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Multicylinder Engine Shaking Forces and 

Moments 

Samuel Doughty1 

 

Abstract The dynamic forces and moments arising from the motion of internal components in IC engines are known as 

Shaking Forces and Shaking Moments. These forces and moments are transmitted directly to the supporting structure, 

whether it be a concrete block or a ship's frame. They can cause significant damage if not properly evaluated at the design 

stage. It should be noted that these are inertial reactions only, and are unaffected by cylinder firing pressure.  By a direct 

appeal to fundamental momentum principles, this paper presents an elegant and completely general approach to their 

determination, based on first principles. This is much simpler than the conventional direct approach through the piece-by-

piece application of Newton's Second Law. 

 

Keywords momentum principles, kinematic functions, shaking forces, shaking moments. 

 

Abstrak Gaya dinamis dan momen timbul dari gerakan komponen internal dalam mesin IC dikenal sebagai Gaya Getaran 

dan Momen Getaran. Gaya dan momen ini ditransmisikan langsung ke struktur pendukung, apakah itu sebuah blok beton atau 

bingkai kapal. Hal ini dapat menyebabkan kerusakan yang signifikan jika tidak dievaluasi pada tahap desain. Perlu diketahui 

bahwa ini adalah reaksi inersia saja, dan tidak terpengaruh oleh tekanan tembak silinder. Dengan daya tarik langsung ke 

prinsip momentum fundamental, makalah ini menyajikan sebuah pendekatan yang elegan dan benar-benar umum untuk 

determinasi mereka, berdasarkan prinsip-prinsip pertama. Ini jauh lebih sederhana dibandingkan dengan pendekatan 

konvensional langsung melalui aplikasi sepotong demi sepotong Hukum Kedua Newton. 

 

Kata Kunci  prinsip momentum, fungsi kinematik, gaya getaran, momen getaran. 

I. INTRODUCTION1 

nternal combustion engines (and other slider crank 

machines, such as reciprocating compressors) are 

widely used in all parts of modern industry. They are 

manufactured around the world, in almost every nation 

that has a developed industrial base. Despite this 

ubiquity, there are many aspects of the machine that are 

not well understood by those who apply them. One of 

those misunderstood characteristics is the loads that such 

an engine (or compressor) can impose upon the under- 

lying support. These loads are technically known as 

Shaking Forces and Shaking Moments, and as the names 

imply, they are oscillatory in nature, tending to shake the 

supporting structure. If the machine is supported on a 

concrete block foundation, these are the loads that will 

tend to shake that foundation block, laterally, vertically, 

and in a rocking motion. If the machine is in a ship, these 

loads are transmitted into the structure of the ship, 

shaking the entire ship. The impact of a reciprocating 

machine on the supports can be severe, and can result in 

damage elsewhere, making it necessary that the source of 

these loads be fully appreciated. 

When any sort of force analysis is required, it is 

common engineering practice to apply Newton's Second 

Law to each part of the moving mechanism, and thus 

attempt to follow the transfer of forces through the entire 

system.  This approach has been employed by Guntur 

and Yulia [l] and by Zubaydi, et al.  [2]. Indeed, this is 

the necessary way to proceed when the internal forces 

are to be determined, as demonstrated by Doughty [3]. 

However, for the problem at hand, the determination of 

the net external reactions alone, there is a much more 

simple and powerful approach available, based on very 
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fundamental momentum principles, as shown by 

Doughty [4]. 

It is important to understand that the shaking forces 

and moments are net reactions. Thus they represent the 

vector sum of all attachment forces and associated 

moments, but not necessarily the force or moment at any 

single attachment point. Thus, for example, if an engine 

is supported vertically at three points, then the vertical 

shaking force is the sum of the vertical forces at all three 

supports. These values provide design targets for the 

design of the support structure. 
The analysis to follow consists of three parts: 

1. A statement of the fundamental momentum 

principles underlying this development; 

2. The application of those momentum principles to a 

multi-cylinder slider-crank machine. 

3. A brief sketch of the kinematic analysis required to 

implement the results previously obtained.  A much 

more detailed kinematic analysis is presented in the 

Appendix - Cylinder Kinematics. 

Following the analysis, example calculations are 

presented, with numerical results. 

II. ANALYSIS 

The usual approach to the determination of shaking 

forces and moments in a slider-crank mechanism is by 

means of a detailed analysis of the internal forces, 

leading eventually to the bearing forces and the external 

reactions. The present analysis will bypass all of those 

internal details by appeal to general momentum 

principals that move directly to the external reactions. 

 Fundamental Principle 

The basis for this solution is the two momentum 

principles as stated by Crandall, et al. [5]: 

 The resultant external force acting on a system of 

particles is equal to the time rate of change of the 

I 
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system's linear momentum with respect to an inertial 

frame. 

 For a system of particles, the total moment with 

respect to a fixed point is equal to the time rate of 

change of the system total angular momentum, 

referred to that same fixed point. 

It matters not at  all  whether  the particles  are each 

entirely unconstrained (as in a gas) or if there are a vast 

number of internal constraints acting between the  

particles  (as  in  a  rigid  body). In the case at hand, there 

are countless constraints acting at the molecular level to 

maintain interatomic spacing in the rigid bodies that 

comprise the slider-crank mechanism, but these 

constraint forces have no bearing on the momentum 

principles stated above. 

 Coordinate Systems 

A single engine cylinder is first considered, as shown 

in Figure l. The cylinder is inclined to the vertical by the 

angle 𝐵𝑗 and the crank angle, 𝜃, is measured from the 

cylinder center line. The global coordinate system 𝑂 −

𝑋𝑌 is upright, while the local cylinder coordinate 

system, 𝑂 − 𝑥𝑦 is inclined to align with the cylinder. 

Unit vectors i, j, and k are aligned with the global 

coordinate system. 

 

 
Figure 1.  Slider-Crank Mechanism for a Single Engine Cylinder 

 

There are three bodies involved in a single slider- crank 

mechanism:  (l) the crank, (2) the connecting rod, and (3) 

the piston.  Body coordinate systems, denoted 𝑈𝑖 − 𝑉𝑖, 

are attached to each of these bodies as shown in Figure 2. 

These are used in order to specify the position of the 

body center of mass clearly.   Thus, for example, on the 

connecting rod, the body center of mass is located by 

body coordinates (𝑢2𝑐,𝑣2𝑐) in the 𝑈2 − 𝑉2 body coordinate 

system, where the 2 in the subscript refers to the 

connecting rod. This same center of mass has 

coordinates (𝑥2𝑐,𝑦2𝑐) in the cylinder coordinates, and 

coordinates (𝑋2𝑐,𝑌2𝑐) in the global coordinate system. 

Each slider-crank mechanism executes only planar 

motion in a plane at position 𝑍𝑗 along the crankshaft axis. 

For a single cylinder engine or a V-twin, 𝑍𝑗 is commonly 

taken as zero, but for an engine with many cylinders, 

there is a different value of 𝑍 for each cylinder or pair of 

cylinders, depending on the details of the crankshaft and 

block layouts. 

 Momentum Expressions 

The position of the 𝑖𝑡ℎ body center of mass in the 𝑗𝑡ℎ 

slider-crank is given in vector form as 

𝐫𝑖𝑗 = 𝐢𝑋𝑖𝑐 + 𝐣𝑌𝑖𝑐 + 𝐤𝑍𝑗      𝑖 = 1, 2, 3 (1) 

The global position, re-expressed in terms of the 

local cylinder coordinates, is 

𝐫𝑖𝑗 = 𝐢[𝑥𝑖𝑐(𝜃𝑗) ∙ cos 𝐵𝑗 − 𝑦𝑖𝑐(𝜃𝑗) ∙ sin 𝐵𝑗]  

+𝐣[𝑥𝑖𝑐(𝜃𝑗) ∙ sin 𝐵𝑗 + 𝑦𝑖𝑐(𝜃𝑗) ∙ cos 𝐵𝑗]  

+𝐤𝑍𝑗 (2) 

 
Figure 2. Individual Component Parts of the Slider-Crank Mechanism 

 

where i = 1, 2, 3. The velocity of this same center of 

mass is found by time differentiation.  In taking this 

derivative, the well known concept of velocity 

coefficients (see for example Doughty [6] or Paul [7]) 

are employed to express the component velocity in terms 

of the crank speed, 𝜃�̇�. 

𝐕𝑖𝑗 = 𝐢�̇�[cos 𝐵𝑗 ∙ 𝐾𝑥𝑖𝑐(𝜃𝑗) − sin 𝐵𝑗 ∙ 𝐾𝑦𝑖𝑐(𝜃𝑗)]  

+𝐣�̇�[sin 𝐵𝑗 ∙ 𝐾𝑥𝑖𝑐(𝜃𝑗) + cos 𝐵𝑗 ∙ 𝐾𝑦𝑖𝑐(𝜃𝑗)] (3) 
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where, 𝐾𝑥𝑖𝑐(𝜃) and 𝐾𝑦𝑖𝑐(𝜃) are called velocity coefficient 

functions. The use of velocity coefficients is described 

further below in the section titled Kinematics.  The 

derivation of all necessary velocity coefficients (and 

velocity coefficient derivatives) is provided in the 

Appendix - Cylinder Kinematics. The subscript on �̇� is 

dropped because the crank shaft is a single rigid body, 

and all the crank throw angular velocities have the same 

angular velocity, �̇�. 

1) Linear Momentum 

For any rigid body, the linear momentum is simply 

the product of the mass with the center of mass velocity. 

Linear momenta are directly additive, so the total 

system linear momentum is obtained by summation over 

all the moving bodies. First, for the 𝑖𝑡ℎ body in the 𝑗𝑡ℎ 

slider-crank, the linear momentum is 𝐏𝑖𝑗 

𝐏𝑖𝑗 =  𝐢�̇�𝑚𝑖[cos 𝐵𝑗 ∙ 𝐾𝑥𝑖𝑐(𝜃𝑗) − sin 𝐵𝑗 ∙ 𝐾𝑦𝑖𝑐(𝜃𝑗)]  

+𝐣�̇�𝑚𝑖[sin 𝐵𝑗 ∙ 𝐾𝑥𝑖𝑐(𝜃𝑗) + cos 𝐵𝑗 ∙ 𝐾𝑦𝑖𝑐(𝜃𝑗)] (4) 

and the total system linear momentum is then 

𝐏 = ∑ ∑ 𝐏𝑖𝑗

𝑖=1,2,3𝑗

 

= 𝐢�̇� ∑ ∑ 𝑚𝑖[cos 𝐵𝑗 ∙ 𝐾𝑥𝑖𝑐(𝜃𝑗) − sin 𝐵𝑗 ∙ 𝐾𝑦𝑖𝑐(𝜃𝑗)]

𝑖=1,2,3𝑗

 

+𝐣�̇� ∑ ∑ 𝑚𝑖[sin 𝐵𝑗 ∙ 𝐾𝑥𝑖𝑐(𝜃𝑗) + cos 𝐵𝑗 ∙ 𝐾𝑦𝑖𝑐(𝜃𝑗)]

𝑖=1,2,3𝑗

              (5) 

This result makes it clear that the system linear 

momentum is proportional to the crank speed and 

depends upon a summation over the position of the 

individual crank throws, 𝜃𝑗. 

Based on the first of the momentum principles stated 

above, the external reaction forces are now determined 

by differentiation.  Only steady operating speeds are 

considered, so that �̇� =  Ω = constant.  The net reaction 

forces in the global 𝑋 and 𝑌 directions are 

𝑅𝑋 = Ω2 ∑ ∑ 𝑚𝑖[cos 𝐵𝑗 ∙ 𝐿𝑥𝑖𝑐(𝜃𝑗) − sin 𝐵𝑗 ∙ 𝐿𝑦𝑖𝑐(𝜃𝑗)]

𝑖=1,2,3𝑗

       (6) 

𝑅𝑌 = Ω2 ∑ ∑ 𝑚𝑖[sin 𝐵𝑗 ∙ 𝐿𝑥𝑖𝑐(𝜃𝑗) + cos 𝐵𝑗 ∙ 𝐿𝑦𝑖𝑐(𝜃𝑗)]

𝑖=1,2,3𝑗

       (7) 

where the 𝐿's are velocity coefficient derivative functions 

(see the Appendix-Cylinder Kinematics for their 

evaluation). It is evident that the summations only need 

to be performed once, to calculate 𝑅𝑋 /Ω2 and 𝑅𝑌 /Ω2, 

and these results can then be readily scaled to give the 

values appropriate to any operating speed. 

2) Angular Momentum 

In order to calculate the angular momentum of the 𝑖𝑡ℎ 

body in the 𝑗𝑡ℎ slider-crank assembly, return to the 

expressions given above for 𝐫𝑖𝑗 and   𝐕𝑖𝑗, equations (2) 

and (3). The angular momentum for this body, with 

respect to the origin of coordinates, is 𝐇𝑜−𝑖𝑗 

𝐇𝑜−𝑖𝑗 = 𝐫𝑖𝑗 × 𝑚𝑖 𝐕𝑖𝑗 + 𝐼𝑖𝑐 ⋋̇𝑖 𝐤 (8) 

where 

𝐼𝑖𝑐 = mass moment of inertia with respect to the center of 

mass 

⋋̇𝑖 = body rotation rate, positive in the sense of crank 

rotation, 𝜃. 

For body l, the crank, the ⋋̇ represents crank speed, �̇�, 

or for body 2, the connecting rod, it is the obliquity  

angle rate, -�̇�.   For the pistons ⋋̇3= 0   since the pistons 

do not rotate. Only the 𝐢 and 𝐣 components of this cross 

product are of interest. The 𝐤 component is not 

considered because it is subject to the load torque on the 

engine, the gas pressure torques from the firing 

cylinders, etc. For the two components of interest here, 

the cross product results are: 

𝐻𝑜𝑋 = −�̇� ∑ ∑ 𝑚𝑖𝑍𝑗[sin 𝐵𝑗 ∙ 𝐾𝑥𝑖𝑐(𝜃𝑗) + cos 𝐵𝑗 ∙ 𝐾𝑦𝑖𝑐(𝜃𝑗)]

𝑖=1,2,3

 

𝑗

(9) 

𝐻𝑜𝑌 = �̇� ∑ ∑ 𝑚𝑖𝑍𝑗[cos 𝐵𝑗 ∙ 𝐾𝑥𝑖𝑐(𝜃𝑗) − sin 𝐵𝑗 ∙ 𝐾𝑦𝑖𝑐(𝜃𝑗)]

𝑖=1,2,3𝑗

  (10) 

Again, holding crank speed constant, the time 

derivative of these two angular momentum components 

give the shaking moments in the global 𝑋  and 𝑌  axes, 

respectively: 

𝑀𝑜𝑋 = −Ω2 ∑ ∑ 𝑚𝑖𝑍𝑗[sin 𝐵𝑗 ∙ 𝐿𝑥𝑖𝑐(𝜃𝑗) + cos 𝐵𝑗 ∙ 𝐿𝑦𝑖𝑐(𝜃𝑗)]

𝑖=1,2,3

 

𝑗

    (11) 

𝑀𝑜𝑌 = Ω2 ∑ ∑ 𝑚𝑖𝑍𝑗[cos 𝐵𝑗 ∙ 𝐿𝑥𝑖𝑐(𝜃𝑗) − sin 𝐵𝑗 ∙ 𝐿𝑦𝑖𝑐(𝜃𝑗)]

𝑖=1,2,3𝑗

       (12) 

It should be noted at this point that the mass moments 

of inertia for both the crank and the connecting rod do 

not figure into these calculations. This is significant, 

because they are necessary parameters for the correct 

application of Newton's Second Law. Further, the 

cylinder pressure is not involved, although this too is 

required for the correct application of Newton's Second 

Law. This is an important benefit, unique to this 

approach. 

III. KINEMATICS 

There are two kinematic aspects that require further 

attention.  The first is the concept of velocity coefficient 

and velocity coefficient derivative functions, as used 

above to express the momenta and momentum 

derivatives. The second is the geometry of the 

multicylinder crank. 

 Velocity Coefficients 

The slider-crank mechanism has only one degree of 

freedom, so that when the crank angle is specified, all 

other positions are completely determined. Consider any 

geometric variable in the slider-crank, denoted as 𝑠, 

where 𝑠 may be 𝜙, 𝑥, 𝑥1𝑐 , 𝑦1,𝑐 , 𝑥2𝑐 , 𝑦2𝑐,or 𝑥3𝑐. The 

dependence of 𝑠 on the crank angle 𝜃 is indicated 

mathematically as 

𝑠 = 𝑓(𝜃) (13) 

The velocity of s is then expressed by differentiation 

with respect to time 

�̇� = �̇�
𝑑𝑓(𝜃)

𝑑𝜃
= �̇� ∙ 𝐾𝑠(𝜃) (14) 

The quantity designated as 𝐾𝑠(𝜃) is simply the 

indicated derivative, and because it multiplies �̇� to 

produce �̇�, it is called a velocity coefficient, that is, a 

multiplier of one velocity to produce another. 

 Velocity Coefficient Derivatives 

To carry this process a step further, consider a second 

differentiation with respect to time, 

�̈� =
𝑑

𝑑𝑡
[�̇� ∙ 𝐾𝑠(𝜃)]  

= �̈� ∙ 𝐾𝑠(𝜃) + �̇�2 𝑑

𝑑𝜃
[𝐾𝑠(𝜃)]  

= �̈� ∙ 𝐾𝑠(𝜃) + �̇�2 ∙ 𝐿𝑠(𝜃) (15) 
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The quantity 𝐿𝑠(𝜃) is called a velocity coefficient 

derivative, simply a description of its nature as the 

derivative of a velocity coefficient.  With these functions 

defined, the description of velocities and accelerations 

for single degree of freedom systems is quite simple. 

The detailed determination of the original function, 

𝑓(𝜃) for the various variables is shown in detail in the 

Appendix-Cylinder Kinematics. The system of equations 

described there is uniquely suited to computer 

implementation, with the substitution of numerical 

values from each calculation into those that follow it.  

Algebraic substitution, while possible, is not 

enlightening and is to be avoided. 

 Multicylinder Crank Geometry 

In the operation of a multicylinder engine, there is a 

relation between the individual cylinder crank angles, the 

cylinder bank angles, and the crank shaft angles. In order 

to examine this, consider Figure 3, and note that all 

angles are positive in the direction of crankshaft rotation. 

 
Figure 3. Angle Relations 

 

The bank angles, 𝐵1, 𝐵2, . . . 𝐵𝑗 describe the angular 

orientation of each cylinder with respect to the vertical. 

For an in-line engine, all the bank angles will be the 

same. For a V-type engine, typically there is one bank 

angle for the even numbered cylinders and a different 

angle for the odd numbered cylinders. 

The crankshaft angles, 𝐶𝑗 describe the angular position 

of each crank throw with respect to a reference throw 

designated as #1. In the event that the engine is a V-twin 

type, the sort commonly used in motorcycles, there is 

only a single crank throw with the connecting rods from 

both cylinders attached to it. 

The angle that is of importance in describing what the 

slider-crank geometry and cylinder pressure in an 

individual cylinder is the crank angle, 𝜃𝑗 measured from 

cylinder center line to the associated crank pin.  With the 

crankshaft considered as a rigid body, there is only one 

independent crank angle, designated 𝜃1, and the purpose 

here is to relate the other crank angles to 𝜃1 . 

Considering the geometry of Figure 3, it is evident that 

the required relation is: 

𝜃𝑗 = 𝜃1 + 𝐵1 − 𝐵𝑗 + 𝐶𝑗 (16) 

It is important  to recognize  that  this  is dependent  

both  on the  crankshaft  geometry  and the cylinder bank 

angles. 

IV. EXAMPLE CALCULATIONS 

The process developed above is quite general and 

easily applied to a wide variety of engine configurations. 

In order to have more directly comparable results, all of 

the examples presented here employ the same basic 

cylinder parameters.  These parameters are a rough 

approximation to the cylinders of the British Polar 

M40M marine engine [8]. The basic cylinder parameters 

are in the Table 1. 
TABLE1. 

BRITISH POLAR M40M MARINE ENGINE PARAMETERS 

Crank Radius R  0.285 m 

Connecting Rod Length L 1.400 m 

Single Crank Mass 𝑚1  420 kg 

Connecting Rod Mass 𝑚2  244 kg 

Piston Mass 𝑚3  720 kg 

Crank CM 
𝑢1𝑐  0.020 m 

𝑣1𝑐  0.0 m 

Connecting Rod CM 
𝑢2𝑐  0.490 m 

𝑣2𝑐  0.0 m 

Piston CM 
𝑢3𝑐  0.020 m 

𝑣3𝑐  0.0 m 

 

Case 1 V-Twin Engine 

The parameters for this case are in Table 2 below. Note 

that the two cylinders are in slightly different planes, as 

indicated by the different values for 𝑍1 and 𝑍2 . 

 
TABLE 2. 

V-TWIN ENGINE PARAMETERS 

𝐵1 𝐵2 𝑍1 𝑍2 𝐶1 𝐶2 

0º 45º -0.012m +0.012m 0º 0º 

 

 
Figure 4:  Normalized Shaking Forces for V-Twin Engine (RX/Ω2 - solid 

line, RY/Ω
2 - broken line) Plotted Versus Crank Angle, θ 

 

 
Figure 5.  Normalized Shaking Moments for V-Twin Engine (MX/Ω2 - 

solid line, MY/Ω
2 - broken line) Plotted Versus Crank Angle, θ. 
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TABLE 3. 

V-TWIN RESULTS 

Max |
𝑅𝑋

Ω2
| 519.3* 

Max |
𝑅𝑌

Ω2
| 275.4 

Max |
𝑀𝑜𝑋

Ω2
| 2.344 

Max |
𝑀𝑜𝑌

Ω2
| 2.517* 

* Normalizing Value for Plots 

On each plot, both curves are plotted to the same scale 

for comparison, and the curve with the larger excursion 

is normalized to 1.0. A Fourier analysis of these 

functions gives the following coefficients for the leading 

terms: 
TABLE 4. 

CASE 1:𝑅𝑋 Ω2⁄  

𝑛 𝑎𝑛 𝑏𝑛 

0 4 ∙ 10−14 - 

1 -397.4506 +235.1420 

2 -33.3905 +47.2213 

3 +0.0000 +0.0000 

4 +0.1463 +0.0000 

5 +0.0000 +0.0000 

6 +0.0042 +0.0000 

7 +0.0000 +0.0000 

8 +0.0001 +0.0000 

 

TABLE 5. 

CASE 1: 𝑅𝑌 Ω2⁄  

𝑛 𝑎𝑛 𝑏𝑛 

0 6 ∙ 10−14 - 

1 -235.1420 +72.8334 

2 -33.3905 +0.0000 

3 +0.0000 +0.0000 

4 +0.3533 +0.0000 

5 +0.0000 +0.0000 

6 +0.0042 +0.0000 

7 +0.0000 +0.0000 

8 +0.0001 +0.0000 

 

TABLE 6. 

CASE 1: 𝑀𝑜𝑋 Ω2⁄  

𝑛 𝑎𝑛 𝑏𝑛 

0 4 ∙ 10−16 - 

1 -1.9477 +0.0000 

2 -0.4007 +0.0000 

3 +0.0000 +0.0000 

4 +0.0042 +0.0000 

5 +0.0000 +0.0000 

6 -0.0001 +0.0000 

7 +0.0000 +0.0000 

8 +0.0001 +0.0000 

TABLE 7. 
CASE 1: 𝑀𝑜𝑌 Ω2⁄  

𝑛 𝑎𝑛 𝑏𝑛 

0 5 ∙ 10−16 - 

1 +0.0000 +1.9477 

2 -0.4007 0.5667 

3 +0.0000 +0.0000 

4 +0.0102 +0.0000 

5 +0.0000 +0.0000 

6 -0.0001 +0.0000 

7 +0.0000 +0.0000 

8 +0.0000 +0.0000 

 

The values of order 10-l4 and less are simply the round-

off error on zero values. 

 

Case 2 V6 with 60º between Banks 
The parameters for this case are listed in Table 8 

below. The two cylinder banks are each 30 off the 

vertical. 
TABLE 8. 

V6 ENGINE PARAMETERS 

Cyl Number j 𝐵𝑗 (deg) 𝐶𝑗 (deg) 𝑍𝑗 (m) 

1 +30 0 -0.850 

2 -30 0 -0.850 

3 +30 +120 +0.000 

4 -30 +120 +0.000 

5 +30 -120 +0.850 

6 -30 -120 +0.850 

 

 

 
Figure 6.  Normalized Shaking Forces for V6 Engine (RX/Ω2 - solid line, 

RY/Ω
2 - broken line) Plotted Versus Crank Angle. 

 

 
Figure 7.  Normalized Shaking Moments for V6 Engine (RX/Ω2 - solid 

line, RY/Ω
2 - broken line) Plotted Versus Crank Angle. 
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TABLE 9. 

V6 ENGINE RESULTS 

Max |
𝑅𝑋

Ω2
| 0.0309* 

Max |
𝑅𝑌

Ω2
| 

2 · 10-13 

Max |
𝑀𝑜𝑋

Ω2
| 381.5 

Max |
𝑀𝑜𝑌

Ω2
| 669.5* 

* Normalizing Value for Plots 

 

When these   functions are   subject to   Fourier 

analysis, the leading terms in the results are: 
 

TABLE 10. 

CASE 2:  𝑅𝑋 Ω2⁄  

𝑛 𝑎𝑛 𝑏𝑛 

0 7 ∙ 10−15 - 

1 +0.0000 +0.0000 

2 +0.0000 +0.0000 

3 +0.0000 +0.0000 

4 +0.0000 +0.0000 

5 +0.0000 +0.0000 

6 +0.0309 +0.0000 

7 +0.0000 +0.0000 

8 +0.0001 +0.0000 

 

TABLE 11. 

CASE 2: 𝑅𝑌 Ω2⁄  

𝑛 𝑎𝑛 𝑏𝑛 

0 4 ∙ 10−15 - 

1 +0.0000 +0.0000 

2 +0.0000 +0.0000 

3 +0.0000 +0.0000 

4 +0.0000 +0.0000 

5 +0.0000 +0.0000 

6 +0.0000 +0.0000 

7 +0.0000 +0.0000 

8 +0.0000 +0.0000 

 

TABLE 12. 

CASE 2: 𝑀𝑜𝑋 Ω2⁄  

𝑛 𝑎𝑛 𝑏𝑛 

0 4 ∙ 10−14 - 

1 -277.6587 -160.3063 

2 -30.1036 -52.1410 

3 +0.0000 +0.0000 

4 +0.3185 -0.5517 

5 +0.0000 +0.0000 

6 +0.0000 +0.0000 

7 +0.0000 +0.0000 

8 +0.0000 +0.0001 

 

TABLE 13. 

CASE 2: 𝑀𝑜𝑌 Ω2⁄  

𝑛 𝑎𝑛 𝑏𝑛 

0 4 ∙ 10−14 - 

1 +329.2749 -570.3209 

2 +52.1410 -30.1036 

3 +0.0000 +0.0000 

4 -0.5517 -0.3185 

5 +0.0000 +0.0000 

6 +0.0000 +0.0000 

7 +0.0000 +0.0000 

8 +0.0001 +0.0001 

 

The major contributions are shown in boldface. As 

noted previously, the very small values for 𝑎𝑜 are 

actually simply round-off errors in what should be an 

exactly zero value 

V. CONCLUSION 

A rather simple approach has been demonstrated for 

the determination of shaking forces and shaking moment 

in slider crank machines such as IC engines. The method 

is based on the direct application of very fundamental 

principles of dynamics, and avoids many of the 

difficulties associated with the Newton's Law approach. 

While not well suited for hand calculation, the method is 

easily programmed for digital computer implementation. 

Initially, it  provides the  time  dependent form  for the  

shaking forces  and  moments, but  these  wave forms  

are easily subject to Fourier analysis in the same 

computer program to obtain the components associated  

with each  rotational order. 
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APPENDIX - CYLINDER KINEMATICS 

For any connecting rod with zero cylinder center line 

offset, the following kinematic relations are valid: 

𝜙(𝜃) = arcsin (
𝑅

𝐿
sin 𝜃) (17) 

𝑥(𝜃) = 𝑅 cos 𝜃 + 𝐿 cos[𝜙(𝜃)] (18) 

 

Differentiating with respect to 𝜃 gives 

 

𝐾𝜙(𝜃) =
𝑅 cos 𝜃

𝐿 cos[𝜙(𝜃)]
 (19) 

𝐾𝑥(𝜃) = −𝑥(𝜃) ∙ tan[𝜙(𝜃)]  (20) 

and differentiating second time with respect to 𝜃 gives 

 

𝐿𝜙(𝜃) = −
𝑅 sin 𝜃

𝐿 cos[𝜙(𝜃)]
+ 𝐾𝜙

2(𝜃) tan[𝜙(𝜃)]  (21) 

𝐿𝑥(𝜃) = −𝑅 cos 𝜃 − 𝐾𝜙
2 (𝜃)𝐿 cos[𝜙(𝜃)]  

 −𝐿𝜙(𝜃)𝐿 sin[𝜙(𝜃)]  (22) 

Note in passing that these functions are very easily 

evaluated in computer code if evaluated numerically in 

the sequence presented here, without substituting one 

formula into the next. Full symbolic substitution, which 

is easily accomplished by a computer algebra program 

such as 𝑀𝑎𝑝𝑙𝑒 𝑇𝑀 or 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 𝑇𝑀, results in very 

long, complicated expressions that defy interpretation 

and are  difficult to program correctly. 

For the center of mass motions, the ideas above are 

extended as follows: 

 

𝑥1𝑐(𝜃) = 𝑢1𝑐 cos 𝜃 − 𝑣1𝑐 sin 𝜃  (23) 

𝑦1𝑐(𝜃) = 𝑢1𝑐 sin 𝜃 + 𝑣1𝑐 cos 𝜃  (24) 

 

𝐾𝑥1𝑐(𝜃) = −𝑢1𝑐 sin 𝜃 − 𝑣1𝑐 cos 𝜃  (25) 

𝐾𝑦1𝑐(𝜃) = 𝑢1𝑐 cos 𝜃 − 𝑣1𝑐 sin 𝜃  (26) 

 

𝐿𝑥1𝑐(𝜃) = −𝑢1𝑐 cos 𝜃 + 𝑣1𝑐 sin 𝜃  (27) 

𝐿𝑦1𝑐(𝜃) = −𝑢1𝑐 sin 𝜃 − 𝑣1𝑐 cos 𝜃  (28) 

 

𝑥2𝑐(𝜃) = 𝑅 cos 𝜃 + 𝑢𝑐 cos[𝜙(𝜃)] + 𝑣𝑐 sin[𝜙(𝜃)] (29) 

𝑦2𝑐(𝜃) = 𝑅 sin 𝜃 − 𝑢𝑐 sin[𝜙(𝜃)] + 𝑣𝑐 cos[𝜙(𝜃)] (30) 

 

𝐾𝑥2𝑐(𝜃) = −𝑅 sin 𝜃 − 𝑢𝑐𝐾𝜙(𝜃) sin[𝜙(𝜃)]  

+𝑣𝑐𝐾𝜙 cos[𝜙(𝜃)] (31) 

𝐾𝑦2𝑐(𝜃) = 𝑅 cos 𝜃 − 𝑢𝑐𝐾𝜙(𝜃) cos[𝜙(𝜃)]  

−𝑣𝑐𝐾𝜙 sin[𝜙(𝜃)]  (32) 

 

𝐿𝑥2𝑐(𝜃) = −𝑅 cos 𝜃 − 𝑢𝑐𝐾𝜙
2(𝜃) cos[𝜙(𝜃)]  

−𝑣𝑐𝐾𝜙
2(𝜃) sin[𝜙(𝜃)]  

−𝑢𝑐𝐿𝜙(𝜃) sin[𝜙(𝜃)]   

+𝑣𝑐𝐿𝜙(𝜃) cos[𝜙(𝜃)]  (33) 

 

𝐿𝑦2𝑐(𝜃) = −𝑅 sin 𝜃 + 𝑢𝑐𝐾𝜙
2(𝜃) sin[𝜙(𝜃)]  

−𝑣𝑐𝐾𝜙
2(𝜃) cos[𝜙(𝜃)]  

−𝑢𝑐𝐿𝜙(𝜃) cos[𝜙(𝜃)]   

−𝑣𝑐𝐿𝜙(𝜃) sin[𝜙(𝜃)]  (34) 

 

This completes all of the kinematic analysis required 

for the slider-crank mechanism analysis 


