
 

Abstrak—The SAVGS as active low bandwidth retrofitted in the 

double-wishbone arrangement is studied. In this study, two 

configurations of arm linkages and variations of single-link are 

investigated. A linear equivalent model of the quarter car is 

presented based on energy conservation principles. The 

estimated results captured that the spring stiffness and damping 

coefficients of the equivalent model behave smaller when 

lengthening the lower arm geometry. On the other hand, the 

spring stiffness, damping coefficients, and linear actuator speed 

of the equivalent model increase when lengthening the single-

link. 

 

Keywords—Active Low Bandwidth, Double-wishbone 

Arrangement, Quarter-Car, Variable Geometry. 

 

I. INTRODUCTION 

EHICLE suspension essentially isolates the disturbance 

propagated from uneven road surface to the vehicle 

body that assures: passenger comfort (root mean square of 

vertical body acceleration), vehicle road holding (tire 

deflection), and overall vehicle stability. There are three types 

of suspension design: passive suspension, semi-active 

suspension, and active suspension [1]. The vibration, which 

reduced the vehicle frame life and affected biological 

passengers [2], is aimed to be eliminated as much as possible. 

Regarding these, especially for passenger comfort, the active 

suspensions are widely assessed that they provided the best 

capabilities among the aforementioned types [3]. 

The active suspensions encouraged to equip in the luxury 

vehicle are continuously studied on their performance 

improvement, the essential approach is started from the 

quarter-car model [1], [3]–[11], typically utilizing linear and 

non-linear models. However, in the real application, the 

suspension lower end-strut is seldom connected to the center 

mass of unsprung mass, which leads the suspension system to 

be non-linear. There are different strategies of performance 

studied on suspension linkage and controller types. Several 

works study the influences of linkage geometry of the 

suspension. In [12], it has been reported that the variation of 

the double-wishbone lower arm significantly influenced the 

suspension performance. In addition, a few controllers have 

been proposed with the promising result; LQR [4]–[6], [9], 

[13]–[15]; LQG [7], [8]; and robust control H-infinity [1], [3], 

[10]–[12] 

Nonetheless, active suspension in vehicle production still 

fails, especially for the high bandwidth, due to the several 

drawbacks, such as energy demand, lower compactness, and 

complexity [11]. Moreover, the passive suspension has 

limited capability due to the limited suspension stroke [8], 

less adjustability of force, and damping coefficient. To ease 

these conflicted solutions, the extensive studies and 

implementing of active low bandwidth suspension have 

proposed in the literature [1], [8], [9]; it has been reported that 

the suspension performance is compatible with the high 

bandwidth active suspension in term of ride comfort without 

violating the given constraints. 

Recently, on the other hand, an alternative suspension 

concept classified as low bandwidth of which, Series Active 

Variable Geometry Suspension (SAVGS) has been 

introduced. The SAVGS maintains the features of passive 

systems and minimize the disadvantage effects of other active 

solutions [16]. The passive or semi-active suspensions in 

which single-link (SL) located between chassis and 
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Figure 1. SAVGS concept in the passive suspension. 

 

 
Figure 2. Quarter model; (a) double-wishbone arrangement, (b) linear. 

model. 
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suspension end-strut [17] are shown in Figure 1. This link is 

controlled on rotation respected to chassis point (point G) by 

an epicyclic gearbox of an electric actuator to adjust the force 

of suspension strut [10] so that there is no added unsprung 

mass and little increase sprung mass. 

The major study approaches of these researches, which 

have been studied with double-wishbone arrangement [1], 

[3], [10], [11], [16]–[19]; focus on linear and non-linear 

models. In spite of the availability of software-aided for non-

linear models and virtual tests, they are not the most 

appropriate method for controller synthesis [11]. Linear 

models, on the other hand, simplify the study of the system 

dynamics for simulation as well as experimental perspective 

[1], [10], [11]. Additionally, the quarter-car test rig of an 

actual grand tourer rear axle has been studied in [1], with the 

promising result fail-safe operation, and lower power 

consumption, of which the SAVGS actuator power is below 

500W. Despite the advantages of SAVGS features, it is still 

facts with how to make a linear equivalent model 

appropriately and studied at stand-alone geometry. 

This paper aims to study the kinematic analysis and linear 

equivalent model of the double-wishbone quarter-car that 

retrofitted with SAVGS. More precisely, the influence of two 

cases of single-link length and differences in linkage 

geometries of kinematic suspension are further studied. 

II. EMBODIMENT OF SAVGS IN A QUARTER-CAR 

As shown in Figure 1, the left suspension is at the static 

equilibrium as well as purely in passive mode when point F 

is above point G, and the single-link (SL) is aligned with the 

suspension. Conversely, it becomes active low bandwidth 

suspension when the SL rotates respect to point G. The action 

of SL, which is led by applying the torque (𝑇𝑆𝐿or angle (𝛼𝑆𝐿) 

or angle speed (�̇�𝑆𝐿) [11], has adjusted the force and the 

installation ratio of suspension as well [17].  

Error! Reference source not found. illustrates the 

SAVGS retrofitted in the double-wishbone quarter-car model 

(a) and its linear equivalent model (b). The former model 

comprises the wheel assembly (unsprung mass, 𝑚𝑢) firmly 

linked to the chassis (sprung mass, 𝑚𝑠) by the lower arm (𝐴𝐷̅̅ ̅̅ ) 

and upper arm (𝐵𝐶̅̅ ̅̅ ) using the revolute joint. The suspension 

end strut (point F) is adjusted due to the rotation of SL (𝐹𝐺̅̅ ̅̅ ) 

for any clockwise angles (∆𝛼𝑆𝐿) as the positive direction from 

the static equilibrium state, which is the minimal state of SL 

(𝛼𝑆𝐿
(min)

). This model (a) is made as equivalent to the latter 

model (b) base on theoretical analysis discussed in the next 

subsection. 

A. Kinematic Analysis and Linear Equivalent Model of 

SAVGS 

The equivalent model of SAVGS, which is preferable for 

the controller synthesis, is discussed in this section based on 

the kinematic linkage analysis as well as the following 

assumptions. First assumption, both models have the same 

𝑚𝑠 and the same 𝑚𝑢. Second assumption, 𝐹𝐺̅̅ ̅̅  projected speed 

in the z-direction is enabled to make a relationship with the 

linear actuator speed, �̇� = �̇�𝑠 − �̇�𝑎. Third assumption, 

geometric equivalence, the vertical suspension deflections of 

models (a) and (b), 𝑧𝑎 − 𝑧𝑢, are the same and the tire 

deflections of those of models, 𝑧𝑢 − 𝑧𝑟 are the same as well 

Table 1. 

 Suspension System Parameters 

Parameter (unit) 
Value 

Configuration 1 Configuration 2 

Sprung mass, 𝒎𝒔 (kg) 0.5 

Unsprung mass, 𝒎𝒖 (kg) 0.2 

Suspension stiffness coefficient, 𝒌𝑺𝒖𝒔 (N/m) 652.45 

Suspension damping coefficient, 𝒄𝑺𝒖𝒔 (N.s/m) 38.3 

Suspension unloaded length, 𝒍𝑺𝒖𝒔𝟎 (mm) 92.75 

Upper arm length, 𝑩𝑪̅̅ ̅̅  (mm) 81.54 91.43 

Lower arm length, 𝑨𝑫̅̅ ̅̅  (mm) 101.34  111.26 

 

 
Figure 3. Γ function, (a) configuration 1 and (b) configuration 2 (blue single-link case 1, red single-link case 2). 
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[1]. Fourth assumption, actuator equivalence, the power 

consumption of rotary actuator in model (a) is the same as 

that of linear actuator in model (b) [1] so that the formula can 

be derived as: 

𝑇𝑆𝐿�̇�𝑆𝐿 = 𝐹𝑆𝑢𝑠
∗ �̇� (1) 

where �̇�𝑆𝐿 is the angular speed of single-link, 𝐹𝑆𝑢𝑠
∗  is 

suspension force of model (b). 𝑇𝑆𝐿 can be derived by the 

principle of virtual power acting on the SL. The formula 

illustrated that: 

𝑇𝑆𝐿 = 𝐹𝑆𝑢𝑠

𝑑𝑙𝑆𝑢𝑠

𝑑𝛼𝑆𝐿
 (2) 

where 𝐹𝑆𝑢𝑠 and 𝑙𝑆𝑢𝑠 is suspension force and suspension 

length in model (a), respectively. Starting from the static 

equilibrium state, the suspension deflected length of model 

(a) is prioritized to be defined to figure out the 𝛼𝑆𝐿
(min)

 in the 

sequence step. Applying the principle of virtual work in [1] 

acted in model (a) by suspension force: 

𝐹𝑆𝑢𝑠
𝑠𝑒 𝛿𝑙𝑆𝑢𝑠 + 𝑚𝑢𝑔𝛿𝐼𝑧 = 𝐹𝑡,𝐻𝑧

𝑠𝑒 𝛿𝐻𝑧 (3) 

where 𝐹𝑆𝑢𝑠
𝑠𝑒 , 𝐹𝑡,𝐻𝑧

𝑠𝑒 , 𝑔, and 𝐻𝑧 are; the suspension force of 

model (a) at static equilibrium denoted as (se), the tire force 

at static equilibrium, the gravitational acceleration, and the 

displacement of point H in the z-direction, respectively. 𝐹𝑡,𝐻𝑧
𝑠𝑒  

and 𝐹𝑆𝑢𝑠
𝑠𝑒  can be defined as: 

𝐹𝑡,𝐻𝑧
𝑠𝑒 = (𝑚𝑠 + 𝑚𝑢)𝑔 (4) 

𝐹𝑆𝑢𝑠
𝑠𝑒 = 𝑘𝑆𝑢𝑠(𝑙𝑆𝑢𝑠0 − 𝑙𝑆𝑢𝑠

𝑠𝑒 ) 

where 𝑙𝑆𝑢𝑠0 is unloaded suspension length and 𝑙𝑆𝑢𝑠
𝑠𝑒  is static 

suspension length of model (a). Defining 𝑅𝑆𝑢𝑠 as the 

installation ratio of suspension in model (a): 

𝑅𝑆𝑢𝑠 =
𝑑𝑙𝑆𝑢𝑠

𝑑𝐼𝑧
=

𝑑𝑙𝑆𝑢𝑠

𝑑𝛼𝐿𝐴

𝑑𝛼𝐿𝐴

𝑑𝐼𝑧
   (5) 

where 𝐼𝑧 is the displacement of point I in the z-axis, 𝛼𝐿𝐴 is 

the clockwise angle of lower arm respected to the horizontal 

axis, substituting   (5) and (4) into (3) as well as assuming 

𝛿𝐻𝑧 ≈ 𝛿𝐼𝑧 due to the small chamber angles, 𝑙𝑆𝑢𝑠
𝑠𝑒  can be 

determined as: 

𝑙𝑆𝑢𝑠
𝑠𝑒 = 𝑙𝑆𝑢𝑠0 −

𝑚𝑠𝑔

𝑘𝑆𝑢𝑠𝑅𝑆𝑢𝑠
𝑠𝑒    (6) 

The instant suspension length can be defined through 

kinematic analysis:where 

𝑙𝑆𝑢𝑠 = 𝐸𝐹̅̅ ̅̅   =

√(𝐷𝐺̅̅ ̅̅
𝑦 + 𝑐2𝑙𝑆𝐿 − 𝑐1𝐷𝐽̅̅ ̅ + 𝑠1𝐸𝐽̅̅ ̅)

2
+ (𝐷𝐺̅̅ ̅̅

𝑧 + 𝑠2𝑙𝑆𝐿 + 𝑠1𝐷𝐽̅̅ ̅ + 𝑐1𝐸𝐽̅̅ ̅)2    (7

) 

Where: 

𝑐1 = cos(∆𝛼𝐿𝐴) 

𝑐2 = cos(𝛼𝑆𝐿
(min)

− ∆𝛼𝑆𝐿) 

𝑠1 = sin(∆𝛼𝐿𝐴) 

𝑠2 = sin(𝛼𝑆𝐿
(min)

− ∆𝛼𝑆𝐿) 

  (7) 

and the subscript 𝑦 and z indicate the projections in the 𝑦 and 

𝑧 axes, respectively. Therefore, the term 
𝑑𝑙𝑆𝑢𝑠

𝑑𝛼𝑆𝐿
 in (2) can be 

 
Figure 4. Variation of equivalent spring stiffness, (a) configuration 1 and (b) configuration 2 (blue single-link case 1, red single-link case 2). 

 

 
Figure 5. Variation of equivalent damping coefficient, (a) configuration 1 and (b) configuration 2 (blue single-link case 1, red single-link case 2). 
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calculated via the derivative of 𝑙𝑆𝑢𝑠 respects to 𝛼𝑆𝐿, derived 

as 

𝑑𝑙𝑆𝑢𝑠

𝑑𝛼𝑆𝐿
=

𝑙𝑆𝐿

𝑙𝑆𝑢𝑠
[𝑐2𝐷𝐺̅̅ ̅̅

𝑧 − 𝑠2𝐷𝐺̅̅ ̅̅
𝑦 + 𝐷𝐽̅̅ ̅(𝑐1𝑠2 + 𝑐2𝑠1)

+ 𝐸𝐽̅̅ ̅(𝑐1𝑐2 − 𝑠1𝑠2)] 

(8) 

where 𝑙𝑆𝐿 is the single-link length. Furthermore, the term 
𝑑𝑙𝑆𝑢𝑠

𝑑𝛼𝐿𝐴
 in   (5) can be derived via the derivative of 𝑙𝑆𝑢𝑠 respects 

to 𝛼𝐿𝐴: 

𝑑𝑙𝑆𝑢𝑠

𝑑𝛼𝐿𝐴
=

1

𝑙𝑆𝑢𝑠

[𝑎1𝑠1 + 𝑎2𝑐1 + 𝑙𝑆𝐿𝐷𝐽̅̅ ̅(𝑠1𝑐2 + 𝑠2𝑐1)

+ 𝑙𝑆𝐿𝐸𝐽̅̅ ̅(𝑐1𝑐2 − 𝑠1𝑠2)] 

(9) 

where 

𝑎1 = 𝐷𝐽̅̅ ̅. 𝐷𝐺̅̅ ̅̅
𝑦 − 𝐸𝐽̅̅ ̅. 𝐷𝐺̅̅ ̅̅

𝑧,  

𝑎2 = 𝐸𝐽̅̅ ̅. 𝐷𝐺̅̅ ̅̅
𝑦 + 𝐷𝐽̅̅ ̅. 𝐷𝐺̅̅ ̅̅

𝑧,  

Term 
𝑑𝛼𝐿𝐴

𝑑𝐼𝑧
 in   (5) is more complicated in deriving its 

equation. However, this term can be written: 

𝑑𝛼𝐿𝐴

𝑑𝐼𝑧
=

1

𝑑𝐼𝑧

𝑑𝛼𝐿𝐴

 
(10) 

where 
𝑑𝐼𝑧

𝑑𝛼𝐿𝐴
 solely depends on the passive geometry, can be 

computed as 

𝑑𝐼𝑧

𝑑𝛼𝐿𝐴
=

𝑑Θ

𝑑𝛼𝐿𝐴
(𝐴𝐼̅̅ ̅

𝑦′ cos Θ − 𝐴𝐼̅̅ ̅
𝑧′ sin Θ) − 𝑐1𝐴𝐷̅̅ ̅̅  (11) 

where Θ is the angle of wheel respected to the vertical axis 

that can be calculated via kinematic analysis of linkage 

Θ = Θ𝑓 − arccos (
𝐴𝐶̅̅ ̅̅

𝑦

𝐴𝐶̅̅ ̅̅
)

− arccos (
𝐴𝐵̅̅ ̅̅ 2 + 𝐴𝐶̅̅ ̅̅ 2 − 𝐵𝐶̅̅ ̅̅ 2

2𝐴𝐵̅̅ ̅̅ . 𝐴𝐶̅̅ ̅̅
) 

(12) 

where Θ𝑓 is the angle between 𝐴𝐵̅̅ ̅̅  and −𝑦′ axis, 

𝐴𝐶̅̅ ̅̅ = √(𝑐1𝐴𝐷̅̅ ̅̅ − 𝐶𝐷̅̅ ̅̅
𝑦)

2
+ (𝑠1𝐴𝐷̅̅ ̅̅ + 𝐶𝐷̅̅ ̅̅

𝑧)2 

𝐴𝐶̅̅ ̅̅
𝑦 = 𝑐1𝐴𝐷̅̅ ̅̅ − 𝐶𝐷̅̅ ̅̅

𝑦 

𝐴𝐶̅̅ ̅̅
𝑧 = 𝑠1𝐴𝐷̅̅ ̅̅ + 𝐶𝐷̅̅ ̅̅

𝑧 

(13) 

and the term 
𝑑Θ

𝑑𝛼𝐿𝐴
 can be obtained by derivation of Θ 

respects to 𝛼𝐿𝐴 where required 
𝑑𝐴𝐶̅̅ ̅̅

𝑑𝛼𝐿𝐴
: 

 
Figure 6. Variation of Γ (a) and equivalent spring stiffness (b) defined at the nominal state of the lower arm. 

 
Figure 7. Variation of equivalent damping coefficient defined at the nominal state of the lower arm. 
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𝑑𝐴𝐶̅̅ ̅̅

𝑑𝛼𝐿𝐴
=

𝐴𝐷̅̅ ̅̅

𝐴𝐶̅̅ ̅̅
(𝑠1𝐶𝐷̅̅ ̅̅

𝑦 + 𝑐1𝐶𝐷̅̅ ̅̅
𝑧) (14) 

The suspension force 𝐹𝑆𝑢𝑠 in model (a) and that of 𝐹𝑆𝑢𝑠
∗  in 

model (b) are related such that: 

𝐹𝑆𝑢𝑠
∗ = 𝑅𝑆𝑢𝑠𝐹𝑆𝑢𝑠 (15) 

Applying the assumption 2, the displacement of point F in 

z-direction in model (a) can be reversibly transformed that of 

𝑧𝑎 in model (b) through Γ function, which is shown that: 

𝛤 =
�̇�

�̇�𝑆𝐿
 (16) 

Substituting (2) and (15) to (1), 𝛤 can be rewritten as: 

𝛤 =
1

𝑅𝑆𝑢𝑠

𝑑𝑙𝑆𝑢𝑠

𝑑𝛼𝑆𝐿
 (17) 

Lastly, 𝑘𝑒𝑞 and 𝑐𝑒𝑞 is linear equivalent spring stiffness and 

damping coefficients of model (a). Both of those values can 

be computed through assumptions in [11] such that the rate 

of change of energy stored, as well as that of energy 

dissipation in model (a) must be the same as those of in model 

(b). 

𝑘𝑒𝑞 = 𝑘𝑆𝑢𝑠𝑅𝑆𝑢𝑠
2 − 𝐹𝑆𝑢𝑠

𝑑𝑅𝑆𝑢𝑠

𝑑𝐼𝑧
 

𝑐𝑒𝑞 = 𝑐𝑆𝑢𝑠𝑅𝑆𝑢𝑠
2  

(18) 

III. RESULT AND DISCUSSION 

The parameter values for the systems in this study are listed 

in Table 1. Two cases of SL length are studied in each 

configuration, and its length is 5mm and 8mm for cases 1 

and 2, respectively. Starting from the quarter-car linkage 

geometry configuration 1, in Figure 3a, the lower arm angles 

ranged from static equilibrium to maximum suspension 

deflection are −2.3762o to −10.5589o and −2.6004o to 

−10.7842 o, for case 1 and case 2, respectively. It illustrated 

that 𝛤 significantly depended on ∆𝛼𝑆𝐿; at ∆𝛼𝑆𝐿 = 0o and 

∆𝛼𝑆𝐿 = 180o, it crosses the zero values. However, it is less 

effected by ∆𝛼𝐿𝐴. Variation of 𝛤 is reasonably small when 

comparing at the nominal lower arm angle state (asterisk 

point, lower arm angle at −6.48o and −6.7o for case 1 and 

case 2, respectively) to its static state, with offset bandwidth 

~5.3% and ~3.6% for cases 1 and 2, respectively. In other 

words, for case 2 of SL, the upper bound magnitude of 

negative parabolic at ∆𝛼𝑆𝐿 = 90o somehow is larger than that 

of case 1 as shown in Figure 6a. 

Figure 4a and Figure 5a are estimated values of 𝑘𝑒𝑞 and 

𝑐𝑒𝑞 of configuration 1, respectively. The lower arm angles of 

each respective case are ranged the same as in Figure 3a. At 

fixed SL angle, 𝑘𝑒𝑞 and 𝑐𝑒𝑞 are slightly, as well as low slope 

changed when comparing among both cases, along with the 

variation of lower arm angle. In contrast, both values are 

significantly suffered from the variation of SL angle. 

However at the minimum SL angle (∆𝛼𝑆𝐿 = 0o) and the 

maximum SL angle (∆𝛼𝑆𝐿 = 180o), 𝑘𝑒𝑞 and 𝑐𝑒𝑞 tent to equal 

to their values at those states. 𝑘𝑒𝑞 and 𝑐𝑒𝑞 at the nominal state 

are a pair of case 1 and case 2; 346.56 N/m and 

20.34 N. s/m, and 353.12 N/m and 20.73 N. s/m; 

respectively. Observing on these, 𝑘𝑒𝑞 and 𝑐𝑒𝑞 are larger than 

those of values in SL case 1 as shown in Figure 6b and Figure 

7. 

Let observing on the configuration 2 of linkage geometry. 

The lower arm angles ranged from −2.4769o to −9.9135o 

and from −2.6944o to −10.1476 o, for case 1 and case 2, 

respectively. The result features in this configuration are 

similar to those of configuration 1 when comparing among 

two cases of SL. 𝑘𝑒𝑞 and 𝑐𝑒𝑞, in Figure 4b and Figure 5b, at 

each nominal state (asterisk point, lower arm angle at −6.18o 

and −6.4o for case 1 and case 2, respectively) are: 

 290.69 N/m and 17.06 N. s/m, and 296.10 N/m and 

17.38 N. s/m for case 1 and case 2; respectively. 

On the other hand, when comparing between configuration 

1 and configuration 2 in the individual SL case, 𝑘𝑒𝑞 and 𝑐𝑒𝑞 

presented that they are greater than those of values in 

configuration 1, as shown in Figure 6b and Figure 7. 

 

IV. CONCLUSION 

The kinematic and linear equivalent of SAVGS retrofitted 

in the double-wishbone quarter-car have been studied. Two 

configurations of linkage geometries, as well as two cases of 

single-link length, have been analyzed base on the energy 

conservation approach. The estimated values of 𝛤, 𝑘𝑒𝑞 and 

𝑐𝑒𝑞 illustrated that the smaller of equivalent spring stiffness 

and damping coefficients occur when using the longer lower 

arm. Furthermore, the longer of single-link is, the larger of 

equivalent spring stiffness, damping coefficients, and linear 

equivalent actuator speed behaves as well. More 

interestingly, the largest of equivalent spring stiffness and 

damping coefficients exists when shortening the lower arm 

and lengthening single-link. 
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