault datasets is the 
NASA public MDP. The dataset can be generally accessed 
through the repository of the promise software engineering 
dataset. NASA public MDP dataset generally contains 
numerical data type consist of line of code, mcCabe 
complexity, halstead complexity, and software fault labels 
[16]. 
D. Entropy-Based Discretization (EBD) 

Data mining methods have been successfully applied to 
solve predictions or classification problems on various 
background issues. In data mining, the discrete process is 
known as one of the most important preprocess data 
activities. Most algorithms on data mining methods are able 
to extract knowledge from datasets with features that 
contain discrete data. If the data on the dataset feature is 
continuous (numerical), then the prediction method can be 
integrated with the discrete algorithm that converts the 
numerical features into discrete (binary) features. 

Discretization methods are used to reduce the number of 
values on a continuous feature (numerical) by dividing the 
distance of each attribute into a given interval [9]. The 
interval label can be used to replace the actual data value. 
Discretization makes the data mining process faster and 
more accurate. In general, the discrete process is four steps: 
sort all numerical values to be discretized, then select the 
splitting point at that numeric value, then split or merge the 
two numeric value points, and last select the stopping 
criteria in the discretization process. 
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E. Filtering Feature Selection 

Based on its characteristics, features are divided into 
three, namely relevant features, irrelevant features, and 
redundant features [17]. Relevant features are features that 
have an effect on the output and the role of those features 
that can’t be assumed by other features. While the 
irrelevant feature is defined as a feature that has no effect 
on the output. For example, the ‘id’ feature in the dataset, 
since the ‘id’ value is not the measured aspect of the data, 
the ‘id’ feature has no effect on the output of the prediction 
model. The redundant feature is the feature can take the role 
of the other features. 

The feature selection algorithm applied in the preprocess 
stage is generally divided into two categories: filter and 
wrapper [18] [19] [20]. The filter method uses the feature 
ranking technique as the basic criterion for feature selection 
sequences [21]. The ranking method is used because of the 
simplicity of the process in performing feature selection. 
Not only that, some studies have proven that feature 
selection methods with rankings can improve the accuracy 
of software fault predictions [22]. Generally, this method 
exploits the threshold value to determine how much 
minimal number of features will be used as input on the 
prediction model. The minimum amount is sorted by 
feature rank. The feature with the highest value will be a 
predictive input modeling candidate. Some feature selection 
methods use filters such as information gain (IG), gain ratio 
(GR), and one-r (OR). 

The wrapper method uses complex computational 
techniques based on complex classification algorithms. 
This method will try some or even all possible feature 
combinations to evaluate the results of prediction accuracy 
[23]. The feature selection process will grow exponentially 
on the number of more features. The wrapper computing 
model becomes very intensive with datasets that have large 
dimensions. 

In this research, the feature selection approach is done by 
filter method. Based on [24], the use of the wrapper method 
would be very complex if applied to software fault datasets, 
since the large dataset dimensions. In addition, wrapper 
dependencies on certain classification models make it 
difficult to find the best and most suitable wrapper of the 
case, as there are various classification models available to 
choose from. 
F. Cluster-based Classification (CBC) 

Clustering is one method to find groups that have the 
most similarity of data, which means data can belong to one 
of the most similar groups and data belonging to different 
groups is the most different data. CBC is a classification 
method that exploits the distance on each data from the 
cluster point. Data that has a high degree of similarity to the 
cluster point is considered a member of the cluster. In the 
case of software fault prediction, the cluster is divided into 
two groups of data that are vulnerable to false and those 
that are not. Various clustering algorithms have been 
proposed by previous researchers. Based on research [11], 

K-Means was chosen as the clustering method used for 
classification. 

The K-Means clustering algorithm begins with a set of 
training data and a number of cluster points K. The training 
sample on the dataset is used to group the data based on the 
proximity measurement of the cluster point. There are 
several ways to measure the distance between objects with 
other objects, such as euclidean distance, manhattan 
distance, and hamming distance. 

Euclidean distance is very often used to calculate the 
distance between two objects. Euclidean distance calculates 
the square root of the coordinate difference of a pair of 
objects. Some previous researchers have also used the 
eulidean distance to find the distance between objects [11] 
[10]. While Manhattan distance represents the distance 
between two objects in absolute [25]. Both euclidean and 
manhattan, both used to calculate numerical data distances. 

Due to the result of preprocess of discretization is binary 
data, hence calculation of distance that will be used in this 
research is hamming distance. Based on previous research, 
hamming distance is used to calculate the number of 
differences from two series of binary numbers that have the 
same length according to the position of each binary digit 
[25]. 

III. PROPOSED METHOD 
Software fault prediction in this paper consists of three 

main stages, i.e. input, preprocess, and process. In general, 
method design in this study is presented in figure 2. 

 
Figure 2. Method design.  

A. Input 
This research used PC2 and PC3 datasets obtained from 

NASA public MDP. All feature in PC2 and PC3 dataset are 
numerical data types [22]. The detail of dataset used in this 
research can be seen in table 1. 

TABLE 1. 
DETAILS OF PC2 AND PC3 DATASETS. 

Name Module Features Faulty % Descriptions 

PC2 
 
PC3 

5589 
 
1563 

37 
 
38 

23 
 
160 

0.41 
 
10.24 

Dynamic simulator 
in control system 
Flight software for 
satellites orbiting 
the earth 

B. Preprocess 
The preprocess stage consisted of five sub-processes i.e. 

reduction of redundant numerical data, discretization of 
numerical data, reduction of redundant binary data, 
handling the redundancy of binary data with different 
classes, and feature selection. Preprocess need to be done 
for making dataset suitable for learning model and to 
remove noise so that improve prediction result [26]. 
Preprocess stages of this research can be seen in figure 3. 
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Figure 3. The stages of preprocessing.  

The pre-process result will be used as input on the 
software fault prediction model. In a previous study [11], 
the preprocess did not include feature selection. While in 
this study, three methods of feature selection are proposed 
to be integrated with software fault prediction model. 
C. Process & Output 

After all preprocess steps are done, then the output of 
preprocess stage is used as input for prediction model in 
process stage i.e. CBC. Confusion metrics used for 
measuring the accuracy values which consist of pd, pf, and 
balance [27]. Process stages in this proposed method can be 
seen in figure 4. 

Software fault
prediction

Processing

Preprocessing 
output

Preprocessing

Prediction 
result

Output

Figure 4. The stages of process and output.      

IV. EXPERIMENTAL 
This section discusses the discrete process of two NASA 

public MDP datasets of numeric data type into a two-digit 
binary data type. After that, each feature on the dataset will 
be ranked by using five different methods of feature 
selection. The discretization method used in this study is 
EBD. Discretization is done to improve the accuracy of 
software fault prediction and improve efficiency in 
computing process [11] [10]. While the three methods of 
feature selection used to determine feature rankings are GR, 
IG, and OR. When numerical data in the dataset has been 
transformed into two-digit binary data and the feature has 
been sorted by each feature selection method, then the test 
scenario is ready to be performed. The stages that need to 
be done before the test scenario begins that can be seen in 
figure 5. 

Numerical 
Data

PC2 and PC3
Datasets

Numerical 
Data

Reduction of Redundant 
Numerical Data 

2-Digit 
Binary Data

EBD
3 Feature 
Ranking 
Versions

Ranking

 
Figure 5. The stages of research implementation.  

A. Reduction of Redundant Numerical Data with Same 
Class 

From both the NASA public MDP dataset, PC2 is the 
most commonly encountered data redundancy dataset, 
which is 74.84% redundancy data with the same class. 
However, in all datasets there is no redundancy of 
numerical data with different classes. The redundancy 
details on the two MDP NASA public datasets are 
presented in table 2. 

TABLE 2. DETAILS OF REDUNDANCY IN NUMERICAL DATA. 

Name Numerical Data Redundancy % 
After 
Reduction 

PC2 
PC3 

5589 
1563 

4183 
124 

74,84 
7,93 

1406 
1439 

D. Implementation of EBD 
At this stage, numerical data are transformed into binary 

data. Redundancy of binary data with same class will be 
reducted. However, in EBD phase 1 there are redundancy 
of binary data with different classes. This can make 
inconsistencies in prediction model. Therefore, EBD phase 
2 is done to reduce redundancy of binary data with different 
classes at EBD phase 1 by adding one binary digit into two 
binary digits (00, 01, 10, and 11). Each phase in the EBD is 
done iteratively until there is no duplication of binary data 
with different classes. However, in this study EBD is only 
done up to two phases only. 

Based on the results of the implementation, the average 
number of redundancy data with different classes in EBD 
phase 2 is lower when compared with EBD phase 1, i.e. 
from 20 to 5. If there is a comparison between the number 
of duplicates of data in EBD phase 1 and phase 2, then 
EBD phase 2 is less duplication of binary data with 
different classes. Comparison of the number of duplicates 
in percentages can be seen in table 3. 

TABLE 3. 
COMPARISON OF REDUNDANCY IN EBD PHASE 1 AND PHASE 2. 

Dataset 
Redundancy Binary Data with Different Class 

EBD Phase 1 EBD Phase 2 

PC2 
 
 

497 Data, 
4 Redundancy, 
0,8% 

862 Data, 
3 Redundancy 
0,34% 

PC3 
923 Data, 
36 Redundancy, 
3,9% 

1281 Data,  
7 Redundancy 
0,54% 
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E. Implementation of Feature Selection 

After EBD two phases, the next stage that needs to be 
done before entering the testing phase is a feature selection. 
Output at this stage are three feature ranking GR, IG, and 
OR. In this phase, the PC2 and PC3 dataset will be sorted 
by all three methods of feature selection. There will be 
three versions of feature rank. The sequence of features is 
chosen iteratively to serve as input of CBC prediction 
modelConclusion  

Some parameters of BMA and GOP, such as the weight 
and variance of BMA and the spatial parameters of GOP, 
should be estimated by iterative approach, for instance EM 
and L-BFGS respectively. For 30-day training period, the 
accuracy of BMA is not different than of the three 
members, while the former was more reliable, indicated by 
less CRPS. Furthermore, BMA manages to calibrate the 
forecast, indicated by the coverage closer to 50%. Lack of 
fit, though, is still owned by GOP since it has higher 
RMSE. From both method, BMA forecasts apparently have 
greater accuracy and precision. 

V. RESULTS AND DISCUSSION 
5-fold cross validation is used in this research for 

evaluating the experiment. Every test results on each fold is 
measured by confusion metrics. The pd and pf value will be 
used for measuring the average prediction values of CBC 
combination and determining the best feature selection 
method that the most improve CBC. The confusion matrix 
can be seen in table 4. 

TABLE 4. 
CONFUSION MATRIX. 

Prediction 
Actual 

Faulty Non-faulty 

Faulty 
Non-faulty 

TP 
FN 

FP 
TN 

For measuring pd and pf value can be seen in formula (1) 
and (2): 

𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

 (1) 

𝑝𝑝𝑝𝑝 = 𝐹𝐹𝑇𝑇
(𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹)

 (2) 

Pd means successful value of prediction systems in 
predicting the software fault, while pf means 
misclassification value of prediction systems in determining 
unfaulty module as faulty module. The higher pd and the 
lowest pf are the best result. It means that system can 
predict the faulty module without giving the false alarm to 
the tester. In this research, CBC is combined with three 
methods of filtering feature selection (i.e. GR, IG, and OR). 
A number of features of dataset will be ranked by the 
feature selection method. Every selection feature method 
has different order of features rank. Then, the top N of 
features will be selected as CBC input. Illustration for this 
scenario can be seen in figure 6.  

PC2 & PC3 
datasets

Features rank of 
GR, IG, and OR

Top N features 
selection

Training

Features RankInput Cross validationFeature Selection Fault 
Prediction

5 folds CBC
Testing  

Figure 6. Scenario evaluation in this research.  
The output of scenario in figure 6 is pd and pf values. 

There are three possible combination in each dataset i.e. IG 
& CBC, GR & CBC, and OR & CBC. The highest pd with 
the lowest pf in each combination will be selected as the 
best value of prediction. 

TABLE 5. 
RESULT COMPARISON OF COMBINED METHODS. 

Dataset 
Average pd (%), pf (%) and best features 

GR & CBC IG & CBC OR & CBC 

PC2 
42.83%, 53.18% 
32 features 

52.86%, 35.54% 
14 features 

60%, 29,14% 
26 features 

PC3 
71.63%, 31.48% 
2 features 

82.19%, 39.3% 
7 features 

65.94%, 45.84 
17 features 

AVERAGE 
57.23%, 42.33% 
17 features 

67.52%, 37.42% 
10.5 features 

62.97%, 37.49 
21.5 features 

Based on table 5, in PC2, the best pd and pf is obtained by 
the combination of OR and CBC. In PC3, the best pd and pf 
is obtained by the combination of IG and CBC.  The 
combination of CBC and IG can generate the highest 
average pd value i.e. 67.52% pd and the lowest average pf 
value i.e. 37.42%. 

When it compared to the CBC without filtering feature 
selection method, IG can increase pd 2.14% and reduce pf 
12.53%. The end result can be seen in table 6. 

TABLE 6. 
COMPARISON OF THE BEST COMBINATION AND WITHOUT FEATURE 

SELECTION. 

Dataset 
Average pd (%), pf (%) and best features 

IG & CBC No feature selection 

PC2 
52.86% pd, 35.54% 
pf, 
14 features 

49.28% pd, 
55.11% pf, 
36 features 

PC3 
82.19% pd, 
39.3% pf, 
7 features 

81.47% pd, 
44.79% pf, 
37 features 

AVERAGE 
67.52% pd, 37.42% 
pf, 
10.5 features 

65.38% pd, 
49.95% pf, 
36.5 features 

VI. CONCLUSION 
Based on the experiment and analysist, the combination 

of IG and CBC had the highest average value of prediction 
among of other feature selection method used in this 
research. It is proven that just a number of feature in 
software fault dataset which is relevant with the prediction 
class and filtering feature selection can improve CBC.  
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