Maritime Weather Prediction Using Fuzzy Logic in Ternate Waters North Maluku

Anisa Sangadji¹, Aulia Siti Aisjah², and Gunawan Nugroho³

Abstract— Ternate waters of North Maluku is one of Indonesian eastern waters whose maritime weather is often unpredictable. Weathers prediction is important to avoid accidents in the waters. The aim of this research is to obtain a predictor model of wave's height and current's speed suitable for the Ternate waters using Takagi-Sugeno fuzzy logic. The data used is data from BMKG Maritime of Bitung which recorded per 6 hours during 5 years from July 2010 – June 2015. In order to reach accuracy of > 85%, 3 model predictor's that used waves height and current speed are predictor Model A, Model B and Model C. Each model uses different input and total membership function. The result of this research shows that the Model C is the best model for Ternate waters. Model C uses 4 membership functions for 3 input variables. Inputs of waves height predictor consist of the actual wind speed (U(t)), actual waves height (H(t)) and waves height 6 hours ago (H(t-6)) and accuracy percentage of waves height 6 hours ahead (H(t+6)) is 91,99%; while inputs of current speed predictor consist of actual wind speed (U(t)), actual current speed 6 hours ago (Cu(t-6)) and accuracy percentage of current speed 6 hours ahead (Cu(t+6)) is 81,63%.

Keywords-Maritime weather, waves height, current speed, Takagi-Sugeno fuzzy logic, Ternate waters, accuracy.

Abstrak— Perairan Ternate Maluku Utara merupakan salah satu perairan di kawasan timur Indonesia yang cuaca maritimnya sering tidak menentu. Hal ini menyebabkan potensi terjadinya kecelakaan laut sangat besar. Penelitian ini bertujuan untuk memperoleh model prediktor ketinggian gelombang and kecepatan arus laut terbaik di Perairan Ternate dengan menggunakan logika fuzzy Takagi-Sugeno. Data yang digunakan adalah data BMKG Maritim Bitung yang direkam per 6 jam selama 5 tahun dari Juli 2010 – Juni 2015. Untuk mendapatkan akurasi > 85% digunakan 3 model perancangan prediktor yaitu prediktor ketinggian gelombang and kecepatan arus Model A, Model B and Model C. Setiap model menggunakan masukan and jumlah fungsi keanggotaan yang berbeda-beda. Hasil penelitian menunjukkan Model C adalah model terbaik di Perairan Ternate, dimana prediktor ini menggunakan 4 fungsi keanggotaan untuk 3 variabel masukan. Masukan pada prediktor ketinggian gelombang terdiri dari kecepatan angin aktual (U(t)), ketinggian gelombang 6 jam sebelumnya (H(t-6)) and memiliki prosentase akurasi pada prediksi kecepatan arus aktual (Cu(t)) and kecepatan arus 6 jam sebelumnya (Cu(t-6)) and memiliki prosentase akurasi pada prediksi kecepatan arus 6 jam ke depan yaitu 86,33%.

Kata Kunci— Cuaca Maritim, Ketinggian Gelombang, Kecepatan Arus, Logika Fuzzy Takagi-Sugeno, Perairan Ternate, Akurasi.

I. INTRODUCTION

Unpredictable maritime weathers can interfere sea transportation especially the ship sailings. Many research to find weathers prediction methods to provide quick, accurate and all-covered informations are done recently. BMKG is national department that has responsibility as weathers observer and to predict weathers by conventional method (statistic or dynamic methods) with 5-10 km coverage for 1 observation point at the predictable area [1].

Maritime weathers prediction activities have been done with many modeling techniques and several applied methods from the simplest to the complex methods [2].

Maritime weathers prediction in the sailings strips using fuzzy logic are done continual to reach high accuracy. The accuracy of a predictor model is influenced by input variables [3].

The strategies of parameter selection on Fuzzy Logic Systems will provide the forecast that is easily understood by the fishermen and sea transport users [4].

Ternate waters of North Maluku is one of Indonesian eastern waters whose maritime weather is often

unpredictable and there is no research has been done therefore this research aims to get the best predictor model. The problem in this research is how to obtain a predictor model of wave height and current speed of the best in Ternate waters using Takagi-Sugeno fuzzy logic.

II. METHODS

Fuzzy logic is used for prediction system. Data that used for this paper is daily data from (BMKG) Maritim Bitung which recorded per 6 hours during 5 years from July 2010 to June 2015. Data is divided into 80% training data and 20% validation data [2]. Data collection location can be shown by Fig. 1.

In the modeling process 3 waves height and current speed models consist of Model A, Model B, and Model C are used to reach fuzzy system accuracy > 85%. The training process is using 80% data is 6580 data (July 2010-December 2014).

In the fuzzification process, membership function determination is done after wind speed, wave height and current speed data classified using Fuzzy Cluster Mean (FCM). FCM has function to determine minimum, maximum and mean value to be entered into FIS system. *Rule base* is using *IF-THEN* and connected with operation logic AND because all rules depends and impacts each others [5].

¹Anisa Sangadji, Aulia Siti Aisjah, and Gunawan Nugroho are with Departement of Physics Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia. Email: anisasangadji@gmail.com; auliasa@ep.its.ac.id; gunawan@ep.its.ac.id.

A. Waves Height and Current Speed Predictor Model A1) Waves Height Predictor

This model is using 3 input variables, 1 output and 49 rules base. Input consists of actual wind speed (U(t)), actual waves height (H(t)) and waves height 6 hours ago ((H(t-6))). This is can be shown by Fig. 2.

This model is using 7 membership functions with 7 categories, for wind speed consists of *Calm, Light Air, Light Breeze, Gentle Breeze, Moderate Breeze, Freeze Breeze and Strong Breeze*; waves height consists of *Glassy, Rippled, Wavelets, Slight, Moderate, Rough* and *Very Rough*. This is can be shown by Fig. 3-4 and waves height rule base algorithm are can be shown by Table 1. 2) *Current Speed Predictor*

This model is using 3 input variables, 1 output and 49 rules base. Input consists of actual wind speed (U(t)), actual current speed (Cu(t)) and current speed 6 hours ago ((Cu(t-6))). This is can be shown by Fig. 5.

This model is using 7 membership functions with 7 categories, for wind speed consists of *Calm, Light Air, Light Breeze, Gentle Breeze, Moderate Breeze, Freeze Breeze* and *Strong Breeze*; current speed consists of *Very Slow, Slow, Smooth, Slight, Average, Fast* and *Very Fast.* This is can be shown by Fig. 6-7 and current speed rule base algorithm are can be shown by Table 2.

B. Waves Height and Current Speed Predictor Model B1) Waves Height Predictor

This model is using 4 input variables, 1 output and 25 rules base. Input consists of actual wind speed (U(t)), wind speed 6 hours ago (U(t-6)), actual waves height (H(t)) and waves height 6 hours ago ((H(t-6))). This is can be shown by Fig. 8.

In FIS editor there are 5 membership functions with 5 catagories each input for wind speed consists of *Calm*, *Light Air, Light Breeze, Gentle Breeze* and *Moderate Breeze;* waves height consist of *Glassy, Rippled, Wavelets, Slight* and *Moderate.* This is can be shown by Fig. 9-10 and current speed rule base algorithm are can be shown by Table 4.

2) Current Speed Predictor

This model of Current speed FIS editor consist of 4 input variables, 1 output and 25 rules base. Input consists of actual wind speed (U(t)), wind speed 6 hours ago (U(t-6)), actual current speed (Cu(t)) and current speed 6 hours ago (Cu(t-6)). This model is using 5 membership functions with 5 categories, for wind speed consists of *Calm, Light Air, Light Breeze, Gentle Breeze* and *Moderate Breeze*; current speed consists of *Very Slow, Slow, Smooth, Slight* and *Average.* This is can be shown by fig. 11, membership function and current speed rule base algorithm are can be shown by fig. 12-13 and Table 3.

C. Waves Height and Current Speed Predictor Model C

This model is using 3 input variables, 1 similar output with model A and 16 rule bases. In FIS editor there are 4 membership functions with 4 catagories each input for wind speed consists of *Calm, Light Air, Light Breeze, Gentle Breeze;* waves height consist of *Glassy, Rippled, Wavelets* and *Slight;* current speed consists of *Very Slow, Slow, Smooth* and *Slight.* This is can be shown by fig. 14 and fig. 17. Membership function are can be shown by fig. 15-19, and current speed and wave height rule base algorithm are can be shown by Table 5-6.

III. RESULTS AND DISCUSSIONS

Validation data to validate the Model A, Model B, Model C predictor as 724 data in January-June 2015. Prediction accuracy is affected by input variable [3]. Gaussian membership function is used in the fuzzification process because it has smooth factor and no zero value in each point [5].

A. Waves Height Predictor Result

In Model A waves height predictor, percentage of validation results for the prediction of 6 hours, 12 hours, 18 hours and 24 hours ahead respectively is 18.92%; 23.20%; 23.89% and 23.48%. Biggest percentage is waves height prediction for the next 18 hours as 23,89 %. Fig. 20 shows consideration between prediction result (red) and actual result of BMKG (blue). X axis is amount of data while y axis is wave height (m). Graph prediction of wave height 18 hours ahead (H(t+6)) Model A has not followed the pattern graph of waves height actual, this is because of the use 7 membership functions based on division of the Beaufort scale causes narrowing width of Gaussian function, so most of the data is not there membership function properly. Data which has the same membership function only found in two categories namely is wavelet (1.04 m - 1.33 m) and slight (1.34 m -1.65 m). This is can be shown by Fig. 20.

At the Model B waves height Predictor, percentage of validation results for the prediction of 6 hours, 12 hours, 18 hours and 24 hours ahead respectively is 59.81%; 55.25%; 54.69% and 57.32%. In Figure 22 shows that most small graph patterns predicted outcomes may follow the graph pattern of the actual waves height, this means that some data have similarities in membership functions. In this model, the largest percentage of the predictions contained in waves height 6 hours ahead is 59.81%. This happens because the 5 membership functions used by the division of the Beaufort scale all but two categories represented a more dominant at that *rippled* (0,96 m -1,35 m) and *wavelet* (1,36 m -1,78 m).

In Model C waves height predictor, percentage of validation results for the prediction of 6 hours, 12 hours, 18 hours and 24 hours ahead respectively is 91.99%; 86.46%; 85.22% and 86.34%. In Figure 24-27 is seen that the predicted graph results wave height 6 hours ahead (H(t+6)) Model C can largely follows the pattern graph of the actual waves height. This means that most of the data are similar in membership functions. This happens because the 4 membership functions used by division of the Beaufort scale, all represented and 3 categories more dominant is *glassy* (0.33 m - 1.06 m), *rippled* (1.07 m - 1.55 m) and *wavelet* (1.56 m - 2.12 m). The largest percentage of the predictions contained in waves height 6 hours ahead is 91.99%.

B. Current Speed Predictor Result

In Model A current speed predictor, percentage of validation results for the prediction of 6 hours, 12 hours, 18 hours and 24 hours ahead respectively is 43.51%; 39.50%; 38.95% and 44.89%. Figure 21 is a graph of the results predicted and actual current speed 24 hours ahead (Cu(t+24)) Model A with a percentage of 44.89%, Prediction graph patterns fraction follows the pattern graph of the actual current speed, this means that a small portion of data has a similarity in membership functions. This happens because the 7 membership functions used

by the division of the Beaufort scale only two categories that have in common is very slow (0.08 cm/s - 5.55 cm/s) and a fraction slow (5.56 cm/s - 10,27 cm/s).

At the Model B current speed predictor, percentage of validation results for the prediction of 6 hours, 12 hours, 18 hours and 24 hours ahead respectively is 54.01%; 49.45%; 47.38% and 50.83%. In Figure 23, the current speed predictor Model B has the largest percentage of the predicted current speed 6 hours ahead (Cu(t+6)) is 54.01% and the predicted results graph patterns fraction follows the pattern graph of the actual current speed, this means that a small portion of data that have a common membership functions. This happens because the 5 membership functions used by division of the Beaufort scale only two categories that have the common that most categories *very slow* (0.08 cm/s - 5.55cm/s) and a fraction *slow* (5.56 cm/s - 10.27 cm/s).

In Model C current speed predictor, percentage of validation results for the prediction of 6 hours, 12 hours, 18 hours and 24 hours ahead respectively is 86.33%; 85.91%; 85.34% and 86.19%. Graph validation results can be seen in Figure 28-31. In Figure 14, the current speed predictor Model C has the largest percentage contained in the current speed prediction 6 hours ahead (Cu(t+6)) is 86.33% and the predicted results graph patterns current speed 6 hours ahead (Cu(t+6)) Model C can largely follows the pattern graph of the actual current speed, this means that most of the data are the same in the membership functions. This happens because the data are most of represented in a 4 membership functions, for category very slow (0.08 cm/s - 9.15 cm/s), slow (9.16 cm/s - 20.11 cm/s), smooth (20.19 cm/s - 41.32 cm/s) and slight (41.62 cm/s - 146.26 cm/s).

In this research, predictor Model C is the best model in the Ternate waters. When compared with previous studies such as studies on maritime weather prediction by using fuzzy logic in the Java Sea Shipping Line Surabaya-Banjarmasin by Aisjah et al, the results research shows that the predicted wave heights of 1 hour and 24 hours ahead to have an accuracy percentage 86.1% in the Surabaya waters and 71.37% in Banjarmasin Water respectively, while current speed predictions have an accuracy percentage of 40.61% for 24 hours ahead. Results of the analysis show that the uses of fuzzy logic Takagi-Sugeno type until the time of this research resulted in a better than prediction accuracy. The percentage of accuracy obtained in this research with previous research is different because of the pattern of waves height and current speed in the Java Sea and the Ternate waters of different. of the waves height pattern is essentially unpredictable and frequently changing erratically while the general pattern of surface sea currents influenced by physical factors and variables

such as friction, gravity, motion of earth's rotation, geography continents, sea floor topography and local winds. The combination of various interactions of these factors bring about the presence of sea current that flow all the time and interconnected on a world scale [8].

CONCLUSION

From this research can be concluded that:

- 1. Model A predictor uses 7 membership functions for 3 input variables and biggest accuracy percentage in prediction waves height 18 hours ahead is 23,89 % and current speed 24 hours ahead is 44,71 %.
- 2. Model B predictor uses 5 membership functions for 4 input variables and biggest accuracy percentage in
- 3. Prediction waves height 6 hours ahead is 59,81 % and current speed 6 hours ahead is 54,01 %.
- 4. Model C predictor uses 4 membership functions for 3 input variables and biggest accuracy percentage in prediction waves height 6 hours ahead is 91,99 % and current speed 6 hours ahead is 86,33 %.
- 5. To reach accuracy performance > 85%, Model C predictor is the best predictor in Ternate waters because has biggest percentage to predicts waves height 6 hours ahead is 91,99% and current speed 6 hours ahead is 86,33%.
- 6. Membership functions has to suit with the research data to reach high accuracy value.

REFERENCES

- [1] S. Arifin, A. S. Aisjah and H. Fatah, "Analysis of Maritime Weather Charachteristic Based on Result of Land Weather using Fuzzy Logic Prediction in Pasuruan, Probolinggo and Situbondo," in International Conference on Information, Communication Technology and System, Surabaya, 2014.
- [2] A. S. Aisjah and S. Arifin, "Aplikasi Sistem Logika Fuzzy pada Peramalan Cuaca Di Indonesia Untuk Mendeteksi Kejadian Anomali Tinggi Gelombang Laut," LPPM Institut Teknologi Sepuluh Nopember, Surabaya, 2010.
- [3] A. Zamani, D. Solomatine, A. Azimian and A. Heemink, "Learning from Data for Wind Wave Forecasting," *Ocean Engineering*, vol. 35, no. 10, pp. 953-962, 2008.
- [4] A. S. Aisjah and S. Arifin, "Maritime Weather Prediction using Fuzzy Logic in Java Sea," in *International Conference On Instrumentation Control and Automation*, Bandung, 2011.
- [5] G. Sylaios, F. Bouchette, V. A. Tsihrintzis and C. Denamiel, "A Fuzzy Inference System for Wind-Wave Modelling," *Ocean Engineering*, vol. 38, no. 17-18, p. 1358–1365, 2009.
- [6] World Meteorological Organization, Guide to wave and forecasting WMO- No 702, Geneva: Secretariat of The World Meteorological Organization, 1998.
- [7] W. Wei, Y. Zhang, G. Wu and M. Tong, "Ultra-short-term /Short-term Wind Power Continuous Prediction Based on Fuzzy Clustering Analysis", IEEE PES ISGT ASIA 2012 1569613375," in *IEEE PES Innovative Smart Grid Technologies*, Tianjin, 2012.
- [8] M. H. Kazeminezhad, A. Etemad-Shahidi and S. J. Mousavi, "Aplication of Fuzzy Inference System In The Prediction Wave Parameters," *Ocean Engineering*, vol. 32, no. 14-15, pp. 1709-1725, 2005.

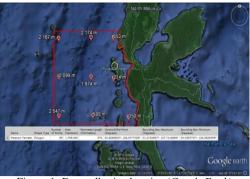


Figure 1. Data collection location (Google Earth)

Figure 2. Diagram block of waves height Model A

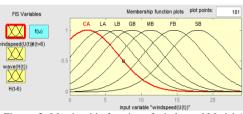


Figure 3. Membership function of wind speed Model A

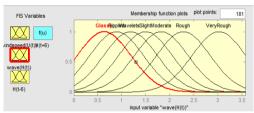
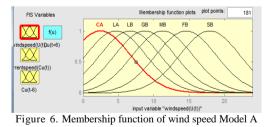



Figure 4. Membership function of wave height Model A

Figure 5. Diagram block of current speed Model A

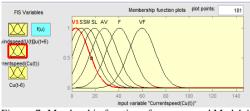


Figure 7. Membership function of current speed Model A

Figure 8. Diagram block of waves height Model B

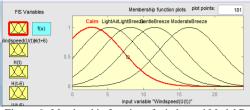


Figure 9. Membership function of wind speed Model B

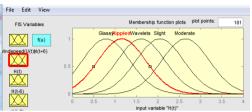


Figure 10. Membership function of wave height Model B

Figure 11. Diagram block of current speed Model B

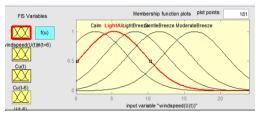


Figure 12. Membership function of wind speed Model B

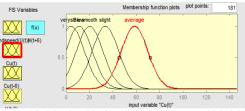


Figure 13. Membership function of current speed Model B

Figure 14. Diagram block of waves height Model C

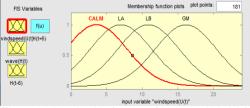


Figure 15. Membership function of wind speed Model C

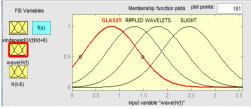


Figure 16. Membership function of wave height Model C

Figure 17. Diagram block of current speed Model C

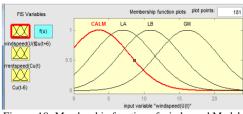


Figure 18. Membership function of wind speed Model B

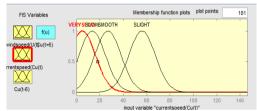


Figure 19. Membership function of current speed Model C

Figure 20. Predicted and Actual Results graph of waves height 18 hours ahead (H (t + 18)) Model A

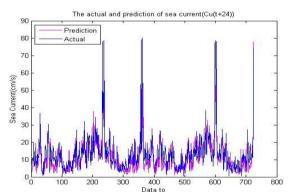


Figure 21. Predicted and Actual Results graph of current speed 24 hours ahead (H (t + 24)) Model A

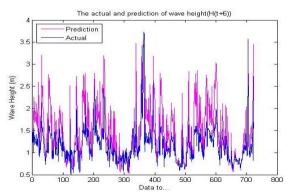


Figure 22. Predicted and Actual Results graph of waves height 6 hours ahead (H (t + 6)) Model B

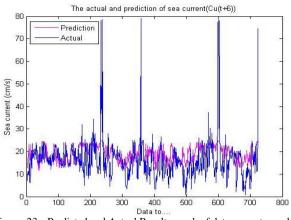


Figure 23. Predicted and Actual Results graph of data current speed 6 hours ahead (H (t + 6)) Model B

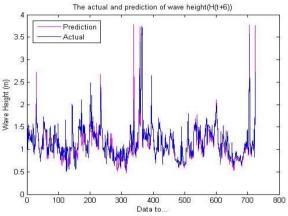


Figure 24. Predicted and Actual Results graph of waves height 6 hours ahead (H (t + 6)) Model C

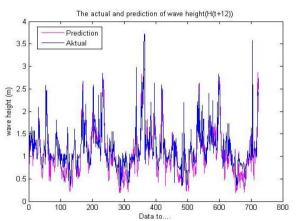


Figure 25. Predicted and Actual Results graph of waves height 12 hours ahead (H (t + 12)) Model C

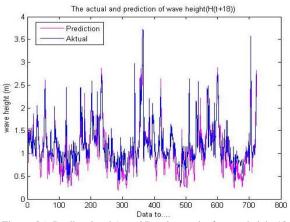


Figure 26. Predicted and Actual Results graph of waves height 18 hours ahead (H (t + 18)) Model C

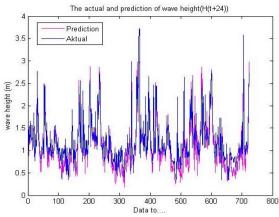


Figure 27. Predicted and Actual Results graph of waves height 24 hours ahead (H (t + 24)) Model C

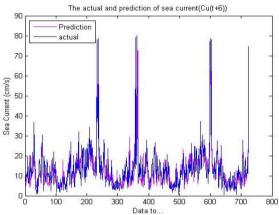


Figure 28. Predicted and Actual Results graph of current speed 6 hours ahead (H (t + 6)) Model C

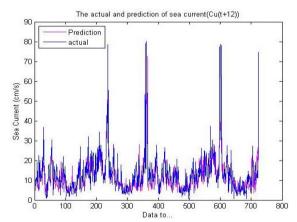


Figure 29. Predicted and Actual Results graph of current speed 12 hours ahead (H (t + 12)) Model C

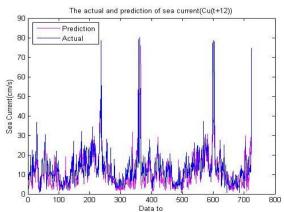


Figure 30. Predicted and Actual Results graph of current speed 18 hours ahead (H (t + 18)) Model C

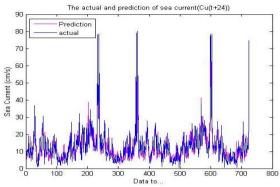


Figure 31. Predicted and Actual Results graph of current speed 24 hours ahead (H (t + 24)) Model C

TABLE 1. WAVE HEIGHT RULE BASE ALGORITHM MODEL A

		WAVE HEIGH	I KULE DASE	ALGORITHM	WIODEL /	1
No	If	U(t) (Knot)	H(t) (m)	H(t-6) (m)	Then	H(t+6) (m)
1	lf	Calm	Glassy	Glassy	Then	Glassy
2	If	Light Air	Rippled	Rippled	Then	Rippled
3	If	Light Breeze	Smooth	Smooth	Then	Smooth
4	If	Gentle Breeze	Slight	Slight	Then	Slight
5	If	Moderate Breeze	Moderate	Moderate	Then	Moderate
6	If	Calm	Rought	Rought	Then	Rought
7	If	Calm	Very Rought	Very Rought	Then	Very Rought
8	If	Calm	Rippled	Rippled	Then	Rippled
9	If	Calm	Smooth	Smooth	Then	Smooth
10	lf	Calm	Slight	Slight	Then	Slight
11	lf	Calm	Moderate	Moderate	Then	Moderate
12	If	Calm	Rought	Rought	Then	Rought
13	If	Calm	Very Rought	Very Rought	Then	Very Rought
14	lf	Light Air	Glassy	Glassy	Then	Glassy
15	If	Light Air	Smooth	Smooth	Then	Smooth
16	If	Light Air	Slight	Slight	Then	Slight
17	If	Light Air	Moderate	Moderate	Then	Moderate
18	If	Light Air	Rought	Rought	Then	Rought
19	If	Light Air	Very rought	Very rought	Then	Very rought
20	If	Light Breeze	Glassy	Glassy	Then	Glassy
21	If	Light Breeze	Rippled	Rippled	Then	Rippled
22	If	Light Breeze	Slight	Slight	Then	Slight
23	If	Light Breeze	Moderate	Moderate	Then	Moderate
24	If	Light Breeze	Rought	Rought	Then	Rought
25	If	Light Breeze	Very Rought	Very Rought	Then	Very Rought
26	If	Gentle Breeze	Glassy	Glassy	Then	Glassy
27	If	Gentle Breeze	Rippled	Rippled	Then	Rippled
28	If	Gentle Breeze	Smooth	Smooth	Then	Smooth

29	If.	Contlo	Moderate	Moderate	Thom	Moderate				Fast	Fast		Fast
29	If	Gentle Breeze	Moderate	Moderate	Then	Moderate	14	If	Light Air	Very	Very	Then	Very
30	If	Gentle	Rought	Rought	Then	Rought		-	-	slow	slow		slow
21		Breeze			T		15	If	Light Air	Smooth	Smooth	Then	Smooth
31	If	Gentle Breeze	Very Rought	Very Rought	Then	Very Rought	16	If	Light Air	Slight	Slight	Then	Slight
32	If	Moderate	Glassy	Glassy	Then	Glassy	17	If	Light Air	Average	Average	Then	Average
		Breeze					18	If	Light Air	Fast	Fast	Then	Fast
33	If	Moderate Breeze	Rippled	Rippled	Then	Rippled	19	If	Light Air	Very Fast	Very Fast	Then	Very Fast
34	If	Moderate Breeze	Smooth	Smooth	Then	Smooth	20	If	Light Breeze	Very slow	Very slow	Then	Very slow
35	If	Moderate Breeze	Slight	Slight	Then	Slight	21	If	Light Breeze	Slow	Slow	Then	Slow
36	If	Moderate Breeze	Rought	Rought	Then	Rought	22	If	Light Breeze	Slight	Slight	Then	Slight
37	If	Moderate Breeze	Very Rought	Very Rought	Then	Very Rought	23	If	Light Breeze	Average	Average	Then	Average
38	If	Fresh Breeze	Glassy	Glassy	Then	Glassy	24	If	Light Breeze	Fast	Fast	Then	Fast
39	If	Fresh Breeze	Rippled	Rippled	Then	Rippled	25	If	Light Breeze	Very Fast	Very Fast	Then	Very Fast
40	If	Fresh Breeze	Smooth	Smooth	Then	Smooth	26	If	Gentle Breeze	Very slow	Very slow	Then	Very slow
41	If	Fresh Breeze	Slight	Slight	Then	Slight	27	If	Gentle Breeze	Slow	Slow	Then	Slow
42	If	Fresh Breeze	Moderate	Moderate	Then	Moderate	28	If	Gentle Breeze	Smooth	Smooth	Then	Smooth
43	If	Fresh Breeze	Very Rought	Very Rought	Then	Very Rought	29	If	Gentle Breeze	Average	Average	Then	Average
44	If	Strong Breeze	Glassy	Glassy	Then	Glassy	30	If	Gentle Breeze	Fast	Fast	Then	Fast
45	If	Strong Breeze	Rippled	Rippled	Then	Rippled	31	If	Gentle Breeze	Very Fast	Very Fast	Then	Very Fast
46	If	Strong Breeze	Smooth	Smooth	Then	Smooth	32	If	Moderate Breeze	Very slow	Very slow	Then	Very slow
47	If	Strong Breeze	Slight	Slight	Then	Slight	33	If	Moderate Breeze	Slow	Slow	Then	Slow
48	If	Strong Breeze	Moderate	Moderate	Then	Moderate	34	If	Moderate Breeze	Smooth	Smooth	Then	Smooth
49	If	Strong Breeze	Rought	Rought	Then	Rought	35	If	Moderate Breeze	Slight	Slight	Then	Slight
			Tabl	E 2.			36	If	Moderate Breeze	Fast	Fast	Then	Fast
	(CURRENT SPE		SE ALGORITH	M MODEI	LA	37	If	Moderate	Very	Very	Then	Very

						CORRENT STEED ROLE DASE ALGORITHM MODEL A							
No	If	U(t) (Knot)	Cu(t) (cm/s)	Cu(t-6) (cm/s)	Then	Cu(t+6) (cm/s)							
1	If	Calm	Very slow	Very slow	Then	Very slow							
2	If	Light Air	Slow	Slow	Then	Slow							
3	If	Light Breeze	Smooth	Smooth	Then	Smooth							
4	If	Gentle Breeze	Slight	Slight	Then	Slight							
5	If	Moderate Breeze	Average	Average	Then	Average							
6	If	Calm	Fast	Fast	Then	Fast							
7	If	Calm	Very Fast	Very Fast	Then	Very Fast							
8	If	Calm	Slow	Slow	Then	Slow							
9	If	Calm	Smooth	Smooth	Then	Smooth							
10	If	Calm	Slight	Slight	Then	Slight							
11	If	Calm	Average	Average	Then	Average							
12	If	Calm	Fast	Fast	Then	Fast							
13	If	Calm	Very	Very	Then	Very							

29	If	Gentle Breeze	Average	Average	Then	Average
30	If	Gentle Breeze	Fast	Fast	Then	Fast
31	If	Gentle Breeze	Very Fast	Very Fast	Then	Very Fast
32	If	Moderate Breeze	Very slow	Very slow	Then	Very slow
33	If	Moderate Breeze	Slow	Slow	Then	Slow
34	If	Moderate Breeze	Smooth	Smooth	Then	Smooth
35	If	Moderate Breeze	Slight	Slight	Then	Slight
36	If	Moderate Breeze	Fast	Fast	Then	Fast
37	If	Moderate Breeze	Very Fast	Very Fast	Then	Very Fast
38	If	Fresh Breeze	Very slow	Very slow	Then	Very slow
39	If	Fresh Breeze	Slow	Slow	Then	Slow
40	If	Fresh Breeze	Smooth	Smooth	Then	Smooth
41	If	Fresh Breeze	Slight	Slight	Then	Slight
42	If	Fresh Breeze	Average	Average	Then	Average
43	If	Fresh Breeze	Very Fast	Very Fast	Then	Very Fast
44	If	Strong Breeze	Very slow	Very slow	Then	Very slow
45	If	Strong Breeze	Slow	Slow	Then	Slow
46	If	Strong Breeze	Smooth	Smooth	Then	Smooth
47	If	Strong Breeze	Slight	Slight	Then	Slight

	48	If	Strong Breeze	Avera	ige	Avera	age	Then	Average
	49	If	Strong Breeze	Fast		Fast		Then	Fast
		CUF	RRENT SF	T EED RULE	ABLE BASI		ORITHM	1 Mode	LB
No	If		U(t) knot)	Cu(t) (cm/s)		(t-6) m/s)	Then		(t-6) not)
1	If	Ca	lm	Very Slow	Ver Slo	•	Then	Calı	n
2	If	Li	ght Air	Slow	Slo	w	Then	Ligł	nt Air
3	If		ght eeze	Smooth	Sm	ooth	Then	Ligh Bree	
4	If		entle eeze	Slight	Slig	ght	Then	Gen Bree	
5	If		oderate eeze	Average	Av	erage	Then	Moo Bree	lerate eze
6	If	Ca	lm	Slow	Slo	w	Then	Calı	n
7	If	Ca	lm	Smooth	Sm	ooth	Then	Calı	n
8	If	Ca	lm	Slight	Slig	ght	Then	Calı	n
9	If	Ca	lm	Average	Av	erage	Then	Calı	n
10	If	Li	ght Air	Very Slow	Vei Slo		Then	Ligł	nt Air
11	If	Li	ght Air	Smooth	Sm	ooth	Then	Ligh	nt Air
12	If	Li	ght Air	Slight	Slig	ght	Then	Ligh	nt Air
13	If	Li	ght Air	Average	Av	erage	Then	Ligh	nt Air
14	If		ght eeze	Very Slow	Ver Slo		Then	Ligł Bree	
15	If		ght eeze	Slow	Slo	w	Then	Ligh Bree	
16	If		ght eeze	Slight	Slig	ght	Then	Ligh Bree	
17	If		ght eeze	Average	Av	erage	Then	Ligh Bree	
18	If		entle eeze	Very Slow	Ver Slo	-	Then	Bree	
19	If		entle eeze	Slow	Slo	w	Then	Gen Bree	
20	If		entle eeze	Smooth	Sm	ooth	Then	Gen Bree	
21	If		entle eeze	Average	Av	erage	Then	Gen Bree	
22	If		oderate eeze	Very Slow	Vei Slo	2	Then	Moo Bree	lerate eze
23	If		oderate eeze	Slow	Slo	w	Then	Moo Bree	lerate eze
24	If		oderate eeze	Smooth	Sm	ooth	Then	Smo	ooth
25	If		oderate eeze	Slight	Slig	ght	Then	Slig	ht

6	If	Calm	Rippled	Rippled	Calm	Then	Rippled
7	If	Calm	Wavelets	Wavelets	Calm	Then	Wavelets
8	If	Calm	Slight	Slight	Calm	Then	Slight
9	If	Calm	Moderate	Moderate	Calm	Then	Moderate
10	If	Light Air	Glassy	Glassy	Light Air	Then	Glassy
11	lf	Light Air	Wavelets	Wavelets	Light Air	Then	Wavelets
12	If	Light Air	Slight	Slight	Light Air	Then	Slight
13	If	Light Air	Moderate	Moderate	Light Air	Then	Moderate
14	lf	Light Breeze	Glassy	Glassy	Light Breeze	Then	Glassy
15	I f	Light Breeze	Rippled	Rippled	Light Breeze	Then	Rippled
16	I f	Light Breeze	Slight	Slight	Light Breeze	Then	Slight
17	If	Light Breeze	Moderate	Moderate	Light Breeze	Then	Moderate
18	If	Gentle Breeze	Glassy	Glassy	Gentle Breeze	Then	Glassy
19	If	Gentle Breeze	Rippled	Rippled	Gentle Breeze	Then	Rippled
20	If	Gentle Breeze	Wavelets	Wavelets	Gentle Breeze	Then	Wavelets
21	If	Gentle Breeze	Moderate	Moderate	Gentle Breeze	Then	Moderate
22	lf	Moderate Breeze	Glassy	Glassy	Moderate Breeze	Then	Glassy
23	If	Moderate Breeze	Rippled	Rippled	Moderate Breeze	Then	Rippled
24	If	Moderate Breeze	Wavelets	Wavelets	Moderate Breeze	Then	Wavelets
25	If	Moderate Breeze	Slight	Slight	Moderate Breeze	Then	Slight

TABLE 5. WAVE HEIGHT RULE BASE ALGORITHM MODEL C								
No	If	U(t) (Knot)	H(t) (m)	H(t-6) (m)	Then	H(t+6) (m)		
1	If	Calm	Glassy	Glassy	Then	Glassy		
2	If	Light Air	Rippled	Rippled	Then	Rippled		
3	If	Light Breeze	Wavelets	Wavelets	Then	Wavelets		
4	If	Gentle Breeze	Slight	Slight	Then	Slight		
5	If	Calm	Rippled	Rippled	Then	Rippled		
6	If	Calm	Wavelets	Wavelets	Then	Wavelets		
7	If	Calm	Slight	Slight	Then	Slight		
8	If	Light Air	Glassy	Glassy	Then	Glassy		
9	If	Light Air	Wavelets	Wavelets	Then	Wavelets		
10	If	Light Air	Slight	Slight	Then	Slight		
11	If	Light Breeze	Glassy	Glassy	Then	Glassy		
12	If	Light Breeze	Rippled	Rippled	Then	Rippled		
13	If	Light Breeze	Slight	Slight	Then	Slight		
14	If	Gentle Breeze	Glassy	Glassy	Then	Glassy		
15	If	Gentle Breeze	Rippled	Rippled	Then	Rippled		
16	If	Gentle Breeze	Wavelets	Wavelets	Then	Wavelets		

TABLE 4. WAVE HEIGHT RULE BASE ALGORITHM MODEL B

No	If	U(t) (Knot)	H(t) (m)	H(t-6) (m)	U(t-6) (knot)	Then	H(t+6) (m)
1	If	Calm	Glassy	Glassy	Calm	Then	Glassy
2	If	Light Air	Rippled	Rippled	Light Air	Then	Rippled
3	If	Light Breeze	Wavelets	Wavelets	Light Breeze	Then	Wavelets
4	If	Gentle Breeze	Slight	Slight	Gentle Breeze	Then	Slight
5	If	Moderate Breeze	Moderate	Moderate	Moderate Breeze	Then	Moderate

 TABLE 6.

 CURRENT SPEED RULE BASE ALGORITHM MODEL C

No	If	U(t) (Knot)	H(t) (m)	H(t-6) (m)	Then	H(t+6) (m)
1	If	Calm	Very slow	Very slow	Then	Very slow
2	If	Light Air	Slow	Slow	Then	Slow
3	If	Light Breeze	Smooth	Smooth	Then	Smooth
4	If	Gentle Breeze	Slight	Slight	Then	Slight
5	If	Calm	Slow	Slow	Then	Slow
6	If	Calm	Smooth	Smooth	Then	Smooth
7	If	Calm	Slight	Slight	Then	Slight
8	If	Light Air	Very slow	Very slow	Then	Very slow
9	If	Light Air	Smooth	Smooth	Then	Smooth
10	If	Light Air	Slight	Slight	Then	Slight
11	If	Light Breeze	Very slow	Very slow	Then	Very slow
12	If	Light Breeze	Slow	Slow	Then	Slow
13	If	Light Breeze	Slight	Slight	Then	Slight
14	If	Gentle Breeze	Very slow	Very slow	Then	Very slow
15	If	Gentle Breeze	Slow	Slow	Then	Slow
16	If	Gentle Breeze	Smooth	Smooth	Then	Smooth