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Abstract—In this paper, we discuss the generalized linear models with ordinal response for correlated data in nested area. 

Some basic concepts are described, that is nested spatial, threshold model, and cumulative link function. Due to correlated 

data used for this modeling, Generalized Estimating Eequation (GEE) is used as model parameters estimation method. 

Nested is shown by the model building and its application on nested spatially data. In this method, some Working 

Correlation Matrices (WCM) are able to be specified depend on the nature and type of the data. In this study, 3 types of 

WCM and 2 types of parameters estimation covariance are used to see the results of parameters estimation from these 

combinations. As a conclusion, independent WCM is appropriate to the data.   
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Abstrak—Makalah ini membahas generalized linear models dengan respon ordinal untuk data berkorelasi pada area 

tersarang. Beberapa konsep dasar dibahas, yaitu sedikit pendahuluan mengenai spatial tersarang, model threshold, dan fungsi 

penghubung kumulatif. Karena ada indikasi data berkorelasi, Generalized Estimating Equation (GEE) digunakan untuk 

pendugaan parameter model. Pembentukan model disesuaikan dengan kondisi tersarang dan diaplikasikan pada data spasial 

tersarang. Pada metode pendugaan parameter GEE, beberapa Working Correlation Matrices (WCM) dapat ditentukan 

tergantung dari kondisi data. Tiga struktur WCM dan 2 jenis pendugaan digunakan untuk melihat pengaruhnya pada hasil 

pendugaan parameter. Hasil perhitungan memberikan kesimpulan bahwa WCM independent paling sesuai untuk data yang 

digunakan.    

 

Kata Kunci—nested generalized linear model, respon ordinal, working correlation matrix, berkorelasi

  

I. INTRODUCTION
2
 

s the starting consideration of the nested 

Generalized Linear Mixed Models (nested GLMM) 

for ordinal response, this paper works through about 

nested Generalized Linear Models (nested GLMs) for 

ordinal response, sub topics about parameter estimation 

method, and implementation of the model to the data.  

Related to the evaluation of regions on poverty 

alleviated program, comparison among regions is 

needed. In this work, the score in ordinal scale is prefer 

than numeric to simplify the interpretation [1]. This 

study uses ordinal response for modelling, and the unit of 

observation is sub district. Connected to this region and 

certain multilevel spatial survey, assumed the regions 

(e.g., districts or ‘kabupaten’) of one area (e.g., province) 

are similar but not identical for another area. Such an 

arrangement is called a nested, with levels of district 

nested under the levels of province. For example, 

consider the government has a goal to reduce poverty 

and modeling is used to know the factors that contribute 

to determine poverty level. The question is: do these 

factors have the same effects on poverty level in all 

provinces? This question will be answered through the 

nested modeling.   

There are some districts available from each province. 

The situation is depicted by Figure 1, which in this 

problem, a district from particular province has different 

nature from districts of another province [2]. Every 
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province has a particular nature and policy especially for 

a specific province such as ‘Daerah Istimewa’. This 

situation has an effect on the correlation matrix and 

parameter estimation. Based on this effect, the nature of 

the spatial component should be considered especially 

when a modelling is needed to analyze the effects of 

districts and province 

Spatial data can be viewed as realizations of a spatial 

stochastic process {Z(s): sD} where s is the location 

from which the data is observed and D is a random set in 

d dimensional Euclidean space [3]. Lattice data is 

defined as follows. Denote that Z(s1),…· ,Z(sn) are lattice 

data observed at n sites. D is a fixed subset of R
d 

and it is 

partitioned into a finite number of lattices (or areal 

units), while site index s varies continuously over D [4]. 

Generalized estimating equations as parameters 

estimation method, were developed to extend 

generalized linear models to accommodate correlated 

longitudinal and/or clustered data [5]. In statistics, a 

Generalized Estimating Equation (GEE) is used to fit the 

parameters of a generalized linear model where unknown 

correlation between observations in a cluster is present. 

This method is usually used for the models of the 

clustering or longitudinal data. GEE was introduced by 

[6] as a method of regression model parameters 

estimation when dealing with correlated or clustered 

data. To define a regression model using the GEE 

methodology, one needs to define the following 

principles: the distribution of dependent variable (which 

must be a member of the exponential family), the 

monotonic link function, the independent variables, and 

the correlation or covariance structure of the repeated 

(clustered) measurements. 

Analog to the concept of four calcium content 

measurements on a leaf [7], unit of observation in this 

research is sub-district. Analogy of sub district is the 

point of calcium contents measurement, analogy of 

A 

http://en.wikipedia.org/wiki/Goodness-of-fit
http://en.wikipedia.org/wiki/Generalized_linear_model
http://en.wikipedia.org/wiki/Correlation
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district is the leaf, and analogy of province is the tree 

where the leaf come from.  

Sub district is presented as repeated measurement in a 

district, and district as level 1 is nested in province as 

level 2. Ordinal measurement is made on each sub-

district within a district [1]; or repeated ordinal 

measurements are made on each district at different sub-

districts. For instance, in a poverty study, a district may 

be represented by several sub districts at a given value of 

covariates, furthermore, these districts can be classified 

as “worst”, “moderate”, or “mild” in poverty [8]. 

Clusters are an example to represent the correlated 

observations: assumed that there is a correlation between 

observations in a cluster, while there is no correlation 

between observations from different cluster. This 

structure can be used as an example of longitudinal data 

or panel data as well as the data of family studies, or data 

with spatial structure [9]. 

To capture some of the beneficial aspects of quasi-

likelihood estimation in the context of models for 

correlated data, [6] and [7] established GEE method. 

Beside robust in misspecification of covariance matrix, 

estimation using GEE is often easier to quantify than the 

maximum likelihood estimation [10].   

In the parlance of the GEE approach, Vi is known as a 

"working" covariance matrix to distinguish it from the 

true underlying covariance among the Yi. That is, the 

term "working" acknowledges our uncertainty about the 

assumed model for the variances and within-subject 

associations; unless they have been correctly modeled, 

our model for the covariance matrix may not be correct. 

The GEE approach allows the modeler to specify an 

incorrect structure [5]. The objective of this paper is to 

build generalized linear model of ordinal poverty 

response in nested area using GEE as the method to 

estimate the model parameters. 

A. Study Area 

The study area (D) consist of 3 provinces with 3 

districts in every province, and nsi sub districts in district 

i, i = 1, 2, 3 of province s, s=1,2,3. The districts are 

chosen random independently in every province, with a 

uniform distribution. In other words, simple random 

sampling is used to select 3 districts from every province 

(without Banten, DKI, and DIY). Figure 2 shows study 

area in this research.  

B. Data 

Based on the report of BAPPENAS, there is a relation 

between the level of severity (poverty) of a region with a 

number of farmer families, the number of education 

centers (schools), the number of medical centers and/or 

health personnel, as well as the number of cases of 

malnutrition or bad nutrition [11]. To find out how these 

variables affects poverty level, through the modeling.  

Nested GLM in this study are applied to the data on 

poverty with response variable is the poverty (severity) 

level of sub district, which has levels (worst, moderate, 

mild) [1]. The explanatory variables in this modeling are 

the number of schools, farmer families, health personnel, 

and malnutrition hotspots status. All explanatory 

variables are divided into 3 levels (low, moderate, and 

high), except the hotspot has 2 levels (hotspot = 1, non 

hotspot = 0). The model is shown by Equation 7. 

II. METHOD 

A. Threshold Model 

Threshold is a latent variable at the model that made 

the difference between linear models with ordinal 

response and linear models with non-ordinal responses. 

Threshold model is explained as follows. In logistic and 

probit regression models, there are assumptions about an 

unobserved latent variable (y) associated with the actual 

responses through the concept of threshold [12]. For 

dichotomy model, it is assumed there is a threshold 

value, while for ordinal model with K categories 

(polytomy), it is assumed there are K-1 threshold values, 

namely γ1, γ2,
…

, γK-1. Response occurs in category k (Z = 

k), if the latent response y is greater than k-1 and smaller 

than k. Assumed Yj is unobserved, and the j-th 

observation is in a category, say category Zj, j = 1, …, N. 

The relationship between Yj and Zj is taken to be, 

kZY jkjk   1                   (1) 

where k  {1, , K}, 0 = -, K = + and  γ1, γ2,
…

, 

γK-1 are unknown boundary points that define a 

partitioning of the real line into K intervals. Thus, when 

the realized value of Yj belongs to the k-th interval, we 

observe that zj = k. Under that assumptions, the 

probability-mass function of Z1, , ZN is, 

   
 NjYP

NjzZPzzP

zjjzj

jjN

,...1;

,....,1;,....,

1

1





 


  (2) 

This model is called the threshold model [13].  

These models can also be interpreted in terms of a 

latent variable. Specifically, suppose that the manifest 

response Zj results from grouping an underlying 

continuous variable Yi using cut-points 1 < 2 <  < K-

1, so that Zj takes the value 1 if Yj is below 1, the value 2 

if Yj is between 1 and 2, and so on, taking the value K if 

Yj is above K-1. Figure 3 illustrates this idea for the case 

of five response categories. 

B. Cumulative Link Models 

All of the models to be considered in this research arise 

from focusing on the cumulative distribution of the 

response. Let jk = Pr{Zj = k} denote the probability that 

the response of an individual with characteristics xj falls 

in the k-th category, and let pjk denote the corresponding 

cumulative probability, 

 kzpp jrjk   

that the response falls in the k-th category or below, so,  

jkjjjkp   ...21    (3) 

1,  kjjkjk pp  

Let g(.) denote a link function mapping probabilities to 

the real line. Then the class of models that will be 

considered, assumes that the transformed cumulative 

probabilities are a linear function of the predictors, of the 

form,  

βx)p(g jkjk        (4) 

In this formula, k is a constant representing the 

baseline value of the transformed cumulative probability 

for category k, xj is a row vector of covariates of j-th 

observation  and β is a column vector, represents the 

effect of the covariates on the transformed cumulative 

probabilities. Since it is written as the constant explicitly, 
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we assume that the predictors do not include a column of 

ones.   

Suppose further the underlying continuous variable 

follows a linear model of the form  

Yj = xj + j

 

where the error term j has c.d.f. F(j). Then, the 

probability response of the j-th individual will fall in the 

k-th category or below, given xj, satisfies the equation  

   
 βxF

βxPYPp

jk

jkjrkjjk








                (5) 

and therefore follows the general form in Equation (4) 

with link given by the inverse of the c.d.f. of the error 

term  

    βx j 
jjkjk pFpg 1     (6) 

It is assumed that the predictors xj do not include a 

column of ones, because the constant is absorbed in the 

cut-points [15].  

C. Model Building 

This part is about Nested Generalized Linear Models 

for ordinal response. Model building in this study is 

based on spatial concept: the closer the observation, the 

larger the correlation [3]. Based on this concept, the idea 

was expanded to the nested of location or area. 

Furthermore, as the data in the observation is not always 

continue nor has normal distribution, the model should 

be in the general form 

  )(1
XβμY

 gE  

Generalized linear models for nested data is 

  )( )(
1

)( siss(i)is gE βXμY
  

E (Ys(i)) is the expected value of Ys(i), response of 

observation in province s and district i; Xs(i) βS is the 

linear predictor, a linear combination of unknown 

parameters s;    is a link function.  

Modelling in this research uses ordinal scale as 

response variable and some categorical (ordinal) 

variables as covariates. Index j is for sub district 

(repeated observations in district i), i is for district 

(nested in province s), and s is an index for province.  

District as level-1 is nested in province as the level-2. 

Link function for multinomial ordinal response is the 

cumulative logit model [16-17]. 

 ))(())((
))((

))((

)(1

)(
log jissjisk

jis

jis

kyp

kyp
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














βx        (7) 

Where k is threshold. ’s are the fixed effect at the 

transformed cumulative probabilities, ys(i(j)) = the 

response variable of jth sub subject (sub district), in ith 

subject (district), in sth center (province), that could be 

continuous, binary, count, or category., xs(i(j)) is  the value 

of covariates x of sub district  j, in district i and province 

s. Let S = number of centers, I = number of subject nsi = 

the number of repeated measurements (observations or 

sub-subjects) of the response on the subject. The 

response on the ith district of province sth can be 

grouped into a nsi x 1 vector. 
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where X size  is, 

      
  
   

 
                  .          is a 

spatially unstructured random effect assumed identically 

independently normally distributed of sub district j in 

district i and province s. This assumption is based on a 

theorem, that standardized of Pearson residual Moran’s I 

convergence in distribution to N(0,1) [18]. 

In this research, the model is developed using ordinal 

response variable with multinomial distribution for 

spatially nested area. As the data is nested and 

correlated, GEE is used as parameters estimation method 

for GLM. The models are implemented for poverty data 

in Java Island. Study area comprises of 3 provinces, 9 

districts.  

D.  GEE for Ordinal Response Data 

Generalized linear models were first introduced by 

Nelder and Wedderburn [17] and later expanded by 

McCullagh and Nelder [16]. The following discussion is 

based on their works and an extension of GEE from 

Liang & Zeger [6] for ordinal categorical responses data.  

Suppose we have a multinomial response, say z. And 

for this response, there are K ordered categories with 

corresponding probabilities π1, π2, …, πK, that is Pr(z = k) 

= πk. The proportional odds model is based on the 

cumulative probabilities, k = π1 + π2 + …+ πk, for k = 1 to 

K-1. Logit link function is used to relate k to a linear 

function of p covariates X. Now let’s take a look at the 

repeated situation. Suppose we have a sample of I 

subjects. Let zij be the ordinal response (with K levels) 

for the ith subject (i =1 to I) at point j (j = 1 to ni). Form 

of a (K-1)×1 vector yij = (yij1, yij2, …,yijK-1)`where Yijk = 

1 if zij=k, and 0 otherwise.  

Let’s denote the expectation of  yij as πij = E (yij ) = 

(πij1,πij2,
…

,πijK-1)'  with πijk  = Pr(yijk = 1). And let xij 

denote a 1×p row vector of covariates for subject i at sub 

subject j.  

The objective of this part is to model the πijk as a 

function of xij and the regression parameters θ = γ1, γ2,
…

, 

γK-1,β)'   where γk are intercept or cut-point parameters 

(threshold) and β is a p×1 vector of regression 

parameters. Let φijk = πij1 + πij2 + …+ πijk denote the 

cumulative probabilities. Then the proportional odds 

model at sub subject j is: log it(φijk ) = γk + xijβ. To 

establish notation, let yi = (yi1,
…

,yini )', and πi = (πi1, 
…

,πini )'. 

Then θ can be estimated through solving the estimating 

equation as follows 
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For clustered nested model, 
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Generalized inverse is used if Vs(i) is singular or almost 

singular due to redundant data.  Here 

2
1

2
1

)()()()( )( isisisis ARAV                        (10) 

with little mathematical operations,  from equation (10), 

the working correlation matrix, Rs(i)(α) is 

2
1

2
1

)()()()(

1
)(


 isisisis AVAR


  





























2
1

2
1

2
1

2
1

2
1

2
1

)()()(2)(1)(

2)(2)(2)(2)(12)(

1)(12)()()()(

)(

...

............

...

...

1

)(

sisisisvsv

si

si

nisnisnisnisnis

nisisisisis

nisisisisis

is

AVA

AVA

AVA

R











 

For simplifying, index j = 1, …, nsi  is not inside 

parenthesis, but the same meaning with written before is 

maintained. 

Note that there is a subscript s(i) in Rs(i)(α) which 

means each subject has different working correlation 

matrix. In fact, only the diagonal blocks are different for 

different subjects, the off-diagonal blocks will be the 

same for all subjects. The diagonal blocks of  
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elements of 2
1

2
1

))(())(())((



jisjisjis AVA are 1 and off-diagonal 

(k, m) element are  

  2/1
)),(()),(()),(()),((
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mjiskjis
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which are not constant and depend on the categories k 

and m at measurement  j.  

The unknown off-diagonal blocks of Rs(i)() are the (K-

1)×(K-1) matrix ρiuv,(α)u, v = 1, …, nsi   which need to 

be parameterized and estimated [19]. 

E. Working Correlation Matrices 

This part describes about Working Correlation Matrix 

(WCM) for ordinal multinomial model. Ysij ,k and  sij ,k  

are described in part D in this section. WCM uses 

Pearson-like residuals that defined as follows 
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
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
  

and the vector ],...,[ 1,1,  Ksijsijsij rrr . The following 

structures are available [19]. 

1. Exchangeable 

The exchangeable correlation structure is defined as: 
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 and  ρsiv = α ;  u, v  = 1, …, nsi  and  u ≠ v [19]. 

2. Unstructured 

The unstructured correlation structure is defined as:
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And ρiv = αuv ,  u, v =1, …, ni  and  u ≠ v [19].  

Some provisions in choosing the working correlation 

matrix are: (1) if I is small and data are balanced and 

complete, then an unstructured matrix is recommended, 

(2) if observations are repeated, then use a structure that 

accounts for correlation as function of time (stationary, 

or auto-regressive), (3) if observations are clustered (i.e. 

no logical ordering) then exchangeable may be 
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appropriate, (4) if the number of clusters is small, then 

independent may be the best [20]. 

F. Algorithm for GEE Parameter Estimation 

The algorithm for estimating model parameters using 

GEEs is outlined below [19, 6]. The standard iterative 

procedure to fit GEE, based on Liang and Zeger is : 

1) Compute initial estimates for θ, θ
(0)

 using 

conventional GLM, i.e., assuming independence. 

2) Compute the working correlation R(α) based on  θ
(0)

, 

Pearson residuals and a specified working correlation 

structure. Check if R(α) is positive definite for 

exchangeable and unstructured structures. If it is not, 

revise it to be equal to 
 

   
         ), where I is an 

identity matrix and ς is a ridge value such that the 

adjusted matrix is positive definite. If a fixed 

correlation matrix is specified by the researchers and 

it is not positive definite, then cannot continue. As an 

alternative, then compute the initial estimate of the 

covariance matrix of               
   

  , the generalized 

estimating equation 
(0)

, and generalized Hessian 

matrix H
(0)

 (see formulae below) based on  θ
(0)

 and 

     
   

 . 

3) Initialize  = 0. 

4) Set  =  + 1. 

5) Compute estimates of vth iteration (from Taylor 

series) 

  )1()1()1()(   vvvv
sHθθ  

If       is a positive integer, update the working 

correlation, checking for positive definiteness as above. 

6) Compute an estimate of  the covariance matrix of yj 

and its generalized inverse  
2/1
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v
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v
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For the ordinal multinomial model, replace R(α) with 

         in the above equations. 

7) Revise      and      based on       and       
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8) Check the convergence criteria. If they are met or the 

maximum number of iterations is reached, then stop.  

The final vector of estimates is denoted by   . 
Otherwise, go back to step (4) [19]. 

1. Convergence Criteria 

Let    and    are given as tolerance levels, then the 

criteria for parameter convergence can be written as 

follows: 
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[19] (may be specified by researcher) after the log-

likelihood or parameter convergence criterion has been 

satisfied.  

2. Parameter Estimate Covariance Matrix, Correlation 

Matrix and Standard Errors 

Two parameter estimate covariance matrices can be 

calculated, that is model-based and robust estimators. In 

the generalized linear model, the consistency of the 

model-based parameter estimate covariance depends on 

the correct specification of the mean and variance of the 

response (including correct choice of the working 

correlation matrix). However, the robust parameter 

estimate covariance is still consistent even when the 

specification of the working correlation matrix is 

incorrect as we often expect [20]. 

Model-based parameter estimate covariance is
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The robust parameter estimate covariance is: 
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and )cov( )(isz  can be estimated by,

))(( )()()()( isisisis πzπz    

Note that model-based parameter estimate covariance 

will be affected by how the scale parameter is handled, 

but the robust parameter estimate covariance will not be 

affected by the estimate of the scale parameter because   

is cancelled in different terms [19]. 

3. Parameter Estimate Standard Error 

For the ordinal multinomial model, let     ,  k = 1, 2, 

…, K-1, be threshold parameter estimates and     ,  r = 1, 

… p  denote non-redundant regression parameter 

estimates. Their standard errors are the square root of the 

rth diagonal element of Σr:              and       

                  , respectively [19]. 

G.  Wald Statistics 

For ordinal multinomial model, the more general test 

matrix L= (L( ), L(β)), where L(γ)= (I1,
…

,IK-1)  consists 

of columns corresponding to threshold parameters and 

L(β) be the part of L corresponding to regression 

parameters. Consider matrix  Lo = (lo, L(β)),, where the 

column vectors corresponding to threshold parameters 

are replaced by their sum        
   
    Then Lθ is 

estimable if and only if Lo = LoHω, where  Hω = 

(X1'ΩX1)
-
X1'ΩX1 is a (1+p) x (1+p)  matrix constructed 

using X1 = (1,-X). Ω is the scale weight matrix with ith 

diagonal element ωi and such that Liθ is estimable. The 

Wald statistic for testing Lθ =K, where L is a r x (K-

1+p)   full row rank hypothesis matrix and K is a r×1 

resulting vector, is defined by 

)()()'( KLθL'LKLθ  S  

where             is the GEE estimate and Σ is the 

estimated covariance matrix (Σ could be the model based 

or robust estimator). The asymptotic distribution of S is 

   
 , where rc = rank (LL) [10].   
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1. Wald Confidence Intervals 

For the ordinal multinomial model, the 100(1 – α)% 

Wald confidence interval for parameter      is given by 

)ˆˆ( 2/12/1 rrr zz      

the estimate of )exp( r  is )ˆexp( r , the standard error 

estimate of )ˆexp( r  is )ˆ).ˆ(exp( rr  and the 

corresponding 100(1 – α)% Wald confidence interval for 

)exp( r is   

    rkrr zz   ˆˆexp,exp 2/12/1    

III. RESULTS AND DISCUSSION 

Appendix 1 shows the parameter estimates and their 

standard errors and Appendix 2 presents significance of 

the parameters. The Following is the explanation about 

the output.  

A.  Standard Error of Parameters Estimate 

Figure 4 shows the standard errors of model based 

GLM parameters. Standard errors unstructured tend 

smaller than standard errors independent and 

exchangeable, while standard errors independent are the 

highest.  

Moreover, according to Figure 5, there is no particular 

pattern between exchangeable, unstructured, and 

independent for robust parameter estimates. For some 

parameters (prov2, farm11, farm21, sch12, sch22), 

standard errors unstructured are extremely high.  

From Figure 6, robust estimation with independent 

WCM has the lowest standard error, but according to the 

nature of the data, unstructured WCM is the most 

appropriate due to high correlation between sub districts 

in the same district.  

It is desirable to compare the fit of different working 

correlation structures within a GEE for Nested GLM. An 

informal comparison is to compare the standard error of 

the robust (SER) and model-based (SEM). There are no 

guidelines regarding the size of the ratio, but higher 

ratios reflect poorer model fit. This comparison is 

qualitative, but it is the best approach available at this 

time [21]. Table 1 presents the averages of this ratios 

(SER/SEM). It shows independent WCM has the smallest 

ratio. It means independent WCM is most appropriate to 

the data. 

B. Signifinace (p-values) (Appendix 2) 

From Appendix 2, it is believed that province 2 (West 

Java) is different from province 3 (East Java) for all 

models (p-values  0.000). Number of farmer families in 

province 2 (Central Java) is significant as a contribution 

to determine the poverty level. Furthermore, number of 

school is also significant as a contribution to determine 

the poverty level in West Java. 

In addition, exchangeable working correlation matrix 

has low values, i.e. corr (i1,i1)=0.161, corr (i1,i2) = 

corr (i2,i1) = 0.061, and corr (i2,i2) = 0.063, while 

unstructured working correlation matrix has varies 

values, with the full range of correlation values or (0, 1). 

Some correlations are 1 in some locations (not in the 

main diagonal).  

1. Some interpretation of parameters 

School1 in prov1 with model based and unstructured 

WCM: in West Java, probability a sub district with 

category of school1 to be the more severe is exp(2.05) = 

7.77 times of sub district with category of school3, with 

other values of variables are fixed. 

2. Classification Tables 

Appendix 3 shows classifications result of observed 

and predicted result of Nested GLM. The true 

classification is always expected to have high value. The 

good models have high true classification. True 

classification for exchangeable WCM is 

((35+1+27)/128)  100% = 49,2%. For unstructured 

WCM is also ((35+1+27)/128 )100% = 49.2%, while 

for independent WCM is the highest, ((39+4+35)/128)  

100% = 60.9%  for both estimations, robust and model-

based. Figure 6 also shows that standard errors of robust 

independent tends lower than other standard errors.  

IV. CONCLUSION 

Even though based on the nature of the data, 

unstructured WCM is the most appropriate due to high 

correlation between sub districts in the same district, but 

according to the result of modeling, independent WCM 

is the most appropriate to the data. Ratio of SER/SEM is 

the smallest, 0.56 and percentage of the true 

classification is the highest, 60.9% 

Using robust estimation with unstructured WCM 

should be avoided, due to unstable standard error, but 

model based unstructured is fine (stable). 

In general, parameters estimate of model based are 

more stable than those of robust. 

Related to the nested area using in the modeling, the 

significance results (p-values) give the indication that 

characteristic of Central Java is different from West Java 

and East Java, which is appropriate to research of 

“Civilization Java” by Rahardjo [22]. Rahardjo said, 

characteristic of geographical areas in Central Java is 

more closed than in East Java. In addition, number of 

farmer families in Central Java is significant as 

contribution to poverty level, but not significant in other 

provinces. In addition, number of schools in West Java is 

significant to determine the poverty level, but not 

significant in East Java. 

It is recommended to conduct simulation data to look 

the differences among some working correlation 

matrices. Furthermore nested area based on geographical 

conditions, such as northern coast, inland, and southern 

coast is still a challenge as an open problem to be 

studied. 
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Figure 1. Nested areas (dark color are districts sample) 

 

 

Figure 2.  Study area with 3 provinces {s = 1, 2, 3}, 3 

districts {i = 1, 2, 3} are randomly chosen from each province, i.e. 

West, Central and East Java. There are nsi sub districts in district i 
of province s 

 

 
 

 

Figure 3. An ordered response and its latent variable [14] 

 
 

Figure 4. Standard errors of model based GLM parameters 

 

 
Figure 5. Standard errors of robust GLM parameters 

 
Figure 6.  Standard error of all models 

 
TABLE 1  

AVERAGES OF  SER/SEM OF NESTED GLM  PARAMETER ESTIMATES 

  Working Correlation Matrix 

  Exchangeable Unstructured Independent 

Average 0.63 1.5 0.56 
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APPENDIX 1   
PARAMETERS AND STANDARD ERRORS OF NESTED GENERALIZED LINEAR MODEL  

    Exchangeable Unstructured Independent 

   
  

model  robust     model      robust  Model  robust 

      

Parameter              

     

Std.    
Error 

   

       
Std. 

Error 

  

       
Std. 

Error 

 

         
Std. 

Error 

 

 
Std. 

Error 

 

 
Std. 

Error 

Threshold [ordb=1] 0.30 0.73 0.30 0.15 -0.04 0.54 -0.04 0.51 -0.21 0.90 -0.21 0.70 

[ordb=2] 1.89 0.83 1.89 0.47 1.18 0.58 1.18 0.67 1.80 0.93 1.80 0.80 

[prov=1]  0.41 1.32 0.41 1.19 0.31 0.99 0.31 1.07 -0.70 1.44 -0.70 0.82 

[prov=2] -21.85 1.94 -21.85 1.21 -27.13 1.93 -27.13 4.06 -28.65 2.07 -28.65 1.25 

[prov=3] 0a  0a  0a  0a  0a  0a  

[farm=1]([prov=1]) 1.14 0.89 1.14 0.59 0.39 0.57 0.39 2.15 2.68 1.00 2.68 1.18 

[farm=2]([prov=1]) 0.55 0.72 0.55 0.64 0.86 0.59 0.86 3.13 2.28 0.88 2.28 0.79 

[farm=3]([prov=1]) 0a  0a  0a  0a  0a  0a  

[farm=1]([prov=2]) 24.45 0.89 24.45 0.85 29.78 1.02 29.78 0.97 30.82 1.03 30.82 1.12 

[farm=2]([prov=2]) 22.367b  22.367b  29.178b  29.178b  28.935b  28.935b  

[farm=3]([prov=2]) 0a  0a  0a  0a  0a  0a  

[farm=1]([prov=3]) 0.63 0.90 0.63 0.43 0.08 0.66 0.08 0.53 0.32 1.14 0.32 0.86 

[farm=2]([prov=3]) 0.39 0.65 0.39 0.25 0.59 0.60 0.59 0.59 0.14 0.83 0.14 0.40 

[farm=3]([prov=3]) 0a  0a  0a  0a  0a  0a  

[school=1]([prov=1]) 1.86 0.93 1.86 0.75 2.05 0.78 2.05 0.61 0.68 1.05 0.68 0.43 

[school=2]([prov=1]) 0.69 0.72 0.69 0.31 1.05 0.73 1.05 0.86 -0.38 0.87 -0.38 0.15 

[school=3]([prov=1]) 0a  0a  0a  0a  0a  0a  

[school=1]([prov=2]) -0.16 1.57 -0.16 0.42 -0.69 1.41 -0.69 4.99 -0.10 1.69 -0.10 0.32 

[school=2]([prov=2]) -1.13 1.46 -1.13 0.16 -1.43 1.47 -1.43 4.22 -1.16 1.56 -1.16 0.18 

[school=3]([prov=2]) 0a  0a  0a  0a  0a  0a  

[school=1]([prov=3]) -0.84 0.86 -0.84 1.66 -0.30 0.86 -0.30 0.77 -0.46 1.08 -0.46 0.77 

[school=2]([prov=3]) -0.41 0.62 -0.41 0.31 -0.19 0.63 -0.19 0.65 -0.53 0.83 -0.53 0.44 

[school=3]([prov=3]) 0a  0a  0a  0a  0a  0a  

[medis=1]([prov=1]) -1.67 0.99 -1.67 0.94 -0.89 1.07 -0.89 0.61 0.24 1.11 0.24 0.53 

[medis=2]([prov=1]) -0.34 0.69 -0.34 0.46 -0.93 0.78 -0.93 0.46 0.60 0.84 0.60 0.42 

[medis=3]([prov=1]) 0a  0a  0a  0a  0a  0a  

[medis=1]([prov=2]) -
2158.590b 

 -
2158.590b 

 -
15220.791b 

 -
15220.791b 

 60.619b  60.619b  

[medis=2]([prov=2]) 0.22 0.84 0.22 0.26 0.26 0.90 0.26 0.21 0.24 0.99 0.24 0.25 

[medis=3]([prov=2]) 0a  0a  0a  0a  0a  0a  

[medis=1]([prov=3]) 0.46 0.75 0.46 0.87 -0.04 0.74 -0.04 0.87 -0.48 1.00 -0.48 1.29 

[medis=2]([prov=3]) -0.22 0.67 -0.22 0.58 -0.02 0.70 -0.02 0.52 -0.28 0.90 -0.28 0.88 

[medis=3]([prov=3]) 0a  0a  0a  0a  0a  0a  

ULS([prov=1]) 0.52 0.53 0.52 0.23 1.27 0.66 1.27 0.42 0.41 0.68 0.41 0.15 

ULS([prov=2]) 2.94 1.36 2.94 0.18 1.94 1.42 1.94 1.11 2.98 1.47 2.98 0.15 

ULS([prov=3]) -0.65 0.66 -0.65 0.38 -1.05 0.44 -1.05 1.03 -0.55 0.84 -0.55 0.30 

(Scale) 1.19   1.19   1.19   1.19   1.19   1.19   

Dependent Variable: ordb 

Model: (Threshold), prov, farm(prov), school(prov), medis(prov), ULS(prov) 

a. Set to zero because this parameter is redundant. 

b. Hessian matrix singularity is caused by this parameter. The parameter estimate at the last iteration is displayed. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 



 

56 IPTEK, The Journal for Technology and Science, Vol. 23, Number 2, May 2012 

APPENDIX 2  
SIGNIFICANCE OF NESTED GLM PARAMETER ESTIMATES 

    Exchangeable Unstructured Independent 

   Parameter    model    robust     model     robust      model        Robust 

        Threshold [ordb=1] .678 .049 .940 .937 .817 .767 

[ordb=2] .022 .000 .041 .079 .053 .024 

[prov=1] .754 .728 .755 .774 .628 .393 

[prov=2] 0.000 0.000 0.000 .000 0.000 0.000 

[prov=3]       

[farm=1]([prov=1]) .199 .051 .490 .855 .007 .024 

[farm=2]([prov=1]) .442 .383 .145 .783 .010 .004 

[farm=3]([prov=1])       

[farm=1]([prov=2]) 0.000 0.000 0.000 0.000 0.000 0.000 

[farm=2]([prov=2])       

[farm=3]([prov=2])       

[farm=1]([prov=3]) .488 .144 .907 .885 .781 .713 

[farm=2]([prov=3]) .545 .114 .328 .316 .865 .721 

[farm=3]([prov=3])       

[school=1]([prov=1]) .047 .013 .008 .001 .519 .120 

[school=2]([prov=1]) .337 .023 .153 .223 .663 .009 

[school=3]([prov=1])       

[school=1]([prov=2]) .920 .710 .623 .889 .951 .748 

[school=2]([prov=2]) .438 .000 .332 .735 .457 .000 

[school=3]([prov=2])       

[school=1]([prov=3]) .327 .613 .731 .699 .671 .549 

[school=2]([prov=3]) .512 .193 .765 .772 .527 .237 

[school=3]([prov=3])       

[medis=1]([prov=1]) .092 .074 .405 .146 .826 .645 

[medis=2]([prov=1]) .620 .454 .234 .043 .479 .151 

[medis=3]([prov=1])       

[medis=1]([prov=2])       

[medis=2]([prov=2]) .796 .398 .772 .206 .806 .340 

[medis=3]([prov=2])       

[medis=1]([prov=3]) .544 .602 .962 .968 .630 .708 

[medis=2]([prov=3]) .742 .705 .979 .972 .756 .750 

[medis=3]([prov=3])       

ULS([prov=1]) .332 .022 .054 .003 .550 .005 

ULS([prov=2]) .031 0.000 .173 .080 .042 0.000 

ULS([prov=3]) .323 .088 .018 .309 .511 .070 

(Scale)             
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APPENDIX 3   
CLASSIFICATION RESULT OF NESTED GLM 

Y *    Crosstabulation, Exchangeable, model based 

 

Y *    Crosstabulation, Exchangeable, robust 

  

   
Total 

 
  

   
Total 

1 2 3 

 

1 2 3 

Y 

1 

Count 35 5 10 50 

 

Y 

1 

Count 35 5 10 50 

% within Y 70.0% 10.0% 20.0% 100.0% 

 

% within Y 70.0% 10.0% 20.0% 100.0% 

2 

Count 25 1 11 37 

 
2 

Count 25 1 11 37 

% within Y 67.6% 2.7% 29.7% 100.0% 

 

% within Y 67.6% 2.7% 29.7% 100.0% 

3 

Count 5 9 27 41 

 
3 

Count 5 9 27 41 

% within Y 12.2% 22.0% 65.9% 100.0% 

 

% within Y 12.2% 22.0% 65.9% 100.0% 

Total 

Count 65 15 48 128 

 
Total 

Count 65 15 48 128 

% within Y 50.8% 11.7% 37.5% 100.0% 

 

% within Y 50.8% 11.7% 37.5% 100.0% 

 

Y *    Crosstabulation, Unstructured, model based 

 

Y *    Crosstabulation, Unstructured, robust 

  

   
Total 

 
  

   
Total 

1 2 3 

 

1 3 

Y 

1 

Count 35 5 10 50 

 

Y 

1 

Count 27 23 50 

% within Y 70.0% 10.0% 20.0% 100.0% 

 

% within Y 54.0% 46.0% 100.0% 

2 

Count 25 1 11 37 

 
2 

Count 14 23 37 

% within Y 67.6% 2.7% 29.7% 100.0% 

 

% within Y 37.8% 62.2% 100.0% 

3 

Count 5 9 27 41 

 
3 

Count 6 35 41 

% within Y 12.2% 22.0% 65.9% 100.0% 

 

% within Y 14.6% 85.4% 100.0% 

Total 

Count 65 15 48 128 

 
Total 

Count 47 81 128 

% within Y 50.8% 11.7% 37.5% 100.0% 

 

% within Y 36.7% 63.3% 100.0% 

 

Y *    Crosstabulation, Independent, model based 

 

Y *    Crosstabulation, Independent, robust 

  

   
Total 

 
  

   
Total 

1 2 3 

 

1 2 3 

Y 

1 

Count 39 7 4 50 

 

Y 

1 

Count 39 7 4 50 

% within Y 78.0% 14.0% 8.0% 100.0% 

 

% within Y 78.0% 14.0% 8.0% 100.0% 

2 
Count 23 4 10 37 

 
2 

Count 23 4 10 37 

% within Y 62.2% 10.8% 27.0% 100.0% 

 

% within Y 62.2% 10.8% 27.0% 100.0% 

3 

Count 4 2 35 41 

 3 

Count 4 2 35 41 

% within Y 9.8% 4.9% 85.4% 100.0% 

 

% within Y 9.8% 4.9% 85.4% 100.0% 

Total 
Count 66 13 49 128 

 
Total 

Count 66 13 49 128 

% within Y 51.6% 10.2% 38.3% 100.0% 

 

% within Y 51.6% 10.2% 38.3% 100.0% 
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