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Abstract ⎯In this paper, it is discussed notion of max-
plus algebra and their properties. A model of flow shop 
production system and analyze the dynamical behavior of 
the system for scheduling problems are derived by means of 
max-plus algebra. The solutions of these problems are that 
the optimal sequence of jobs and the regular scheduling are 
obtained. 

 
Keywords⎯ Max - Plus Algebra, flow shop, scheduling. 

I. INTRODUCTION 
iscrete event systems can be used to study processes 
that are driven by occurrence of events. The 

relevant variables represent times at which events take 
place. In recent year both industry and the academic 
world have become interested to model, analyze and 
control complex systems such as manufacturing systems, 
traffic control system, and telecommunication network 
and so on. This kind of systems is typical examples of 
discrete event systems. One of the most characteristic 
features of a discrete event system is that its dynamics 
are event-driven in contrast with time driven. The 
behavior of a discrete event system is governed by 
events rather than by ticks of a clock. An event 
corresponds to the start or the end of an activity. If we 
consider of a production system then the possible events 
are the completion of a part on a machine, a buffer 
become empty, a machine breakdown and so on. Event 
occurs at discrete time instants. Interval between events 
are not necessarily identical, it can be deterministic or 
stochastic. 

An introduction to Discrete Event Systems can be 
found in [3], and the application of traffic light system in 
[12]. Although in general discrete event systems lead to a 
non linear description in conventional algebra, there 
exists a subclass of discrete event systems for which this 
model becomes linear when we formulate it in the max-
plus algebra notion. In this paper, we focus on of 
subclass of discrete event systems that is called max-plus 
algebra. This subclass can be used to analyze behavior of 
a system. The standard on the max-plus algebra approach 
to discrete event systems can be found in [1], and some 
results work of max-plus algebra in [2].  Some real 
application of max-plus algebra to transportation system 
can be found in [4, 8, 11], an assembly production 
process system in [7], and flow shop production process 
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with n job 2 machines in [10]. In this paper, we discuss 
flow shop production process and modify the model such 
that we get both a regular scheduling and a minimal 
makespan.  

The model of the system by using max-plus algebra 
approach is derived; this approach will have an 
advantage. The system will be linear and non linear in 
conventional algebra [6]. The linearity makes the 
analysis on the behavior of system easy. Further in the 
following section, a brief introduction to max-plus 
algebra notion and notation is given. And as a 
motivation, we give an example application of max-plus 
algebra that is related to a periodic scheduling. This 
periodic scheduling associate is with an eigenvalue and 
an eigenvector of a square matrix in max-plus algebra. 
We use Max-Plus Algebra Toolbox for Scilab [9] to 
compute the eigenvalue and corresponding eigenvector 
of a square matrix in max-plus algebra. As conclusion, 
we give some notes of the discussion and the future 
work. 

II. MAX-PLUS ALGEBRA AND SOME RELATED  
NOTATION 

This section presents a brief introduction to max plus 
algebra that would be employed in the following 
discussion. The element of max-plus algebra are real 
number and ε = -~. The set R ∪ {ε} will be denoted by 
Rmax with R  is the set of real number. The basic 
operations of Max-Plus Algebra are maximization 
(denoted by symbol⊕ ) and addition (denoted by 
symbol⊗ ). With these two operations for all maxRy,x ∈ , 
we get: 

{ }y,xmaxyx =⊕  and  yxyx +=⊗  and, in the context of  
Max-Plus  Algebra 

max
b Ra  ,ab:a ∈=⊗  and Rb ∈  

So, we get 12)3(43 4 ==⊗  and 6)12(
2
112 2

1

−=−=
−⊗ . 

Note that: for every x∈Rmax that satisfies xxx ⊕==⊕ εε  
and xxx ⊗==⊗ 00 . 

As in the conventional algebra, it is well known that a 
matrix with real number entries and two operations 
addition and multiplication. In the max-plus algebra 
Rmax, two operations addition and multiplication are 
denoted by two symbols respectively ⊕  and ⊗ .  For two 
matrices over Rmax, the addition of matrices nm

maxRB,A ×∈ , be 
given by:  

[ ] { }j,ij,ij,ij,ij,i b,amax baBA  =⊕=⊕  with i = 1,2,…,m and j = 
1,2,…,n. And multiplication of two matrices  pm

maxRA ×∈  and 
np

maxRB ×∈  be given by [ ] { },max   ,,pk1,,
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k
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 with 

i = 1,2,…,m and j = 1,2,…,n. 
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It is shown that there is an analogy between  ⊕  and 
+  and, ⊗  and × . Therefore we choose the symbols ⊕  
and ⊗ . And multiplication of two matrices in max-plus 
algebra is similar to multiplication of two matrices in 
conventional algebra, i.e. two operations multiplication 
and addition in the conventional algebra and 
"maximization (⊕ )" and "addition ( ⊗ )" in the max-plus 
algebra as replacement of respectively addition and 
multiplication that are used in the conventional algebra. 
With these symbols, the description of state space of a 
system be given by equations as follow:  

)k(xC)k(y
)1k(uB)k(xA)1k(x

⊗=
+⊗⊕⊗=+      (1) 

with the size of the matrices in equation (1) satisfies 
addition and multiplication of matrices. 

Like conventional algebra, an eigenvalue and a 
corresponding eigenvector of a square matrix A of size n 
x n also exists in max-plus algebra, i.e. if we give the 
equation  

xxA ⊗λ=⊗ . 
In this case vector nRx max∈  and scalar R∈λ  are 

respectively called an eigenvector and a corresponding 
eigenvalue of the matrix A  with vector ( ) ' ,,x εε≠ L . 
The sign ′ represents transpose. An algorithm to compute 
an eigenvalue and a corresponding eigenvector of a 
square matrix A can be found in [5]. 
Example 1:  Let be a matrix 
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It is shown that the eigenvalue and corresponding 
eigenvector of matrix A are respectively λ = 4 and x = (0 
2 3)T. Let be given matrix  nn

maxRA ×∈  , a directed graph of 
matrix A is denoted by G(A) = (E,V). Graph G(A) has n 
nodes (vertices), the set of all nodes of graph G(A) is 
denoted by V. An arc (edge) from node j to i occurs if ai,j 
≠ ε, this arc is denoted by (j,i). The set of all arcs of graph 
G(A) is denoted by E. The weight of arc (j,i) is value of 
ai,j, this one is denoted by w(j,i) = ai,j. If ai,j = ε, then arc 
(j,i) does not exist. A sequence of arc (i1,i2), (i2,i3),…, (il-

1,il) of a graph is called a path. A path is called elementer 
if it nodes has only one incoming and one outgoing arc. 
A circuit is a close elementer path, i.e.:  
(i1,i2), (i2,i3),…, (il-1,il). The weight of a path p = (i1,i2), 
(i2,i3),…, (il-1,il) is denoted by w|p|  with  

( )
1ll2312 i,ii,ii,iw aaa  |p|

−
+++= L . 

The length of a path p is the sum of arc in the path p and 
it is denoted by l|p| . The average weight of a path p is 
the weight of path p divided by the length of path p, i.e. 
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Circuit mean is the average weight of a circuit. Any 
circuit with maximum circuit mean is called critical 
circuit. A graph is called strongly connected graph if a 
path exists for every node i to every node j. If graph 
G(A) is strongly connected, then the matrix A is called  
irreducible. 

Fig. 1 is graph G(A) of Example 1. There are three 
circuits, i.e. (1,1); (1,2),(2,1) and (2,3),(3,2). Each circuit 

has circuit mean: 4
2

35 ; 3
2

24 ; 1
1
1

=
+

=
+

= . It is shown that 

the maximum circuit mean equals 4.  This circuit is 
(2,3),(3,2) and this one is the critical circuit of grap 
G(A).  

The graph G(A) is strongly connected. Some notion 
that have discussed have been implemented in the 
toolbox [9]. The interpretation of the eigenvalue and the 
corresponding eigenvector of Example 1 as follows: Let 
be given three activities (nodes of graph G(A)), that ones 
periodically operated. Each node has its own kind of 
activity. It is assumed that an activity at certain node can 
only start when all preceding nodes have finished their 
activities and send the results of these activities along the 
arcs to the current node. Thus, the arc corresponding to 
ai,j can be interpreted as an output for node j and 
simultaneously as input for node i. Suppose that this 
node i starts its activity as soon as all preceding nodes 
have sent their results to node i. So an activity only can 
starts its activity at (k+1)-th time if all preceding 
activities have finished their activities and sent their 
results at k-th time. Element ai,j of matrix A represents 
the sum of the activity time of  node j and the travelling 
time from node j to node i. If element ai,j = ε, then the 
activity i does not depend on the activity j. If xi (k) is the 
earliest epoch at which node i become active for the k-th 
time with i =1, 2, 3, then the evolution of the system of 
Example 1 is given by difference equation of 1st-orde  
x (k+1) = A ⊗ x(k), k = 0, 1, 2, …               (2) 

If it is chosen x(0) as the eigenvector of matrix A, then 
system (2) will operate as periodic with periodicity 
equals the eigenvalue λ=4. This follows the equation: 
x(k+1) = A ⊗ x(k) 
 = λ⊗(k+1) ⊗ x(0), k = 0, 1, 2, …          (3) 
and we get the regular activities sequence x(k) :  
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For nonnegative number M > 0, let be a matrix 
nxn

m RA max∈  for 0 < m < M and nRmx max)( ∈  for -M < m < -1, 
then the difference equation of Mth-order will be written 
as follows: . 0k   ),mk(xA )k(x

0
≥−⊗⊕=

=
m

M

m
        (4) 

The Equation (2) is a difference equation of 1st-orde 
and A0 = ε. A difference equation of Mth-orde with A0 ≠ 
ε can be transformed into a difference equation of 1st-
order that is given by Equation (2), as follows 

0,k     ),k(X~A
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and i
n

i

AA ⊗
−

=
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0
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Matrix E is identity matrix. This can be found in [2]. 

III. SCHEDULING OF FELLOW SHOP 
In this section, how a Max-Plus model of flow shop 

production system is derived. It would be discussed 



 IPTEK, The Journal of Technology and Science, Vol. 20, No. 3, August 2009 85

thoroughly. Such a model is given a flow shop 
production of n job {Ji} that will be scheduled on m 
machines {Mk} with 1< i < n and k = 1, 2. Each job must 
be processed exactly at a time in each machine by means 
of the same machine ordering. Permutation flow shop is 
a special class of flow shop by which each job would 
have the same processing order in each machine. 
Assuming is no set-up time between job operations. A 
dynamical model of flow shop production is constructed 
in [10] and an example is given. It is shown that the 
model has a regular scheduling. But it is not an optimal 
scheduling due to the makespan that is greater than the 
minimal one. Therefore, in this paper, the model is 
modified in such a way that it has a regular scheduling 
and minimal makespan. Firstly, it begins with analyzing 
some important factors of the model to decide when 
starting job processing of each cyclic production. Then, 
the analyses of flow job as a cycle of (periodic) 
production and, a job notion will be replaced by an 
operation to make clearer job ordering. Thus, giving a 
flow shop of 2 job, 2 machines, job J1 in machine M1 and 
J1 in M2 respectively will be called first and second 
operation. Therefore, the ordering of the same job J1 
processed in the different machine M1 and M2 more 
clearly. If xij (k+1) represents starting time of j-th 
operation in i-th machine for (k+1)-th period and pij 
represents time processing of j-th operation in i-th 
machine, then xij (k+1) will be a maximization of :  
Release time of i-th machine for k-th period, i.e. 
completion operations for k-th period in i-th machine, 
this will be denoted by yi(k), and yi(0) for k = 0. 

It is assumed that initial time of resources in each job 
is ready for first period so rij(0) = 0 for k = 0. There are 
no preceding jobs for the first job, so we define 

i

k

i
ij kr λ⊗=

=1
)(  for k = 1, 2, … For the first operation of 

second job and the next job, the initial time of ready 
resources is the sum of period time and  processing time 
of   all   preceding   jobs  operation,  i.e.   
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with λi = λ represents  period time (the eigenvalue of 
transition matrix of  the model before modified [10]) ; 
the set of all preceding j operation is denoted by Pj and 
M represents a machine. Therefore Pmn represents  
processing time of operation n in machine m with  
preceding process n is processing j in machine i.  

The completion time of all preceding operation of j 
operation, includes: 
Processed operations in each machine of (k+1)-th period. 
If  Pj is set of  all preceding j operation of corresponding 
job, then  for n∈ Pj and m ∈ M, completion time of all 
preceding j operation of (k+1)-th period is given by 
xmn(k+1) + pmn. If j operation is the first operation of an 
job, then this one has no preceding operation.  
Other scheduled operation (l≠j and l∈P) that early 
processing of j operation in i machine of (k+1)-th period 
is represented in xil (k+1) + pil. 

So we can write xil (k+1) as  
xij(k+1)= max{yi(k),rij(k),pmn(k+1)+xmn(k+1),pil+xil(k+1) 

or in the  Max-Plus Algebra as 
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and from Equation (8) and (9) the modified model can be 
written as follows: 

)1()1(
)1()()()1(

2

0

+⊗=+
+⊗⊕⊕=+

kXAkY
kXAkRkYkX      (10) 

With 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

0
0

)0(y
)0(y

)0(y
2

1  

and 

⎪⎩

⎪
⎨
⎧

=⊗

=
== ⊗

∈
=

L,2,1for     

       0for                0
)()(

,
,1

kp

k
krkR

nm
Pnm

i

k

i
ij

j

λ
 

Equation (10) can be rewritten as difference equation 
of 1st-order as follows: 

)()()1()1( 10 kRkXAkXAkX ⊕⊗⊕+⊗=+   (11) 
The solution can be found by transforming Equation 

(11) into difference equation 1st-order as Equation  (5), 
i.e. :  
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Example 2 Let be given flow shop production system 
that contains two jobs J1 and J2 scheduled in two 
machines M1 and M2 with time processing  is given by 
Table 1. 

By using Equation (11) and transforming this one into 
Equation (12), we get the modified model as follows: 
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So, we get 
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or one can be rewritten in the following form 
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The result can be seen by using Gantt chart (Fig. 2).  

 
Fig.1:Graph G(A) 

 
TABLE 1. 

TIME PROCESSING JOB J1 AND J2 IN M1 AND M2 

  J1  J2  
M1 2 3 
 M2 5 6 

 
If the initial time of ready resources at  07.00 is 

written as 00 in the Table 2  and unit time processing in 
minute, then from scheduling of Equation (12) it can 
identify processing J1 in  M1 (denoted by node x1) 
starting at  07.00. Processing job J2 in M1 (x2) and J1 in  
M2 (x3) at 07.02 is written as 02. And processing J2 in M2 
(x4) at 07.07 is written as 07. In the same way,  by using 
07.00 as a reference time, we can know starting time of 
the next period processing that is given by  Table 2. 

From Fig. 2, it is shown that the system periodic with 
period equals 11 unit time and makespan 13 unit time, 
this result exactly equal to makespan as it is calculated in 
[13], i.e. firstly we make job matrix as follow:  
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with M(J[i]) represents job matrix  and p[i],k is time 
processing, 1 < i < n and k = 1, 2, …  So we get 
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Therefore, makespan can be calculated from equation 
in below: 
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It is shown that completion time in M1 equals 5 and  
completion time in M2 equals 13. So, makespan of this 
case equals 13. With the same ordering job, this 
makespan less than initial makespan of Example in [10] 
that equals 17. 

Therefore, Equation (12) can be used to obtain regular 
production model with minimum makespan and 
scheduling of starting process can be obtained by using 
Equation (14). 

 
Fig. 2. Gantt chart production flow of  flow shop 2 jobs 2 machines of  

Example 2 ( modified model) 

 
TABLE 2 

SCHEDULING OF STARTING PROCESS 
OF EXAMPLE 2 FOR 3 CYCLES PRODUCTION 

  1 2 3 
J1 J2 J1 J2 J1 J2 

M1
0 2 11 13 22 24 

M2 2 7 13 18 24 29 

IV. CONCLUSION 
In this section describe some notes for discussing 

especially flow shop scheduling. The modified model 
given by: 
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 This model can be rewritten as a difference equation 
of 1st-order with A0 ≠ ε: 

)()()1()1( 10 kRkXAkXAkX ⊕⊗⊕+⊗=+ . 
Next, we transform the model and get a new model 

that is given by: 
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The scheduling of this model is regular and it has the 
minimal makespan. This result gives an idea to make 
model of flow shop production by using max-plus 
algebra. For the future work, the discussing can be 
continued for flow shop production with set-up time and 
more than two machines. The case of more than two 
machines the problem is NP-Hard [14]. 
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