
The 3rd International Seminar on Science and Technology 59
August 3rd 2017, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Software Fault Prediction Using Filtering Feature
Selection in Cluster-Based Classification

Fachrul Pralienka Bani Muhamad1, Daniel Oranova Siahaan2, Chastine Fatichah2

Abstract―The high accuracy of software fault prediction can

help testing effort and improving software quality. Previous
researchers had proposed the combination of Entropy-Based
Discretization (EBD) and Cluster-Based Classification (CBC).
However, the irrelevant and redundant features in software fault
dataset tend to decrease the prediction accuracy value. This
study proposes improvement of CBC outcomes by integrating
filtering feature selection methods. Filtering feature selection
methods that will be integrated with CBC i.e. Information Gain
(IG), Gain Ratio (GR), and One-R (OR). Based on the research
using 2 datasets NASA public MDP (i.e. PC2 and PC3), the
result shows that the combination of CBC and IG yields the best
average accuracy value compared to GR and OR. It generates
67.52% average of probability detection (pd) and 37.42%
average of probability false alarm (pf). While CBC without
feature selection yields 65.38% average pd and 49.95% average
pf. It can be concluded that IG can improve CBC outcomes by
increasing 2.14% average pd and reducing 12.53% average pf.

Keywords―Cluster-based Classification, Entropy-Based

Discretization, Filtering Feature Selections, Software Fault
Prediction.

I. INTRODUCTION1
Software fault prediction is very important to do, because

the allocation of cost and testing resources are limited. In
addition, software fault prediction can make testing process
focus on fault-prone modules, so that test resources can be
saved for other faulty-prone modules. Software fault
prediction is the most efficient quality assurance activity, as
it can reduce testing time by saving test resources [1].

Previous researchers have proposed several methods to
predict software fault, i.e. Genetic Programming, Decision
Tree, Neural Network, Density-based Clustering, Case-
based Reasoning, Fuzzy Logic, Logistic Regression, and
Naive Bayes [2]. In general, methods that can produce high
predictive values tend to use a simple modeling technique
i.e. Naive Bayes [3]. Naïve Bayes (NB) can generate about
71% probability detection (pd) and 25% probability false
alarm (pf) in 8 datasets of NASA public MDP [4]. When
NB compared to the Cluster-based Classification (CBC)
[2], then CBC can produce better predictive result, i.e.
83.3% pd and 40% pf in 7 datasets of NASA public MDP.

1Fachrul Pralienka Bani Muhamad is with Department of Informatics

Engineering, Polytechnic of Indramayu, Indramayu 45252, Indonesia. E-
mail: fachrul.pbm@gmail.com.

2Daniel Oranova Siahaan, Chastine Fatichah are with Department of
Informatics Engineering, Faculty of Information Technology, Institut
Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya
60111, Indonesia. E-mail: danielos@cs.its.ac.id; chastine@cs.its.ac.id.

However, some researchers have described that predictive
models with irrelevant features as well as redundant
features can generate lower predictive values. In previous
research [5], filtering feature selection methods were used
to improve NB result in predicting software fault using
Turkish white-goods manufacturer datasets. Filtering
feature selection methods used in the previous research
were Gain Ratio (GR), Information Gain (IG), and One-R
(OR). The result shows that the combination of NB and OR
can yield the highest prediction accuracy value compared to
NB and IG, NB and GR, and NB without feature selection.

This study is proposed to improve CBC prediction values
by using three methods of filtering features selection i.e.
GR, IG, and OR. From that combinations, an analysis will
be performed to find the best combination of CBC which
can generate the highest pd and the lowest pf, and the best
number of features used as input in CBC. The experiment
was performed in 2 datasets NASA public MDP i.e. PC2
and PC3. The combination of CBC and filtering feature
selection methods are expected to improve software fault
prediction result.

II. LITERATURE REVIEW
This chapter is described about related research on

software fault prediction. In addition, there are also a
description of software fault, NASA public MDP dataset,
and basic supporting theories. The basic theories used in
this chapter are entropy-based discretization (EBD),
filtering feature selection (GR, IG, OR), and cluster-based
discretization (CBC).
A. Previous Research

Systematic literature review by [6], [7], and [1] that
discuss about finding solution on software fault prediction.
The results show that solution by statistical method for
predicting software fault has started to be abandoned, while
the research area using data mining to predict software fault
is the most popular. This is due to the wide variety of
methods in data mining to improve the accuracy of
software fault predictions. Data mining methods that can
produce high prediction accuracy tend to use simple
methods, such as NB.

[4] was proposed a NB method for predicting software
fault. The proposed method is applied to 8 NASA public
MDP datasets by performing a log number preprocess
combined with IG feature selection method. The results
showed values of 71% pd and 25% pf.

[8] proves that the classification of k-NN with
discretization of numerical data using EBD in preprocess

60 The 3rd International Seminar on Science and Technology
August 3rd 2017, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

can improve prediction accuracy. This is supported by hand
geometry datasets that contain numerical data. In addition,
the EBD method can reduce the possibility of over-fitting
prediction models and process predictions more rapidly
than continuous (numeric) data.

[9] have tried a combination of NB with a preprocess
EBD on two embedded software system fault datasets
obtained from NASA's public MDP. The results show that
EBD can help improve the accuracy of NB in predicting
software fault. This study also proves that the
characteristics of several embedded software system
datasets on NASA public MDP are suitable for
discretization with EBD.

[10] and [11] propose a CBC method for predicting
software faults. The first study combines CBC with EBD
on three software fault datasets obtained from Turkish
white good manufacturer Software Company. The results
show that the accuracy of the CBC method with EBD is
superior to the ANN method. While the second study did
the same with the first study, but with the dataset used more
diverse i.e. 7 datasets of software fault from NASA public
MDP. The results showed that CBC and EBD yielded a
higher degree of accuracy when compared to NB which
previously tended to produce high accuracy values. The pd
value increases to 83% and the pf value becomes 40%.

[12] used a feature selection method to improve predicted
accuracy results in NB. The study was conducted on the
Turkish software industry dataset. The results showed that
the OR feature selection method yielded the best value
compared to the other four selection methods of IG, GR,
RFF, and SU.

[13] proposes a combination of NB methods with GR.
The results show that the accuracy of software fault
prediction on NASA public MDP dataset can be enhanced
by the selection of GR features. To support a cooperative
NB method on discrete data, the software fault data is first
discretized into five categories at random point.

[14] examines the effect of feature selection on the NB
prediction model. The researcher uses five datasets
obtained from UCI repository namely mushroom. Some
feature selection methods that are integrated with NB are
IG, GR, SU, OR, RFF, and chi-squared (CS). The results
show that OR is the highest feature selection method in
improving the accuracy of the NB method of classification.
B. Software Fault

Software fault are a major problem in software systems
that need to be minimized to ensure it reliability [15]. Any
software fault can always be observed during the testing
process. Software fault can lead to software failures
resulting in increased costs and attempts to correct the fault.
Software failure signifies the low level of quality of the
software. To improve the software quality level, software
fault need to be minimized. The prediction of software fault
is the predictability of fault-prone modules in the next
release stage by using prediction metrics and software fault
data in previous versions. In general, the prediction process
of software fault can be seen in figure1.

Prediction
Model

Known Software
Fault Data

Software Matrix

Unknown
Software Fault

Data

Software Matrix

Previous Version of
Software

The Latest Version of
Software

training testing

Figure 1. Software fault prediction.
C. Nasa Public MDP Dataset

Software fault prediction is one of the important factors in
improving quality in software development process. As
mentioned earlier, that to predict software fault required
some metrics and software fault data from previous
software versions. The software metrics is a simple
quantitative measure of each attribute in the software
lifecycle. The software metrics allows researchers to
measure and predict software processes, required resources,
and work products relevant to software development
efforts. Software metrics often used by researchers to
measure the complexity of program code are line of code
(loc), mcCabe complexity, and halstead complexity [9].

Various datasets containing metric variations have been
used to predict software fault, and some are private. Due to
the lack of access to use private datasets, this research will
utilize public datasets that can be accessed by all
researchers and can be used for various purposes. One of
the most commonly researched software fault datasets is the
NASA public MDP. The dataset can be generally accessed
through the repository of the promise software engineering
dataset. NASA public MDP dataset generally contains
numerical data type consist of line of code, mcCabe
complexity, halstead complexity, and software fault labels
[16].
D. Entropy-Based Discretization (EBD)

Data mining methods have been successfully applied to
solve predictions or classification problems on various
background issues. In data mining, the discrete process is
known as one of the most important preprocess data
activities. Most algorithms on data mining methods are able
to extract knowledge from datasets with features that
contain discrete data. If the data on the dataset feature is
continuous (numerical), then the prediction method can be
integrated with the discrete algorithm that converts the
numerical features into discrete (binary) features.

Discretization methods are used to reduce the number of
values on a continuous feature (numerical) by dividing the
distance of each attribute into a given interval [9]. The
interval label can be used to replace the actual data value.
Discretization makes the data mining process faster and
more accurate. In general, the discrete process is four steps:
sort all numerical values to be discretized, then select the
splitting point at that numeric value, then split or merge the
two numeric value points, and last select the stopping
criteria in the discretization process.

The 3rd International Seminar on Science and Technology 61
August 3rd 2017, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

E. Filtering Feature Selection

Based on its characteristics, features are divided into
three, namely relevant features, irrelevant features, and
redundant features [17]. Relevant features are features that
have an effect on the output and the role of those features
that can’t be assumed by other features. While the
irrelevant feature is defined as a feature that has no effect
on the output. For example, the ‘id’ feature in the dataset,
since the ‘id’ value is not the measured aspect of the data,
the ‘id’ feature has no effect on the output of the prediction
model. The redundant feature is the feature can take the role
of the other features.

The feature selection algorithm applied in the preprocess
stage is generally divided into two categories: filter and
wrapper [18] [19] [20]. The filter method uses the feature
ranking technique as the basic criterion for feature selection
sequences [21]. The ranking method is used because of the
simplicity of the process in performing feature selection.
Not only that, some studies have proven that feature
selection methods with rankings can improve the accuracy
of software fault predictions [22]. Generally, this method
exploits the threshold value to determine how much
minimal number of features will be used as input on the
prediction model. The minimum amount is sorted by
feature rank. The feature with the highest value will be a
predictive input modeling candidate. Some feature selection
methods use filters such as information gain (IG), gain ratio
(GR), and one-r (OR).

The wrapper method uses complex computational
techniques based on complex classification algorithms.
This method will try some or even all possible feature
combinations to evaluate the results of prediction accuracy
[23]. The feature selection process will grow exponentially
on the number of more features. The wrapper computing
model becomes very intensive with datasets that have large
dimensions.

In this research, the feature selection approach is done by
filter method. Based on [24], the use of the wrapper method
would be very complex if applied to software fault datasets,
since the large dataset dimensions. In addition, wrapper
dependencies on certain classification models make it
difficult to find the best and most suitable wrapper of the
case, as there are various classification models available to
choose from.
F. Cluster-based Classification (CBC)

Clustering is one method to find groups that have the
most similarity of data, which means data can belong to one
of the most similar groups and data belonging to different
groups is the most different data. CBC is a classification
method that exploits the distance on each data from the
cluster point. Data that has a high degree of similarity to the
cluster point is considered a member of the cluster. In the
case of software fault prediction, the cluster is divided into
two groups of data that are vulnerable to false and those
that are not. Various clustering algorithms have been
proposed by previous researchers. Based on research [11],

K-Means was chosen as the clustering method used for
classification.

The K-Means clustering algorithm begins with a set of
training data and a number of cluster points K. The training
sample on the dataset is used to group the data based on the
proximity measurement of the cluster point. There are
several ways to measure the distance between objects with
other objects, such as euclidean distance, manhattan
distance, and hamming distance.

Euclidean distance is very often used to calculate the
distance between two objects. Euclidean distance calculates
the square root of the coordinate difference of a pair of
objects. Some previous researchers have also used the
eulidean distance to find the distance between objects [11]
[10]. While Manhattan distance represents the distance
between two objects in absolute [25]. Both euclidean and
manhattan, both used to calculate numerical data distances.

Due to the result of preprocess of discretization is binary
data, hence calculation of distance that will be used in this
research is hamming distance. Based on previous research,
hamming distance is used to calculate the number of
differences from two series of binary numbers that have the
same length according to the position of each binary digit
[25].

III. PROPOSED METHOD
Software fault prediction in this paper consists of three

main stages, i.e. input, preprocess, and process. In general,
method design in this study is presented in figure 2.

Figure 2. Method design.

A. Input
This research used PC2 and PC3 datasets obtained from

NASA public MDP. All feature in PC2 and PC3 dataset are
numerical data types [22]. The detail of dataset used in this
research can be seen in table 1.

TABLE 1.
DETAILS OF PC2 AND PC3 DATASETS.

Name Module Features Faulty % Descriptions

PC2

PC3

5589

1563

37

38

23

160

0.41

10.24

Dynamic simulator
in control system
Flight software for
satellites orbiting
the earth

B. Preprocess
The preprocess stage consisted of five sub-processes i.e.

reduction of redundant numerical data, discretization of
numerical data, reduction of redundant binary data,
handling the redundancy of binary data with different
classes, and feature selection. Preprocess need to be done
for making dataset suitable for learning model and to
remove noise so that improve prediction result [26].
Preprocess stages of this research can be seen in figure 3.

62 The 3rd International Seminar on Science and Technology
August 3rd 2017, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Reduction of redundancy
numeric data
(same class)

Discretization of
numerical data

Reduction of redundancy
binary data
(same class)

Handling of redundancy
binary data

Filtering feature
selection

Preprocessing

2 datasets NASA
public MDP

Input

Figure 3. The stages of preprocessing.

The pre-process result will be used as input on the
software fault prediction model. In a previous study [11],
the preprocess did not include feature selection. While in
this study, three methods of feature selection are proposed
to be integrated with software fault prediction model.
C. Process & Output

After all preprocess steps are done, then the output of
preprocess stage is used as input for prediction model in
process stage i.e. CBC. Confusion metrics used for
measuring the accuracy values which consist of pd, pf, and
balance [27]. Process stages in this proposed method can be
seen in figure 4.

Software fault
prediction

Processing

Preprocessing
output

Preprocessing

Prediction
result

Output

Figure 4. The stages of process and output.

IV. EXPERIMENTAL
This section discusses the discrete process of two NASA

public MDP datasets of numeric data type into a two-digit
binary data type. After that, each feature on the dataset will
be ranked by using five different methods of feature
selection. The discretization method used in this study is
EBD. Discretization is done to improve the accuracy of
software fault prediction and improve efficiency in
computing process [11] [10]. While the three methods of
feature selection used to determine feature rankings are GR,
IG, and OR. When numerical data in the dataset has been
transformed into two-digit binary data and the feature has
been sorted by each feature selection method, then the test
scenario is ready to be performed. The stages that need to
be done before the test scenario begins that can be seen in
figure 5.

Numerical
Data

PC2 and PC3
Datasets

Numerical
Data

Reduction of Redundant
Numerical Data

2-Digit
Binary Data

EBD
3 Feature
Ranking
Versions

Ranking

Figure 5. The stages of research implementation.

A. Reduction of Redundant Numerical Data with Same
Class

From both the NASA public MDP dataset, PC2 is the
most commonly encountered data redundancy dataset,
which is 74.84% redundancy data with the same class.
However, in all datasets there is no redundancy of
numerical data with different classes. The redundancy
details on the two MDP NASA public datasets are
presented in table 2.

TABLE 2. DETAILS OF REDUNDANCY IN NUMERICAL DATA.

Name Numerical Data Redundancy %
After
Reduction

PC2
PC3

5589
1563

4183
124

74,84
7,93

1406
1439

D. Implementation of EBD
At this stage, numerical data are transformed into binary

data. Redundancy of binary data with same class will be
reducted. However, in EBD phase 1 there are redundancy
of binary data with different classes. This can make
inconsistencies in prediction model. Therefore, EBD phase
2 is done to reduce redundancy of binary data with different
classes at EBD phase 1 by adding one binary digit into two
binary digits (00, 01, 10, and 11). Each phase in the EBD is
done iteratively until there is no duplication of binary data
with different classes. However, in this study EBD is only
done up to two phases only.

Based on the results of the implementation, the average
number of redundancy data with different classes in EBD
phase 2 is lower when compared with EBD phase 1, i.e.
from 20 to 5. If there is a comparison between the number
of duplicates of data in EBD phase 1 and phase 2, then
EBD phase 2 is less duplication of binary data with
different classes. Comparison of the number of duplicates
in percentages can be seen in table 3.

TABLE 3.
COMPARISON OF REDUNDANCY IN EBD PHASE 1 AND PHASE 2.

Dataset
Redundancy Binary Data with Different Class

EBD Phase 1 EBD Phase 2

PC2

497 Data,
4 Redundancy,
0,8%

862 Data,
3 Redundancy
0,34%

PC3
923 Data,
36 Redundancy,
3,9%

1281 Data,
7 Redundancy
0,54%

The 3rd International Seminar on Science and Technology 63
August 3rd 2017, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

E. Implementation of Feature Selection

After EBD two phases, the next stage that needs to be
done before entering the testing phase is a feature selection.
Output at this stage are three feature ranking GR, IG, and
OR. In this phase, the PC2 and PC3 dataset will be sorted
by all three methods of feature selection. There will be
three versions of feature rank. The sequence of features is
chosen iteratively to serve as input of CBC prediction
modelConclusion

Some parameters of BMA and GOP, such as the weight
and variance of BMA and the spatial parameters of GOP,
should be estimated by iterative approach, for instance EM
and L-BFGS respectively. For 30-day training period, the
accuracy of BMA is not different than of the three
members, while the former was more reliable, indicated by
less CRPS. Furthermore, BMA manages to calibrate the
forecast, indicated by the coverage closer to 50%. Lack of
fit, though, is still owned by GOP since it has higher
RMSE. From both method, BMA forecasts apparently have
greater accuracy and precision.

V. RESULTS AND DISCUSSION
5-fold cross validation is used in this research for

evaluating the experiment. Every test results on each fold is
measured by confusion metrics. The pd and pf value will be
used for measuring the average prediction values of CBC
combination and determining the best feature selection
method that the most improve CBC. The confusion matrix
can be seen in table 4.

TABLE 4.
CONFUSION MATRIX.

Prediction
Actual

Faulty Non-faulty

Faulty
Non-faulty

TP
FN

FP
TN

For measuring pd and pf value can be seen in formula (1)
and (2):

𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

 (1)

𝑝𝑝𝑝𝑝 = 𝐹𝐹𝑇𝑇
(𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹)

 (2)

Pd means successful value of prediction systems in
predicting the software fault, while pf means
misclassification value of prediction systems in determining
unfaulty module as faulty module. The higher pd and the
lowest pf are the best result. It means that system can
predict the faulty module without giving the false alarm to
the tester. In this research, CBC is combined with three
methods of filtering feature selection (i.e. GR, IG, and OR).
A number of features of dataset will be ranked by the
feature selection method. Every selection feature method
has different order of features rank. Then, the top N of
features will be selected as CBC input. Illustration for this
scenario can be seen in figure 6.

PC2 & PC3
datasets

Features rank of
GR, IG, and OR

Top N features
selection

Training

Features RankInput Cross validationFeature Selection Fault
Prediction

5 folds CBC
Testing

Figure 6. Scenario evaluation in this research.
The output of scenario in figure 6 is pd and pf values.

There are three possible combination in each dataset i.e. IG
& CBC, GR & CBC, and OR & CBC. The highest pd with
the lowest pf in each combination will be selected as the
best value of prediction.

TABLE 5.
RESULT COMPARISON OF COMBINED METHODS.

Dataset
Average pd (%), pf (%) and best features

GR & CBC IG & CBC OR & CBC

PC2
42.83%, 53.18%
32 features

52.86%, 35.54%
14 features

60%, 29,14%
26 features

PC3
71.63%, 31.48%
2 features

82.19%, 39.3%
7 features

65.94%, 45.84
17 features

AVERAGE
57.23%, 42.33%
17 features

67.52%, 37.42%
10.5 features

62.97%, 37.49
21.5 features

Based on table 5, in PC2, the best pd and pf is obtained by
the combination of OR and CBC. In PC3, the best pd and pf
is obtained by the combination of IG and CBC. The
combination of CBC and IG can generate the highest
average pd value i.e. 67.52% pd and the lowest average pf
value i.e. 37.42%.

When it compared to the CBC without filtering feature
selection method, IG can increase pd 2.14% and reduce pf
12.53%. The end result can be seen in table 6.

TABLE 6.
COMPARISON OF THE BEST COMBINATION AND WITHOUT FEATURE

SELECTION.

Dataset
Average pd (%), pf (%) and best features

IG & CBC No feature selection

PC2
52.86% pd, 35.54%
pf,
14 features

49.28% pd,
55.11% pf,
36 features

PC3
82.19% pd,
39.3% pf,
7 features

81.47% pd,
44.79% pf,
37 features

AVERAGE
67.52% pd, 37.42%
pf,
10.5 features

65.38% pd,
49.95% pf,
36.5 features

VI. CONCLUSION
Based on the experiment and analysist, the combination

of IG and CBC had the highest average value of prediction
among of other feature selection method used in this
research. It is proven that just a number of feature in
software fault dataset which is relevant with the prediction
class and filtering feature selection can improve CBC.

REFERENCES
[1] C. Catal, “Software fault prediction: A literature review and current

trends,” Expert Syst. Appl., vol. 38, no. 4, pp. 4626–4636, Apr.

64 The 3rd International Seminar on Science and Technology
August 3rd 2017, Postgraduate Program Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

2011.

[2] P. Singh and S. Verma, “Software Fault Prediction Model for
Embedded Systems: A Novel finding,” Int. J. Comput. Sci. Inf.
Technol., vol. 5, no. 2, pp. 2348–2354, 2014.

[3] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
Systematic Literature Review on Fault Prediction Performance in
Software Engineering,” IEEE Trans. Softw. Eng., vol. 38, no. 6, pp.
1276–1304, Nov. 2012.

[4] T. Menzies, J. Greenwald, and A. Frank, “Data Mining Static Code
Attributes to Learn Defect Predictors,” IEEE Trans. Softw. Eng.,
vol. 33, no. 1, pp. 2–13, Jan. 2007.

[5] D. A. A. G. Singh, A. E. Fernando, and E. J. Leavline,
“Experimental study on feature selection methods for software fault
detection,” in 2016 International Conference on Circuit, Power and
Computing Technologies (ICCPCT), 2016, pp. 1–6.

[6] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
Systematic Review of Fault Prediction Performance in Software
Engineering,” IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1276–
1304, 2012.

[7] R. Malhotra, “A systematic review of machine learning techniques
for software fault prediction,” Appl. Soft Comput., vol. 27, pp. 504–
518, Feb. 2015.

[8] A. Kumar and D. Zhang, “Hand-Geometry Recognition Using
Entropy-Based Discretization,” IEEE Trans. Inf. Forensics Secur.,
vol. 2, no. 2, pp. 181–187, Jun. 2007.

[9] P. Singh and S. Verma, “An Investigation of the Effect of
Discretization on Defect Prediction Using Static Measures,” in 2009
International Conference on Advances in Computing, Control, and
Telecommunication Technologies, 2009, pp. 837–839.

[10] P. Singh and O. P. Vyas, “Software Fault Prediction Model for
Embedded Software : A Novel finding,” Int. J. Comput. Sci. Inf.
Technol., vol. 5, no. 2, pp. 2348–2354, 2014.

[11] P. Singh and S. Verma, “An Efficient Software Fault Prediction
Model using Cluster based Classification,” Int. J. Appl. Inf. Syst.,
vol. 7, no. 3, pp. 35–41, 2014.

[12] D. A. Antony, G. Singh, A. E. Fernando, and E. J. Leavline,
“Software Fault Detection using Honey Bee Optimization,” Int. J.
Appl. Inf. Syst., vol. 11, no. 1, pp. 1–9, 2016.

[13] M. S. Akbar, “Prediksi Cacat Perangkat Lunak Dengan Optimasi
Naive Bayes Menggunakan Pemilihan Fitur Gain Ratio,” Institut
Teknologi Sepuluh Nopember, 2017.

[14] J. Novakovic, “The Impact of Feature Selection on the Accuracy of
Naive Bayes Classifier,” 18th Telecommun. forum TELFOR, vol. 2,
pp. 1113–1116, 2010.

[15] E. Erturk and E. A. Sezer, “A comparison of some soft computing

methods for software fault prediction,” Expert Syst. Appl., vol. 42,
no. 4, pp. 1872–1879, Mar. 2015.

[16] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings,” IEEE Trans. Softw. Eng., vol. 34,
no. 4, pp. 485–496, Jul. 2008.

[17] L. Ladha and T. Deepa, “Feature Selection Methods and
Algotithms,” Int. J. Comput. Sci. Eng., vol. 3, no. 5, pp. 1787–1797,
2011.

[18] A. Gowda Karegowda, A. S. Manjunath, and M. A. Jayaram,
“Comparative Study of Attribute Selection using Gain Ratio and
Correlation Based Feature Selection,” Int. J. Inf. Technol. Knowl.
Manag., vol. 2, no. 2, pp. 271–277, 2010.

[19] Feihu Yang, Weiqing Cheng, Renfu Dou, and Ningning Zhou, “An
improved feature selection approach based on ReliefF and Mutual
Information,” in International Conference on Information Science
and Technology, 2011, pp. 246–250.

[20] G. Abaei and A. Selamat, “A survey on software fault detection
based on different prediction approaches,” Vietnam J. Comput. Sci.,
vol. 1, no. 2, pp. 79–95, 2014.

[21] G. Chandrashekar and F. Sahin, “A survey on feature selection
methods,” Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, Jan.
2014.

[22] P. Singh, N. R. Pal, S. Verma, and O. P. Vyas, “Fuzzy Rule-Based
Approach for Software Fault Prediction,” IEEE Trans. Syst. Man,
Cybern. Syst., pp. 1–12, 2016.

[23] C. Akalya Devi, K. E. Kannammal, and B. Surendiran, “A Hybrid
Feature Selection Model for Software Fault Prediction,” Int. J.
Comput. Sci. Appl., vol. 2, no. 2, pp. 25–35, 2012.

[24] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing
software metrics for defect prediction: an investigation on feature
selection techniques,” Softw. - Pract. Exp., vol. 39, no. 7, pp. 701–
736, 2011.

[25] D. H. Murti, N. Suciati, and D. J. Nanjaya, “Clustering data non-
numerik dengan pendekatan algoritma k-means dan hamming
distance studi kasus biro jodoh,” J. Ilm. Teknol. Inf., vol. 4, pp. 46–
53, 2005.

[26] D. Gray, D. Bowes, N. Davey, Yi Sun, and B. Christianson, “The
misuse of the NASA Metrics Data Program data sets for automated
software defect prediction,” in 15th Annual Conference on
Evaluation & Assessment in Software Engineering (EASE 2011),
2011, pp. 96–103.

[27] C. Catal, “Performance Evaluation Metrics for Software Fault
Prediction Studies,” Acta Polytech. Hungarica, vol. 9, no. 4, pp.
193–206, 2012.

	I. Introduction0F
	II. Literature Review
	A. Previous Research
	B. Software Fault
	Figure 1. Software fault prediction.

	C. Nasa Public MDP Dataset
	D. Entropy-Based Discretization (EBD)
	E. Filtering Feature Selection
	F. Cluster-based Classification (CBC)

	III. Proposed Method
	Figure 2. Method design.
	Table 1.
	Details of PC2 and PC3 datasets.

	Figure 3. The stages of preprocessing.
	Figure 4. The stages of process and output.

	IV. Experimental
	Figure 5. The stages of research implementation.
	Table 2. Details of redundancy in numerical data.
	Table 3.
	Comparison of redundancy in EBD Phase 1 and Phase 2.

	V. Results and Discussion
	Table 4.
	Confusion matrix.
	𝑝𝑑=,𝑇𝑃-,𝑇𝑃+𝐹𝑁.. (1)
	𝑝𝑓=,𝐹𝑃-,𝐹𝑃+𝑇𝑁.. (2)
	Figure 6. Scenario evaluation in this research.
	Table 5.
	Result comparison of combined methods.
	Table 6.
	Comparison of the best combination and without feature selection.

	VI. Conclusion

