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Element Size Effects in Nonlinear Analysis 
of Reinforced Concrete Beams without Web 

Reinforcement 
Tavio1 

  

Abstract⎯ A new approach is developed to the nonlinear 
analysis of reinforced concrete beams without stirrups sub-
jected to a monotonically increasing loading from zero up to 
the ultimate load. The softening effect of concrete in tension-
compression, the tension-stiffening and tension-softening of 
concrete in tension are all taken into account in the pro-
posed model. The effect of finite element mesh size is inves-
tigated by applying the crack band theory (Bazant and Oh, 
1983) and taking into account the plastic strain of concrete 
under tension. A simple procedure for calculating the stress-
strain curve of plain concrete under tension was developed 
and implemented into the nonlinear finite element formula-
tion. The proposed model gives relatively good agreement 
with the experimental results. 
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I.  INTRODUCTION 
he nonlinear finite element method has developed 
into an important tool for the analysis of the complex 

concrete structures.  This technique is very helpful to un-
derstand the formation and propagation of cracks and the 
mechanism and process of failure. Future development of 
the nonlinear finite element method lies primarily in the 
improvements of the constitutive models of materials. 
Two behavioral models were developed for the analysis 
of concrete structures subjected to shear: the rotating-
angle softened truss model (RA-STM)[1], [2], [3] and the 
fixed-angle softened truss model (FA-STM) [2],[3], [4], 
[5].  The FA-STM assumes that cracks will develop along 
the direction of principal compressive stresses at initial 
cracking, and the cracks will be “fixed” at this angle 
thereafter.  The advantage of FA-STM over RA-STM 
was that FA-STM was capable to taking into account the 
concrete contribution, induced by the shear stresses along 
the cracks.  Nevertheless, the FA-STM overestimate the 
tension-stiffening of plain concrete and the mesh size 
effect is not taken into account in the nonlinear finite 
element analysis based on FA-STM.  In this paper, the 
crack band theory is used to modify the stress-strain 
curve of cracked plain concrete under tension which 
revises the overestimation of tension-stiffening. And a 
plastic tensile strain is introduced into the new model, 
which is in terms of the finite element mesh size. The 
crack band theory and the plastic tensile strain can reduce 
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the numerical error associated with the finite element 
mesh size. 

II.  DESCRIPTION OF MODEL 

A.  Equilibrium Equations 
Assuming that the steel bars can resist only axial stres-

ses, then the superposition of concrete stresses and steel 
stresses as shown in fig. 1 results in 
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where,  

,x yσ σ
 = 

Applied normal stress in the x and y 
direction, respectively (positive for ten-
sion) 

xyτ
 = Applied shear stress in the x-y coor-

dinate 
,cx cyσ σ  = Average normal stress in concrete in 

the x-y coordinate 

cxyτ  = Average shear stress in concrete in the 
x-y coordinate 

,sx syρ ρ  = Reinforcement ratios in the x and y-
direction, respectively 

In the fixed-angle model, the x’-y’ coordinate system 
as shown in Fig. 2 is defined.  In this coordinate system, 
the coordinate x’-y’ is the principal coordinate of stresses 
in concrete at initial cracking.  Angle φ  is the fixed angle 
between x and x’ coordinate. 

The transformation of stresses in concrete from the x’-
y’ coordinate to the x-y coordinate is given as follows: 
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where, ( )cosc φ= −  and (sins )φ= − . The stresses 

' ,cx cy 'σ σ  and ' 'cx yτ  are the stresses in the concrete in 

x’-y’ coordinate. 
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Fig. 1. Superposition of concrete stresses and steel stresses 
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Fig. 2. Definition of coordinate systems and fixed angle 
 

After introducing Eq. 2 into Eq. 1, the final expression 
for equilibrium condition for reinforced concrete can be 
obtained as: 
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B.  Compatibility equations  
Assuming that no slipping occurs between concrete and 

steel bars, the transformation of the average strains in re-
inforced concrete from the x-y coordinate to the x’-y’ 
coordinate is given as follows: 
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where, ( )cosc φ=  and ( )s ins φ= . The strains 

'' ,x yε ε  and ' 'x yγ  are the strains in the x’-y’ coordinate. 

C.  Cracking criterion 
The constitutive relationships of concrete must be 

guided by an interactive cracking criterion for concrete.  
A cracking criterion as shown in Fig. 3 is given as 
follows: 
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where, 1cσ  and 2cσ  is the principal stress in concrete. 

The uniaxial tensile strength tf  is defined as 

( )
2

30 .0 5 8 1 0 'cf [10]. 

As for the cracking envelope under biaxial stress, the 
Niwa model (1980) derived for the tension-compression 
domains and the Aoyagi-Yamada model [11] for the 
domains of tension-tension together with the Kupfer’s 
model [12] for the compression-compression domains 
are adopted. 
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Fig. 3. Cracking surface 

D.  Constitutive relationships of concrete before initial 
cracking 

Before initial cracking, assuming that the principal 
direction of stress in concrete is coincide with the princi-
pal direction of strain, the constitutive relationships of 
concrete are given as follows: 

1c cE 1σ ε= , tension     (6a) 
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E.  Constitutive relationships of concrete after initial 
cracking 

After initial cracking, the constitutive relationships of 
concrete are established in the x’-y’ coordinate. 

F.  Concrete in compression-tension 
After initial cracking, the stress and strain softening oc-

curs in concrete in compression-tension domains. The ave-
rage stress-strain curve of concrete in compression [3], 
[4], [5], [6] as shown in Fig. 4 is expressed as: 
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where, 'cf  is the cylinder compression strength of con-

crete; 'cε  is the concrete strain at maximum compressive 

stress; and ζ  is the softening coefficient. In the descen-
ding potion of the concrete stress-strain curve the lowest 
stresses value was taken as 0.2 'cfζ  to avoid the poten-
tial numerical problem in calculation. 

In Eq. (7a) and Eq. (7b), the stress-softened coefficient 
and the strain-softened coefficient are the same value of 
ζ , which can be expressed conservatively as [4], [5]: 
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where, 'xε  is the tensile strain at x’-direction; ,sx syρ ρ  

are the reinforcement ratios in the x and y directions, 
respectively; ,sxY syYf f  are the yield stress of steel in 

the x and y directions, respectively; and ,x yσ σ  are the 

applied stresses in the x and y directions, respectively. 
The parameter 'η  is less than unity. 

G.  Concrete in shear 
The average stress-strain relationship of concrete in 

shear can be expressed as: 

' '
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    (9) 

where, 'sxE  and  'syE  are the secant stiffness of 

concrete in x’ and y’ direction respectively.  This shear 
modulus of concrete was proposed by [7]. 

Transfer of shear forces across the crack surface in 
reinforced concrete member may result in a large sliding 
deformation and final failure by shear. Nevertheless, the 
model is “smeared”. It models average responses, witho-
ut considering the specific contributions of the individu-
al mechanical effects, such as the aggregate interlock 
and dowel action at the crack location. 
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Fig. 4. Softened compressive stress-strain curve of concrete 
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Fig. 5. Load-Deflection estimation using Eq. (9b) 

H.  Constitutive relationship of steel bar 
The stress-strain curve of steel can be modeled by two 

straight lines [6], [2], [8]. The bilinear model is given as 
follows: 
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where, B  is a parameter defined as ( ) , 

and 

( )1.51 / /cr Yf fρ

nε  is the average yield strain of mild steel bars 
embedded in concrete at the beginning of yielding, taken 
as (0 .9 3 2Y )Bε − .  

I.  Concrete in tension 
The average stress-strain curve of reinforced concrete in 

tension can be expressed as: 
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for reinforced concrete                (11b) 

'cx tfσ = , 0 ' 0( )t x p tε ε ε ε< ≤ +                (11c) 

where,  is the modulus of elasticity of concrete; cE tf  is 

the uniaxial tensile strength as defined in Eq. (5); 0tε  is 

the cracking strain of concrete, which equals to t

c

f
E

; pε  

is the plastic strain of concrete under tension. In Belarbi 
and Hsu’s model [6], the value of pε  was set to be zero. 

Eq. (11b) can well estimate the tension-stiffening of 
reinforced concrete under tension.  However, Eq. (11b) 
may overestimate the tension-stiffening and underestimate 
the tension-softening of plain concrete. A numerical result 
using Eq. (11b) is compared with the experimental result 
reported by Bresler and Scordelis (1963) in Fig. 5, which 
shows that the Eq. (11b) may overestimate the ultimate 
load of the beam without stirrups. Because the cracks in 
plain concrete can grow without the restriction by the 
reinforcing bars, the tensile stress in plain concrete can 

drop faster than in reinforced concrete. Thus a new app-
roach is proposed to predict the behavior of plain con-
crete under tension, which can be expressed as: 
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0
'

'

t
cx t

x p

f
β

εσ
ε ε

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

, ' 0( )x p tε ε ε> + , 

for plain concrete              (12b) 
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where,  is the modulus of elasticity of concrete; cE tf  is 

the uniaxial tensile strength as defined in Eq. (5); 0tε  is 

the cracking strain of concrete, which equals to t

c

f
E

. 

In this proposed model, the parameter β  used in Eq. 
(12b) is calculated based on crack band theory.  In the 
crack band theory, the basic criterion is that of energy 
release needed to create the crack surface. The fracture 
energy,  is the energy consumed in the formation 

and opening of all microcracks per unit area, which was 
defined by Bazant as: 
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in which,  is the effective width of the crack band 
over which the microcracks are assumed to be uniformly 
spread; 

cw

tσ  is the tension stress in plain concrete; fε  is 

the fracture strain that is the additional strain caused by 
the opening of microcracks. 

As shown in Fig. 6, the value of W  is the hatched 
area.  Substituting for 'cxσ  from Eq. (12a) and Eq. 

(12b), the value of W  can be  
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So the value of β  can be defined as a function of 

fracture energy fG , the tensile strength tf , 0tε  and the 

effective width of crack band .  In finite element 
analysis, the effective width of crack band can be repla-
ced by the finite element size h  [9].  Thus, the equation 
of 

cw

β  is 
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Fig. 6. Stress-Strain Curves of Concrete under Tension 

 

The fracture energy,  is a material parameter. Refe-

ring to reference [9] proposed an empirical function for 
fG

fG  of plain concrete as: 

( )
c

a
ttf E

dffG 20214.072.2 +=    (16) 

in which,  is the aggregate size in concrete. ad

By implementing Eq. (12b) into the nonlinear finite 
element analysis of reinforced concrete beams without 
stirrups and assuming 0pε = , the numerical result is 

compared with the experimental result reported by Bresler 
and Scordelis (1963) in Fig. 7. It is found that the nume-
rical result underestimate the ultimate load. The similar 
results are found in the other Bresler and Scordelis beams 
without stirrups. 
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Fig. 7. Load-Deflection without the Effect of pε  
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From the present research work, it is found that the 

underestimation of the ultimate load can be revised by 
implementing the plastic strain pε  into the model of 

concrete under tension as in Eq. (11c) and Eq (12c). Fur-
thermore, the value of pε  is affected by the finite ele-

ment size. To obtain the function of pε , three reinforced 

concrete beams without stirrups reported by Bresler and 
Scordelis (1963) were analyzed. The series of beams 
own of the high quality of the testing and results. For 
each of the beams, five types of mesh size were used in 
the finite element analysis. The details are shown in 
Table 1. 

For each mesh configuration, the value of pε  was 

adjusted so that the computed ultimate load was close to 
the experimental ultimate load.  The results are 
presented in Table 2. After determining the best value of  

pε  for each mesh size h, the variation of pε  with 

respect to the element width is plotted in Fig. 8. A 
regression analysis of the results leads to the following 
exponential equation: 

87.0
0(0 .55 2 .27 )h

p teε ε−= +               (17) 

in which, h  is the width of the element (mm) (for non-

square elements: h = A , where A  is the element 
area).  If pε  is larger than 1. 04 tε , than 01.4p tε ε= . 

Based on this formula, the value of pε  decreases with 

an increase in the value of h . 
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TABLE 1 

DETAILS OF BRESLER-SCORDELIS BEAMS 
 

Beam  mm b x h, 
mm 

Span, 
mm 

'
cf , MPa Bottom 

reinforcement /a d  

Mesh Size 1 50 x 50 
Mesh Size 2 100 x 100 
Mesh Size 3 150 x 180 
Mesh Size 4 220 x 150 

OA-1 

Mesh Size 5 420 x 280 

305 x 552 3660 22.6 4 No. 9 3.32 

Mesh Size 1 50 x 50 
Mesh Size 2 100 x 100 
Mesh Size 3 150 x 150 
Mesh Size 4 220 x 150 

OA-2 

Mesh Size 5 420 x 180 

305 x 552 4570 23.7 5 No. 9 4.14 

Mesh Size 1 50 x50 
Mesh Size 2 100 x 100 
Mesh Size 3 150 x 150 
Mesh Size 4 220 x 150 

OA-3 

Mesh Size 5 420 x 280 

305 x 552 6400 37.6 6 No. 9 5.80 

 
 

TABLE 2 

OPTIMUM VALUE OF pε  FOR DIFFERENT MESH SIZES 

 

The optimum value of plastic strain pε  (x 0tε ) Size of Element 
(mm) OA-1 OA-2 OA-3 

50 x50 2.20 2.30 2.20 
100 x 100 2.30 2.30 2.20 
150 x 150 1.97 1.90 1.80 
220 x 150 1.90 1.82 1.65 
420 x 280 1.70 1.59 1.50 

 
TABLE 3 

DETAILS OF TSUCHIYA BEAMS (SERIES 1) 
 

Beam  mm b x h, mm Span, mm '
cf , MPa yf , MPa /a d  

Mesh Size 1 50 x 40 
Mesh Size 2 100 x 80 No.1 
Mesh Size 3 200 x 100 

150 x 300 780 69.5 711 3.0 

Mesh Size 1 50 x 40 
Mesh Size 2 100 x 80 No.2 
Mesh Size 3 200 x 100 

150 x 300 780 29.4 711 3.0 

Mesh Size 1 50 x40 
Mesh Size 2 100 x 80 No.4 
Mesh Size 3 200 x 100 

150 x 300 780 29.4 333 3.0 

Mesh Size 1 50 x40 
Mesh Size 2 100 x 80 No.7 
Mesh Size 3 200 x 100 

150 x 300 780 69.5 363 3.5 

 
III.  COMPARISON BETWEEN NUMERICAL ANALYSIS AND 

EXPERIMENTAL DATA 
To verify the reliability of the proposed method, 7 

beams were analyzed. The comparisons between the 
proposed model and the experimental results of Bresler-
Scordelis beams are shown in Fig. 9. The figure shows 
the relationship between the load and midspan deflec-
tion. The numerical results are also compared with 
Tsuchiya’s beams (series 1, 2002)[10].  The details of 
the beams are listed in Table 3. The comparisons of the 
load-deflection curves are shown in Fig. 10. All the 

compared beams are slender beams. In this figure, it is 
found that the load-displacement curves calculated by 
the model with considering the finite element size 
effect can predict the load-deflection curve of concrete 
beams without stirrups. The numerical results give rea-
sonably good agreement with the experimental results 
of normal concrete slender beams including OA1, 
OA2, OA3, No. 2 and No. 4 beams. However, the finite 
element analysis for the high-strength slender beams 
(OA1 and OA7) does not give good enough agreement, 
especially for the load-deflection curve of beam No.7 
near the peak load point.  It may because Eq. (17) is an 
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empirical equation got from the experimental result of 
normal beams. The parameters in Eq. (17) may be in 
terms of the material properties. 
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Fig. 9. Comparison of results of analysis for Bresler-Scordelis Beams. 

IV.  CONCLUSIONS 
In this paper a new approach is developed to do the 

nonlinear analysis of concrete slender beams without 
web reinforcement. The crack band theory is applied in 
this approach to decide the stress-strain relationship of 
cracked concrete under tension. And a function for the 
plastic tensile strain is established that is a function of 
the finite element size.  The crack band theory and the 
plastic tensile strain can reduce the numerical error as-
sociated with the mesh size. The calculated deflections 
agreed with the experimental results reasonably, thus 
making it possible to model the concrete beams without 
stirrups with relatively large finite element mesh size. 
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Fig. 10. Comparison of results of analysis for Tsuchiya’s Beams. 
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