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Nested Generalized Linear Model with Ordinal
Response for Correlated Data

Yekti Widyaningsih®, Asep Saefuddin?, Khairil A. Notodiputro?, and Aji H. Wigena?

Abstract—In this paper, we discuss the generalized linear models with ordinal response for correlated data in nested area.
Some basic concepts are described, that is nested spatial, threshold model, and cumulative link function. Due to correlated
data used for this modeling, Generalized Estimating Eequation (GEE) is used as model parameters estimation method.
Nested is shown by the model building and its application on nested spatially data. In this method, some Working
Correlation Matrices (WCM) are able to be specified depend on the nature and type of the data. In this study, 3 types of
WCM and 2 types of parameters estimation covariance are used to see the results of parameters estimation from these
combinations. As a conclusion, independent WCM is appropriate to the data.
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Abstrak—Makalah ini membahas generalized linear models dengan respon ordinal untuk data berkorelasi pada area
tersarang. Beberapa konsep dasar dibahas, yaitu sedikit pendahuluan mengenai spatial tersarang, model threshold, dan fungsi
penghubung kumulatif. Karena ada indikasi data berkorelasi, Generalized Estimating Equation (GEE) digunakan untuk
pendugaan parameter model. Pembentukan model disesuaikan dengan kondisi tersarang dan diaplikasikan pada data spasial
tersarang. Pada metode pendugaan parameter GEE, beberapa Working Correlation Matrices (WCM) dapat ditentukan
tergantung dari kondisi data. Tiga struktur WCM dan 2 jenis pendugaan digunakan untuk melihat pengaruhnya pada hasil
pendugaan parameter. Hasil perhitungan memberikan kesimpulan bahwa WCM independent paling sesuai untuk data yang

digunakan.

Kata Kunci—nested generalized linear model, respon ordinal, working correlation matrix, berkorelasi

|. INTRODUCTION

s the starting consideration of the nested

Generalized Linear Mixed Models (nested GLMM)
for ordinal response, this paper works through about
nested Generalized Linear Models (nested GLMs) for
ordinal response, sub topics about parameter estimation
method, and implementation of the model to the data.

Related to the evaluation of regions on poverty
alleviated program, comparison among regions is
needed. In this work, the score in ordinal scale is prefer
than numeric to simplify the interpretation [1]. This
study uses ordinal response for modelling, and the unit of
observation is sub district. Connected to this region and
certain multilevel spatial survey, assumed the regions
(e.g., districts or ‘kabupaten’) of one area (e.g., province)
are similar but not identical for another area. Such an
arrangement is called a nested, with levels of district
nested under the levels of province. For example,
consider the government has a goal to reduce poverty
and modeling is used to know the factors that contribute
to determine poverty level. The question is: do these
factors have the same effects on poverty level in all
provinces? This question will be answered through the
nested modeling.

There are some districts available from each province.
The situation is depicted by Figure 1, which in this
problem, a district from particular province has different
nature from districts of another province [2]. Every
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province has a particular nature and policy especially for
a specific province such as ‘Daerah Istimewa’. This
situation has an effect on the correlation matrix and
parameter estimation. Based on this effect, the nature of
the spatial component should be considered especially
when a modelling is needed to analyze the effects of
districts and province

Spatial data can be viewed as realizations of a spatial
stochastic process {Z(s): seD} where s is the location
from which the data is observed and D is a random set in
d dimensional Euclidean space [3]. Lattice data is
defined as follows. Denote that Z(sy),...- ,Z(s,) are lattice
data observed at n sites. D is a fixed subset of R%and it is
partitioned into a finite number of lattices (or areal
units), while site index s varies continuously over D [4].

Generalized estimating equations as parameters
estimation method, were developed to extend
generalized linear models to accommodate correlated
longitudinal and/or clustered data [5]. In statistics, a
Generalized Estimating Equation (GEE) is used to fit the
parameters of a generalized linear model where unknown
correlation between observations in a cluster is present.
This method is usually used for the models of the
clustering or longitudinal data. GEE was introduced by
[6] as a method of regression model parameters
estimation when dealing with correlated or clustered
data. To define a regression model using the GEE
methodology, one needs to define the following
principles: the distribution of dependent variable (which
must be a member of the exponential family), the
monotonic link function, the independent variables, and
the correlation or covariance structure of the repeated
(clustered) measurements.

Analog to the concept of four calcium content
measurements on a leaf [7], unit of observation in this
research is sub-district. Analogy of sub district is the
point of calcium contents measurement, analogy of
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district is the leaf, and analogy of province is the tree
where the leaf come from.

Sub district is presented as repeated measurement in a
district, and district as level 1 is nested in province as
level 2. Ordinal measurement is made on each sub-
district within a district [1]; or repeated ordinal
measurements are made on each district at different sub-
districts. For instance, in a poverty study, a district may
be represented by several sub districts at a given value of
covariates, furthermore, these districts can be classified
as “worst”, “moderate”, or “mild” in poverty [8].

Clusters are an example to represent the correlated
observations: assumed that there is a correlation between
observations in a cluster, while there is no correlation
between observations from different cluster. This
structure can be used as an example of longitudinal data
or panel data as well as the data of family studies, or data
with spatial structure [9].

To capture some of the beneficial aspects of quasi-
likelihood estimation in the context of models for
correlated data, [6] and [7] established GEE method.
Beside robust in misspecification of covariance matrix,
estimation using GEE is often easier to quantify than the
maximum likelihood estimation [10].

In the parlance of the GEE approach, V; is known as a
"working" covariance matrix to distinguish it from the
true underlying covariance among the Y;. That is, the
term "working" acknowledges our uncertainty about the
assumed model for the variances and within-subject
associations; unless they have been correctly modeled,
our model for the covariance matrix may not be correct.
The GEE approach allows the modeler to specify an
incorrect structure [5]. The objective of this paper is to
build generalized linear model of ordinal poverty
response in nested area using GEE as the method to
estimate the model parameters.

A. Study Area

The study area (D) consist of 3 provinces with 3
districts in every province, and ng; sub districts in district
i, i =1, 2, 3 of province s, s=1,2,3. The districts are
chosen random independently in every province, with a
uniform distribution. In other words, simple random
sampling is used to select 3 districts from every province
(without Banten, DKI, and DIY). Figure 2 shows study
area in this research.

B. Data

Based on the report of BAPPENAS, there is a relation
between the level of severity (poverty) of a region with a
number of farmer families, the number of education
centers (schools), the number of medical centers and/or
health personnel, as well as the number of cases of
malnutrition or bad nutrition [11]. To find out how these
variables affects poverty level, through the modeling.

Nested GLM in this study are applied to the data on
poverty with response variable is the poverty (severity)
level of sub district, which has levels (worst, moderate,
mild) [1]. The explanatory variables in this modeling are
the number of schools, farmer families, health personnel,
and malnutrition hotspots status. All explanatory
variables are divided into 3 levels (low, moderate, and
high), except the hotspot has 2 levels (hotspot = 1, non
hotspot = 0). The model is shown by Equation 7.

Il. METHOD
A. Threshold Model

Threshold is a latent variable at the model that made
the difference between linear models with ordinal
response and linear models with non-ordinal responses.
Threshold model is explained as follows. In logistic and
probit regression models, there are assumptions about an
unobserved latent variable (y) associated with the actual
responses through the concept of threshold [12]. For
dichotomy model, it is assumed there is a threshold
value, while for ordinal model with K categories
(polytomy), it is assumed there are K-1 threshold values,
namely y1, v2,, Yk-1- Response occurs in category k (Z =
k), if the latent response y is greater than y,; and smaller
than y.. Assumed Y; is unobserved, and the j-th
observation is in a category, say category Z;, j =1, ..., N.
The relationship between Y; and Z; is taken to be,

Tka <Yj <y <= Zj =k 1)

where k € {1, ..., K}, Yo = -00, Yk = +o0 and vy, v2, 7,
Yk1 are unknown boundary points that define a
partitioning of the real line into K intervals. Thus, when
the realized value of Y; belongs to the k-th interval, we
observe that z; = k. Under that assumptions, the

probability-mass function of Z, ..., Zy is,

P(zy.nzy)=P,{Z; =2} =1....N|

=P {1 <Y; <yyii=1.N}
This model is called the threshold model [13].
These models can also be interpreted in terms of a
latent variable. Specifically, suppose that the manifest
response Z; results from grouping an underlying
continuous variable Y; using cut-points y; <y, < ... <y
1, S0 that Z; takes the value 1 if Y is below y;, the value 2
if Y; is between y; and y,, and so on, taking the value K if
Y;j is above yk.1. Figure 3 illustrates this idea for the case
of five response categories.

B. Cumulative Link Models

All of the models to be considered in this research arise
from focusing on the cumulative distribution of the
response. Let mj = Pr{Z; = k} denote the probability that
the response of an individual with characteristics x; falls
in the k-th category, and let pjx denote the corresponding
cumulative probability,

Pj = Priz; <kj
that the response falls in the k-th category or below, so,

pjk:ﬂ'jl"rﬂ'jz"‘..."rﬂ'jk (3)

Tik = Pjk = Pjka

Let g(.) denote a link function mapping probabilities to
the real line. Then the class of models that will be
considered, assumes that the transformed cumulative
probabilities are a linear function of the predictors, of the
form,

g(pjk):?/k_xjﬁ 4)

In this formula, 7y, is a constant representing the
baseline value of the transformed cumulative probability
for category k, Xj is a row vector of covariates of j-th
observation and B is a column vector, represents the
effect of the covariates on the transformed cumulative
probabilities. Since it is written as the constant explicitly,

@)
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we assume that the predictors do not include a column of
ones.

Suppose further the underlying continuous variable
follows a linear model of the form
Yi=Xp+¢g
where the error term g has c.d.f. F(g). Then, the
probability response of the j-th individual will fall in the
k-th category or below, given x;, satisfies the equation

Py = p;/{Yj <7k}= Pr{gj <7k_XjB}
= F(J’k_XJB)

and therefore follows the general form in Equation (4)

with link given by the inverse of the c.d.f. of the error
term

g(pjk): Fil(pjk)zyj_xjﬁ (6)
It is assumed that the predictors x; do not include a

column of ones, because the constant is absorbed in the
cut-points [15].

C. Model Building

This part is about Nested Generalized Linear Models
for ordinal response. Model building in this study is
based on spatial concept: the closer the observation, the
larger the correlation [3]. Based on this concept, the idea
was expanded to the nested of location or area.
Furthermore, as the data in the observation is not always
continue nor has normal distribution, the model should
be in the general form

E(Y)=u=97"0%p)

Generalized linear models for nested data is
E(Ys(i))= Ay = 9_1(Xs(i)ﬂs)

E (Ys;) is the expected value of Yy, response of
observation in province s and district i; Xy Bs is the
linear predictor, a linear combination of unknown
parameters Bs; g is a link function.

Modelling in this research uses ordinal scale as
response variable and some categorical (ordinal)
variables as covariates. Index j is for sub district
(repeated observations in district i), i is for district
(nested in province s), and s is an index for province.
District as level-1 is nested in province as the level-2.
Link function for multinomial ordinal response is the
cumulative logit model [16-17].

P(Ysicin <K)
09| ———— [ =7k ~Xsi(inPBs + Esi( 7
l:l_ p(ys(i(j))ﬁk) k <S('(J)) s 5('(J)))

Where yy is threshold. B’s are the fixed effect at the
transformed cumulative probabilities, ygig = the
response variable of jth sub subject (sub district), in ith
subject (district), in sth center (province), that could be
continuous, binary, count, or category., X is the value
of covariates x of sub district j, in district i and province
s. Let S = number of centers, | = number of subject ng =
the number of repeated measurements (observations or
sub-subjects) of the response on the subject. The
response on the ith district of province sth can be
grouped into a ng X 1 vector.

®)

Ys(i)
Ys(i(2))

Ysi) =

Ys(i(ng))
fors=1,2,..,Sandi=1,2,..,1,j=1, ..., psi-

YSi
are assumed to be independent of one another.
Lot ®xigy 0
S N L2 ® X0, (ny)) 0
X=[1D "> g ® 1y , =
s 0 L2 ®=Xs(i(jy)
0 o e ®Xs g

where X size is,

(B2, ng) (K — 1) X (K — 1 + sp). &y 1S a
spatially unstructured random effect assumed identically
independently normally distributed of sub district j in
district i and province s. This assumption is based on a
theorem, that standardized of Pearson residual Moran’s I
convergence in distribution to N(0,1) [18].

In this research, the model is developed using ordinal
response variable with multinomial distribution for
spatially nested area. As the data is nested and
correlated, GEE is used as parameters estimation method
for GLM. The models are implemented for poverty data
in Java Island. Study area comprises of 3 provinces, 9
districts.

D. GEE for Ordinal Response Data

Generalized linear models were first introduced by
Nelder and Wedderburn [17] and later expanded by
McCullagh and Nelder [16]. The following discussion is
based on their works and an extension of GEE from
Liang & Zeger [6] for ordinal categorical responses data.

Suppose we have a multinomial response, say z. And
for this response, there are K ordered categories with
corresponding probabilities ny, 7y, ..., Tk, that is Pr(z = k)
= m. The proportional odds model is based on the
cumulative probabilities, gy =+ 1y + ...+ m, fork=1to
K-1. Logit link function is used to relate ¢, to a linear
function of p covariates X. Now let’s take a look at the
repeated situation. Suppose we have a sample of |
subjects. Let z; be the ordinal response (with K levels)
for the ith subject (i =1 to I) at point j (j = 1 to n;). Form
of a (K'l)xl vector ylj = (yijlx Yije» ...,yin_l)‘Where Yijk =
1if z;=k, and 0 otherwise.

Let’s denote the expectation of jj as mj; = E (v ) =
(nijl,nijzv“‘,nin_l)' with Tk = Pr(yijk = 1) And let Xij
denote a 1xp row vector of covariates for subject i at sub
subject j.

The objective of this part is to model the mj as a
function of x;; and the regression parameters 6 = 4, 2,
vk-1,p)'  where yi are intercept or cut-point parameters
(threshold) and B is a px1 vector of regression
parameters. Let ¢y = mj + mj + ...+ W denote the
cumulative probabilities. Then the proportional odds
model at sub subject j is: log it(gik ) = vk + Xyb. To
establish notation, let yi = (Yir,"Yini )'» @nd m = (Tia, "~ Tini ).
Then 6 can be estimated through solving the estimating
equation as follows
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|
w(0)= Zaﬂlv_l(yi - )

= 8

= [0](K—l+sp)><l

For clustered nested model,

w(0)= ZZ s(l)(ys(|) i) ©)
s=1 i=1l

= [0](K—l+sp)><1

where,

Omg ;) _

o0
07 s(i)1 07 (i) 07 (i) 0% (i)

on 07k 0Bq 8ﬁsp

6”s(i(1)),K—1 5”s(i(1)),|<-1 a”s(i(l)),K—l a”s(i(l)),K-l

on 0¥k 0By aﬂsp
O g(i(ng)1 O7simant  Ostitng)2 O7s(i(ny)) 1
on 97k Py aﬁsp
O (i(ny)) K1 075 k1 Os(i(ng) K1 O s(i(ng))K-1
on 07k 0Bq 6ﬁsp
the size of 2(” is ng x (K —1)x (K =1+ p) and for all j

=1, ... ng,

67zs(i(j)),k _ 99,(i(i)).k k=1
oK ons(i()).k

oms(i(i).k _ oo, (i) k-1 .

. K=1

goosy

k-1 angG()k-1
aﬂsgﬁzo,fork<mor k—-m>1k=1...,K-1and
7m
=1,....K-1
or (N1 gy (DA . -
- X q=1...,p,
o, anci(ya < a=t-..p

ors(i(j)1 =_£8¢s(i(j)),k _99s(i(j)).k —lJ
P, ons(i(i)).k  ony(i(i).k-1)
X (i(j)a,k=2,..,K-landq=1...,p
Vs(l) is an inverse (or generalized inverse) of V.

Generalized inverse is used if Vg is singular or almost
singular due to redundant data. Here

Vi) = ¢As}?i) Rs(i) (@) As}(éi) (10)
with little mathematical operations, from equation (10),
the working correlation matrix, Rgg)(o) is

Lo Ak
Ry (o) = Z As(iﬁvs(i)As(iﬁ
Rs(i) ()=
Ag(iy?vs(i) As}}./? Psiy2 Ps(inng
1 Ps(in2 As_(%ZVs(i)z As_(.y?z Ps(i)2ng
Ps(iyn1 Ps(iyn,,2 o A Vst A,

For simplifying, index j = 1, ..., ng is not inside
parenthesis, but the same meaning with written before is
maintained.

Note that there is a subscript s(i) in Rgs(a) which
means each subject has different working correlation

matrix. In fact, only the diagonal blocks are different for
different subjects, the off-diagonal blocks will be the
same for all subjects. The diagonal blocks of

Roty (@) AV Asg with
/2 1/2
Asl (ij = d'ag({”s yjad= ”s(.),l)} " l{”s(i)j,K—l(l_”s(i)j,Kfl} )
and
Vaiciy = diaglesiiy |- msaiinmsaiin'|
are specified entirely by ). In particular, the diagonal
elements of Ag(}(?)j)vs((i)j)A;(}(?)j) are 1 and off-diagonal
(k, m) element are
s (i) k(i) m
/2

Frsiitinn = i) Tt nm L= Tscym)
which are not constant and depend on the categories k
and m at measurement j.

The unknown off-diagonal blocks of Ryi(a) are the (K-

1)x(K-1) matrix piun(a)u, v =1, ..., ng which need to
be parameterized and estimated [19].

E. Working Correlation Matrices

This part describes about Working Correlation Matrix
(WCM) for ordinal multinomial model. Y « and m ; «
are described in part D in this section. WCM uses
Pearson-like residuals that defined as follows

O]
Zsij k L= 7gij )
and the vector rg; =[rgjq...r

sij,K—l] .
structures are available [19].
1. Exchangeable
The exchangeable correlation structure is defined as:

Fsijk = (Ysijk — Zsijx)

The following

1, if u=v
Ryy = a  otherwise
where,
S |
zzf Z ( su su su !rlsij)
s=1 i=1 j<j'
*= S |1
( D> fing(ng 1)} (K-1+p,)
s=1 i=1
and pgy=0a; u,v =1,...,n5 and u#v[19].

2. Unstructured
The unstructured correlation structure is defined as:

1, if u=v
Ruv = { a,  Otherwise
where,
S |
sz Z ( slu"rlsiv)
s=1 i=1l j<ij'
Ay = s |
[ZZ fi Isilsi,qu_(\] -1+p,)
s=1 i=1l
And pi,= oy, u,v=1,....,n; and u#v [19].

Some provisions in choosing the working correlation
matrix are: (1) if I is small and data are balanced and
complete, then an unstructured matrix is recommended,
(2) if observations are repeated, then use a structure that
accounts for correlation as function of time (stationary,
or auto-regressive), (3) if observations are clustered (i.e.
no logical ordering) then exchangeable may be
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appropriate, (4) if the number of clusters is small, then
independent may be the best [20].

F. Algorithm for GEE Parameter Estimation

The algorithm for estimating model parameters using
GEEs is outlined below [19, 6]. The standard iterative
procedure to fit GEE, based on Liang and Zeger is :
1) Compute initial estimates for 6, 6©

conventional GLM, i.e., assuming independence.
2) Compute the working correlation R(a) based on 6,
Pearson residuals and a specified working correlation
structure. Check if R(a) is positive definite for
exchangeable and unstructured structures. If it is not,

revise it to be equal to 1—J1rc(R (a) + ¢I)), where | is an

using

identity matrix and ¢ is a ridge value such that the
adjusted matrix is positive definite. If a fixed
correlation matrix is specified by the researchers and
it is not positive definite, then cannot continue. As an
alternative, then compute the initial estimate of the

covariance matrix of y; (Vs(l)) the generalized

estimating equation W©, and generalized Hessian

matrix H (see formulae below) based on 6 and
(0)

74

3) Initialize v = 0.

4) Setv=v + 1.

5) Compute estimates of vth iteration (from Taylor
series)

o — gD _ (H v )s(v—1>
If v/N, is a positive integer, update the working
correlation, checking for positive definiteness as above.

6) Compute an estimate of the covariance matrix of yj
and its generalized inverse

U2p 1/2
s((V& = ¢As)Rs(iy (@) Ag(iy and
-1/2 -1/2
<Vs(|)) ¢As(|) Rs(.)(a) As(l)

For the ordinal multinomial model, replace R(a) with
R ;) (a) in the above equations.

7) Revise s and H®) based on 8% and V<

s(i)
S | o
,//(v) :ZZ fs(i)[ n's(|)] <Vs(|) T[ 2o - ”s(|)
s=1 i=1
=53 220 ) 20|
s=1 i=1l

8) Check the convergence criteria. If they are met or the
maximum number of iterations is reached, then stop.
The final vector of estimates is denoted by 8.
Otherwise, go back to step (4) [19].

1. Convergence Criteria

Let €, and €5 are given as tolerance levels, then the
criteria for parameter convergence can be written as
follows:

(v) (v-1)
o 6§

max ; WTO‘G

Sp

Hessian convergence: (s*)'(HY) (s")<ey with ;=10
[19] (may be specified by researcher) after the log-
likelihood or parameter convergence criterion has been
satisfied.

2. Parameter Estimate Covariance Matrix, Correlation
Matrix and Standard Errors

Two parameter estimate covariance matrices can be
calculated, that is model-based and robust estimators. In
the generalized linear model, the consistency of the
model-based parameter estimate covariance depends on
the correct specification of the mean and variance of the
response (including correct choice of the working
correlation matrix). However, the robust parameter
estimate covariance is still consistent even when the
specification of the working correlation matrix is
incorrect as we often expect [20].
Model-based parameter estimate
> =-H; where H;

M
is the generalized inverse of :

=33 0y, (o

covariance is

=1 i=1
The robust parameter estimate covariance is:
D =HiHH;
R
where,
H2 - ZZ fS(I) S(I) COV(ZS(I))VS(I) ae
s=1 i=l

and cov(z,;) can be estimated by,

(Zs(iy — () ) (Zs(i) — Ts(iy)

Note that model-based parameter estimate covariance
will be affected by how the scale parameter is handled,
but the robust parameter estimate covariance will not be
affected by the estimate of the scale parameter because ¢
is cancelled in different terms [19].

3. Parameter Estimate Standard Error
For the ordinal multinomial model, let 7, , k=1, 2,
., K-1, be threshold parameter estimates and S,, r=1,
p denote non-redundant regression parameter
estimates. Their standard errors are the square root of the

rth diagonal element of X: 6, =./ox and 6 =

Ok—14r)(k-14r) » FESPECtively [19].
G. Wald Statistics

For ordinal multinomial model, the more general test
matrix L= (L(y), L(B)), where L(y)= (I, ",lx.1) consists
of columns corresponding to threshold parameters and
L(B) be the part of L corresponding to regression
parameters. Consider matrix L, = (l,, L(B)),, where the
column vectors corresponding to threshold parameters
are replaced by their sum I, = YXX-11, Then L0 is
estimable if and only if L, - L,Ho, where Ho =
(X'QX,) X'QX, is a (1+p) X (1+p) matrix constructed
using X; = (1,-X). Q is the scale weight matrix with ith
diagonal element i and such that L;0 is estimable. The
Wald statistic for testing L0 =K, where L is a r x (K-
1+p) full row rank hypothesis matrix and K is a rx1
resulting vector, is defined by

S =(LO-K)(LDY L") (LO-K)
where 6 = (]7, [? ) is the GEE estimate and X is the
estimated covariance matrix (X could be the model based

or robust estimator). The asymptotic distribution of S is
XFc where re = rank (LXL) [10].
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1. Wald Confidence Intervals
For the ordinal multinomial model, the 100(1 — o)%
Wald confidence interval for parameter 6, is given by

(6r =21 0/200 + 21-0120a)
the estimate of exp(6,) is exp(ér), the standard error

estimate  of exp(ér) is (exp(ér).&g,) and the
corresponding 100(1 — )% Wald confidence interval for
exp(6,) is

(eXp(er ~2y 4120 ) exp(ék ~2 41200 ))

I11. RESULTS AND DISCUSSION

Appendix 1 shows the parameter estimates and their
standard errors and Appendix 2 presents significance of
the parameters. The Following is the explanation about
the output.

A. Standard Error of Parameters Estimate

Figure 4 shows the standard errors of model based
GLM parameters. Standard errors unstructured tend
smaller than standard errors independent and
exchangeable, while standard errors independent are the
highest.

Moreover, according to Figure 5, there is no particular
pattern between exchangeable, unstructured, and
independent for robust parameter estimates. For some
parameters (prov2, farmll, farm21, schl2, sch22),
standard errors unstructured are extremely high.

From Figure 6, robust estimation with independent
WCM has the lowest standard error, but according to the
nature of the data, unstructured WCM is the most
appropriate due to high correlation between sub districts
in the same district.

It is desirable to compare the fit of different working
correlation structures within a GEE for Nested GLM. An
informal comparison is to compare the standard error of
the robust (SEg) and model-based (SEy;). There are no
guidelines regarding the size of the ratio, but higher
ratios reflect poorer model fit. This comparison is
qualitative, but it is the best approach available at this
time [21]. Table 1 presents the averages of this ratios
(SER/SE). It shows independent WCM has the smallest
ratio. It means independent WCM is most appropriate to
the data.

B. Signifinace (p-values) (Appendix 2)

From Appendix 2, it is believed that province 2 (West
Java) is different from province 3 (East Java) for all
models (p-values ~ 0.000). Number of farmer families in
province 2 (Central Java) is significant as a contribution
to determine the poverty level. Furthermore, number of
school is also significant as a contribution to determine
the poverty level in West Java.

In addition, exchangeable working correlation matrix
has low values, i.e. corr (yi1,yi1)=0.161, corr (yiy,yi) =
corr (yia,yiv) = 0.061, and corr (yip,yi2) = 0.063, while

unstructured working correlation matrix has varies
values, with the full range of correlation values or (0, 1).
Some correlations are 1 in some locations (not in the
main diagonal).
1. Some interpretation of parameters

Schooll in provl with model based and unstructured
WCM: in West Java, probability a sub district with
category of schooll to be the more severe is exp(2.05) =
7.77 times of sub district with category of school3, with
other values of variables are fixed.
2. Classification Tables

Appendix 3 shows classifications result of observed
and predicted result of Nested GLM. The true
classification is always expected to have high value. The
good models have high true classification. True
classification for exchangeable WCM is
((35+1+27)/128) x 100% = 49,2%. For unstructured
WCM is also ((35+1+27)/128 )x100% = 49.2%, while
for independent WCM is the highest, ((39+4+35)/128) x
100% = 60.9% for both estimations, robust and model-
based. Figure 6 also shows that standard errors of robust
independent tends lower than other standard errors.

IV. CONCLUSION

Even though based on the nature of the data,
unstructured WCM is the most appropriate due to high
correlation between sub districts in the same district, but
according to the result of modeling, independent WCM
is the most appropriate to the data. Ratio of SER/SEy, is
the smallest, 0.56 and percentage of the true
classification is the highest, 60.9%

Using robust estimation with unstructured WCM
should be avoided, due to unstable standard error, but
model based unstructured is fine (stable).

In general, parameters estimate of model based are
more stable than those of robust.

Related to the nested area using in the modeling, the
significance results (p-values) give the indication that
characteristic of Central Java is different from West Java
and East Java, which is appropriate to research of
“Civilization Java” by Rahardjo [22]. Rahardjo said,
characteristic of geographical areas in Central Java is
more closed than in East Java. In addition, number of
farmer families in Central Java is significant as
contribution to poverty level, but not significant in other
provinces. In addition, number of schools in West Java is
significant to determine the poverty level, but not
significant in East Java.

It is recommended to conduct simulation data to look
the differences among some working correlation
matrices. Furthermore nested area based on geographical
conditions, such as northern coast, inland, and southern
coast is still a challenge as an open problem to be
studied.
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Figure 2. Study area with 3 provinces {s =1, 2, 3}, 3
districts {i = 1, 2, 3} are randomly chosen from each province, i.e.
West, Central and East Java. There are ng sub districts in district i

of province s

Figure 1. Nested areas (dark color are districts sample)
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Figure 3. An ordered response and its latent variable [14]

Figure 4. Standard errors of model based GLM parameters
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Figure 5. Standard errors of robust GLM parameters Figure 6. Standard error of all models

TABLE 1
AVERAGES OF SERr/SEyOF NESTED GLM PARAMETER ESTIMATES

Working Correlation Matrix
Exchangeable Unstructured Independent
Average 0.63 15 0.56
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APPENDIX 1
PARAMETERS AND STANDARD ERRORS OF NESTED GENERALIZED LINEAR MODEL
Exchangeable Unstructured Independent
model robust model robust Model robust

Parameter g E?rt(()jr B IESrtr(jdr 4 ESrtrCidr 4 Esrtrddr B ESrtrdo.r B Esrtrdo.r
Threshold [ordb=1] 030 0.73 030 0.15 -0.04 054 -0.04 051 -0.21 090 -0.21  0.70

[ordb=2] 189 083 189 047 118 0.8 118 0.67 180 0.93 180 0.80
[prov=1] 041 1.32 041 1.19 0.31 0.99 0.31 1.07 -0.70 1.44 -0.70 0.82
[prov=2] -2185 194 -2185 121 -2713 193 -2713 4.06 -28.65  2.07 -2865 1.25
[prov=3] 0 0 0 0 0? 0
[farm=1]([prov=1]) 1.14  0.89 1.14 059 039 057 039 215 2.68  1.00 268 1.8
[farm=2]([prov=1]) 055 0.72 055 0.64 0.86 059 086 3.3 228 088 228 079
[farm=3]([prov=1]) 0 0 0 0 0? 0
[farm=1]([prov=2]) 24.45 0.89 24.45 0.85 29.78 1.02 29.78 0.97 30.82 1.03 30.82 112
[farm=2]([prov=2]) 22.367° 22.367° 29.178° 29.178° 28.935° 28.935°
[farm=3]([prov=2]) 0 0 0 0 0? 0
[farm=1]([prov=3]) 0.63  0.90 0.63 043 0.08  0.66 0.08 053 032 114 032 086
[farm=2]([prov=3]) 039  0.65 039 025 059  0.60 059 059 0.4 083 014 0.0
[farm=3]([prov=3]) 0? 0? 0 0? 0? 0?
[school=1]([prov=1]) 186 0.93 186 0.75 205 0.78 205 0.61 0.68  1.05 0.68 043
[school=2]([prov=1]) 069 0.72 069 031 1.05 0.73 1.05 0.86 -0.38  0.87 -0.38  0.15
[school=3]([prov=1]) 0? 0 0* 0 0? 0
[school=1]([prov=2]) 016 157 016 042 069 141 069 499  -010 169  -010 032
[school=2]([prov=2]) -1.13 146 -1.13 0.6 -1.43 147 143 422 -1.16 156 -1.16  0.18
[school=3]([prov=2]) 0? 0 0* 0 0? 0
[school=1]([prov=3]) 084  0.86 084  1.66 -0.30 086 030 077  -046 108  -046 077
[school=2]([prov=3]) 041 062 041 031 -0.19 063 019 065  -053 083  -053 0.44
[school=3]([prov=3]) 0? 0 0* 0 0? 0
[medis=1]([prov=1]) -1.67  0.99 167  0.94 -0.89  1.07 089 061 024 111 024 053
[medis=2]([prov=1]) 034 0.69 034 046 093 078 -0.93 046 0.60 084 060 042
[medis=3]([prov=1]) 0? 0 0* 0 0? 0
[medis=1]([prov=2]) - - - - 60.619° 60.619°

2158.590" 2158.590" 15220.791° 15220.791°

[medis=2]([prov=2]) 022 084 022 026 0.26  0.90 026 0.21 0.24  0.99 024 025
[medis=3]([prov=2]) 0 0 0* 0 0? 0
[medis=1]([prov=3]) 046 0.75 046 0.87 -0.04 074 -0.04 087 048 1.00 048 1.29
[medis=2]([prov=3]) 022 067 022 058 -0.02 070 002 052  -028 090  -028 088
[medis=3]([prov=3]) 0 0 0* 0 0? 0
ULS([prov=1]) 0.52 0.53 0.52 0.23 127 0.66 1.27 0.42 041 0.68 0.41 0.15
ULS([prov=2]) 294 136 294 018 194 142 194 111 298 147 298 015
ULS([prov=3]) -0.65  0.66 065 0.38 -1.05  0.44 -1.05 103  -055 0.84  -055 0.30
(Scale) 1.19 1.19 1.19 1.19 1.19 1.19

Dependent Variable: ordb

Model: (Threshold), prov, farm(prov), school(prov), medis(prov), ULS(prov)
a. Set to zero because this parameter is redundant.

b. Hessian matrix singularity is caused by this parameter. The parameter estimate at the last iteration is displayed.
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APPENDIX 2
SIGNIFICANCE OF NESTED GLM PARAMETER ESTIMATES
Exchangeable Unstructured Independent

Parameter model robust model robust model Robust

Threshold [ordb=1] .678 .049 .940 937 817 767
[ordb=2] .022 .000 .041 .079 .053 .024

[prov=1] 754 728 755 774 .628 .393
[prov=2] 0.000 0.000 0.000 .000 0.000 0.000
[prov=3]
[farm=1]([prov=1]) 199 .051 490 .855 .007 .024
[farm=2]([prov=1]) 442 383 145 783 010 .004
[farm=3]([prov=1])
[farm=1]([prov=2]) 0.000 0.000 0.000 0.000 0.000 0.000
[farm=2]([prov=2])
[farm=3]([prov=2])
[farm=1]([prov=3]) 488 144 .907 .885 781 713
[farm=2]([prov=3]) 545 114 328 316 865 721
[farm=3]([prov=3])
[school=1]([prov=1]) 047 013 .008 .001 519 120
[school=2]([prov=1]) .337 .023 .153 .223 .663 .009
[school=3]([prov=1])
[school=1]([prov=2]) .920 .710 .623 .889 951 748
[school=2]([prov=2]) 438 .000 .332 .735 457 .000
[school=3]([prov=2])
[school=1]([prov=3]) 327 .613 731 .699 .671 .549
[school=2]([prov=3]) 512 193 .765 772 527 .237
[school=3]([prov=3])
[medis=1]([prov=1]) .092 .074 405 .146 .826 .645
[medis=2]([prov=1]) 620 454 234 043 479 151
[medis=3]([prov=1])
[medis=1]([prov=2])
[medis=2]([prov=2]) .796 .398 772 .206 .806 .340
[medis=3]([prov=2])
[medis=1]([prov=3]) .544 .602 .962 .968 .630 .708
[medis=2]([prov=3]) 742 705 979 972 756 750
[medis=3]([prov=3])
ULS([prov=1]) 332 .022 .054 .003 .550 .005
ULS([prov=2]) .031 0.000 173 .080 .042 0.000
ULS([prov=3]) 323 .088 .018 .309 511 .070

(Scale)
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APPENDIX 3

CLASSIFICATION RESULT OF NESTED GLM

Y * ¥ Crosstabulation, Exchangeable, model based

Y * ¥ Crosstabulation, Exchangeable, robust

Y

)4

Total Total
1 2 3 1 2 3
Count 35 5 10 50 Count 35 5 10 50
! % within Y 70.0% 10.0% 20.0% 100.0% ! % within Y 70.0% 10.0%  20.0%  100.0%
Count 25 1 11 37 Count 25 1 11 37
2 % within Y 67.6% 2.7% 29.7% 100.0% Y 2 % within Y 67.6% 27% 29.7%  100.0%
Count 5 9 27 41 Count 5 9 27 41
3 % within Y 122% 22.0% 65.9% 100.0% 3 % within Y 122% 22.0% 65.9% 100.0%
Count 65 15 48 128 Count 65 15 48 128
Total o Total o
% within Y 50.8% 11.7%  37.5% 100.0% % within Y 50.8% 11.7% 37.5% 100.0%
Y * ¥ Crosstabulation, Unstructured, model based Y * ¥ Crosstabulation, Unstructured, robust
Y Total Y Total
1 2 3 1 3
Count 35 5 10 50 Count 27 23 50
! % withinY  70.0%  10.0% 20.0%  100.0% ! % within Y 54.0% 46.0% 100.0%
Count 25 1 11 37 Count 14 23 37
Y 2 % withinY  67.6% 2.7% 29.7%  100.0% Y 2 % within Y 37.8% 62.2% 100.0%
Count 5 9 27 41 Count 6 35 41
3 % withinY  12.2% 22.0% 659%  100.0% 3 % within Y 14.6%  85.4% 100.0%
Count 65 15 48 128 Count 47 81 128
Total . Total s
% withinY  50.8% 11.7% 37.5%  100.0% % within Y 36.7% 63.3% 100.0%
Y * ¥ Crosstabulation, Independent, model based Y * ¥ Crosstabulation, Independent, robust
Y Total Y Total
1 2 3 1 2 3
Count 39 7 4 50 Count 39 7 4 50
1 gwithinY  780%  140%  80%  100.0% 1 %withinY  780%  14.0%  8.0%  100.0%
Count 23 4 10 37 Count 23 4 10 37
2 gwithinY  62.2% 108%  27.0% 100.0% Y 2 owithinY  622% 108%  27.0% 100.0%
Count 4 2 35 41 Count 4 2 35 41
3 %withinY 98%  4.9%  854% 100.0% 3 owithiny  98%  49% 854% 100.0%
Total Count 66 13 49 128 Total Count 66 13 49 128
ota ota
% within Y 51.6% 10.2% 38.3% 100.0% % within Y 51.6% 10.2% 38.3% 100.0%
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