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AbstractIn this paper, a dynamic model of the container 

crane which represents simultaneous traversing and hois-

ting motions is discussed. The model is derived using Lagra-

ngian modeling techniques. The problem is to minimize the 

transfer time of a container, where the optimal trajectory 

should satisfy the specified initial and terminal conditions 

and some constraints. The optimal control problem is trans-

formed into sequence of nonlinear constrained optimization 

problems by discretising of the state and/or control variab-

les. Numerical examples are provided, including the case 

where there is a singular-arc on control. 

 

KeywordsContainer crane, Nonlinear optimal control, 

Singular control, Direct method. 

I.  INTRODUCTION 

ontainer cranes are widely used to handle loading 

and unloading process of the containers at harbour. 

The fundamental motions are travelling of the trolley and 

hoisting of the cable. When the vessel is unloaded, the 

container is first transferred from the ship to the waiting 

truck. The truck then carries the container to the open sto-

rage area. When the ship is loaded the same problem is 

encountered.  

The globalization has significantly increased the de-

mand for logistics and transportation, particularly the de-

mand for containerized vessel shipping. Due to the in-

creasing volume of world-wide container traffic, con-

tainer terminals have become more important component 

of global logistics networks. Container terminals serve as 

hubs for the transshipment of containers from ships to 

ships or other modes of transportation (i.e. rail and 

trucks). Therefore, container handling at harbour is very 

important and has to be minimized economically, espe-

cially the service time of the container vessel at the har-

bour. The general transfer of the container can be broken 

down into three parts: (i) vertical lifting, (ii) transfer of 

the container from starting point to the desired ending 

point, and (iii) lowering of the container. The transfer for 

parts (i) and (iii) require only the hoisting control of the 

crane. The part (ii) of the transfer requires both the 

hoisting and traverse controls and has the greatest poten-

tial for reduction of the overall transfer time.  

The focus of this paper is to determine an optimal time 

trajectory of transferring the container from a given initial 
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position at rest to a given terminal position where it is re-

quired at rest again whilst satisfying some constraints. 

The container crane has fixed position with respect to the 

ship when loading and unloading processes are perfor-

med. Thus the whole processes are accomplished by a 

planar motion of the container hanging at the moving 

trolley. There are some constraints which are the finite-

ness of the actuators, safety regulations, trolley speed, 

hoisting speed, force of the trolley drive system and force 

of the hoisting drive system.  

This paper is organized as follows. The dynamics mo-

del of container crane is described in Section 2. The for-

mulation of the container crane as optimal control probl-

em is presented in Section 3. Section 4 introduces the op-

timal control theory. The parameterization of the optimal 

control problem using a direct collocation approach is 

discussed in Section 5. Results of the numerical results 

and related numerical issues are given in Section 6. Final-

ly, this paper closes by some conclusions in Section 7. 

II.  MODELING OF  THE CONTAINER CRANE 

The container crane is modelled as a two-dimensional 

system. The crane has a fixed position with respect to the 

ship. The elastic deformability of the crane construction 

and the cable will be neglected. It is assumed that all ele-

ments are infinite stiffness and there is no friction. We 

derive the dynamic equation for the system using the 

Lagrangian modelling techniques.  

The container crane is modelled as system with 3 deg-

rees of freedom. The model has two control inputs, which 

are force acting on the trolley in horizontal direction and 

the hoisting cable force. The mass of the container and 

the mass of trolley are and respectively. The model can 

be given as follows: 
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Where z is the trolley position, z&  is speed of the trolley. 

θ  is swing angle of the cable, θ&  is swing angle speed, l 

is length of the cable, l& is the hoisting speed, Gh and Gt 

are the virtual hoisting motor mass and the virtual trolley 

motor mass respectively. 
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Figure 1. Schematic drawing of the container cranes 

III.  PROBLEM FORMULATION 

The problem is to find the trajectory of the container 

cranes from an assigned initial state to a final state with 

the minimum time. This problem can be formulated by 

introducing the performance criterion 

∫=
ft

t
dtJ

0

min
     (2) 

The performance criterion (2) is subject to the equa-

tions of motion (1). The equations (1) can be rewritten as 

first order differential equations as follows: 
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Where  

{ }lxlxxxzxzxx &&& ======= 6543211 ,,,,,, θθ  

In addition, some constraints are described as follows: 

Initial and final conditions: 

{ }0,,0,0,0,0 00 lx =      (4) 

{ }0,,0,0,0,
fff ttt lzx =     (5) 

Control constraints: 

maxmin ttt FFF ≤≤      (6) 

max
0 hh FF ≤≤       (7) 

State constraints 

55 2 ≤≤− x       (8) 

2.02,0 3 ≤≤− x      (9) 

55 4 ≤≤− x                   (10) 

55 6 ≤≤− x                   (11) 

IV.  OPTIMAL CONTROL THEORY 

The problem is to find an admissible control, which 

minimises the performance index: 
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and the control vector functions:  
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Subject to the following constraints: 
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The performance index describes a quantitative mea-

sure of the performance of the system over time. Here 
11: ℜ→ℜΦ +n and 1: ℜ→ℜ + mn

L assumed to be suf-

ficiently often continuously differentiable in all argu-

ments. 

Minimising  J with respect to the control function  u 

must be accomplished in a way consistent with the dyna-

mics of the system, whose performance is optimised. In 

other words, equation (15) is the first fundamental 

equality constraint.  The optimal control U
∗
, when substi-

tuted to (15), will produce the optimal state X
∗
, while 

minimising J.  

The optimal state X
∗ 

is further constrained by the 

boundary conditions (16) and (17), path constraints (18) 

and (19). Finally, it should be mentioned that (18) or (19) 

may be active on a subinterval of ( )ftt ,0
or just at a po-

int. In the former case, the constrained (active) subarc 

will be characterised by the entry time t1 and the exit time 

t2  with ftttt ≤≤≤ 210 . 

The functions appearing in (12)–(19) are assumed to 

be sufficiently continuously differentiable with respect to 

their arguments. Note that the definition of U allows dis-

continuities in controls and thus implies corners (cusps) 

in the states, so that X comprises piecewise smooth func-

tions. This is a practical necessity, as many real-world 

applications of optimal control involve bang-bang type 

inputs.  

Problem (12)–(19) is infinite-dimensional: its solution 

is not a finite vector of numbers, but a function. For a 

real-life application it is impossible to guess the optimal 

function, so a recourse to approximate methods is neces-

sary. They attempt to find a finitedimensional represen-

tation of the solution which is accurate at the nodes of the 

representation, has acceptable error between the nodes 

and converges to the true function as the number of nodes 
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tends to infinity, if second order sufficient conditions 

hold.  

There are two main approaches to the solution of the 

problem, see e.g. Betts [1],[2]. The direct approach rep-

laces the continuous time interval with a grid of discrete 

points, thus approximating it with a finite-dimensional 

problem, albeit of high dimension (hundreds of discre-

tised variables). The indirect approach preserves the infi-

nite-dimensional character of the task and uses the theory 

of optimal control to solve it. 

V.  DIRECT COLLOCATION APPROACH 

The basic approach for solving optimal control prob-

lem by direct collocation approach is to transform the 

optimal control problem into sequence of nonlinear cons-

trained optimisation problems by discretising of the state 

and/or control variables, see e.g. Hargraves and Paris [4].  

The direct collocation approach is based on the discre-

tisation of both the state and control variables. The 

following derivation is mainly taken from von Stryk and 

Bulirsch [6]. The duration time of the optimal trajectory 

is divided into subinterval as follows: 

t0 = t1 < t2 < t3......< tk = tf  

The value of the control variables at the centre is given 

by 
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The piecewise linear interpolation is used to prepare for 

the possibility of discontinuous solutions in control. The 

state variable x(t) is approximated by a continuously 

differentiable and piecewise Hermite-Simpson cubic po-

lynomial between x(tj) and x(tj+1) on the interval tj ≤ t ≤ 

tj+1 of length qj : 
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The value of the state variables at the centre point of the 

cubic approximation 
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and the derivative is 
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In addition, the chosen interpolating polynomial for the 

state and control variables must satisfy the midpoint con-

ditions for the differential equations as follows: 

( ) ( )( ) ( ) 0,, ,,,, =− jcappjcjcappjcapp txttutxf &   (25) 

The equations (12)–(19) in Section 4 now can be defined 

as a discretised problem as follows:  

min f(Y)                   (26)  

subject to 

( ) ( )( ) ( ) 0,, , =− jcappappapp txttutxf &  
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where Xapp, Uapp are the approximation of the state and 

control, constituting Y  in (26). 

VI.  NUMERICAL RESULTS 

This above discretisation approach has been imple-

mented in the DIRCOL package [5] which employed the 

sequential quadratic programming method SNOPT by 

Gill et al. [3]. The initial position is {0,0,0,0,15,0} and 

the final condition is {25,0,0,0,15,0}. The container mass 

mc is  47000 kg and the trolley mass mt is 33000 kg. The 

virtual hoisting motor mass Gh is 67570.7383 kg and the 

virtual trolley motor mass Gt is 14701.5 kg. The hoisting 

force is is constrained with maximum value 50000 N and 

minimum value 0 N. Furthermore the trolley force is 

bounded by 10000 N on the maximum and -10000 N on 

the minimum values. The state constraint on the trolley 

speed is active and saturated on the maximum an mini-

mum value, see Figure 3. 

 

 
Fig. 2. Altitude vs. horizontal position 

VII.  CONCLUSION 

In this paper, the direct method approach based on the 

direct collocation used to solve the minimum-time traver-

sing of the container crane. The main advantage of this 

approach compare to indirect method is that the need of 

deriving the necessary conditions and costate equations 

does not require. The optimal trajectory shows that some 

state and control constraints are active during the tra-

versing the container. The state constraint on the trolley 

speed is active on the maximum value, moreover the trol-

ley and hoisting forces are saturated on the optimum va-

lues. The most interesting is the singularity on the trolley 

force which is quite difficult to solve for both direct and 

indirect method especially for the highly nonlinear opti-

mal control of the traversing container. 
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Fig. 3. Trolley speed vs. time 

 

 
Fig. 4. Swing angle vs. time 

 

 
Fig. 5. Swing angle speed vs. time 

 

 
Fig. 6. Cable length vs. time 

 

 
Fig. 7. Hoisting speed vs. time 

 

 
Fig. 8. Trolley force vs. time 

 

 
Fig. 9. Hoisting force vs. time 

 

VIII.  REFERENCES 

1. J. T. Betts., “Survey of numerical methods for trajectory 

optimization”. Journal of Guidance, Control, and Dynamics, 

21(2):193–207, 1998. 

2. J. T. Betts. Practical Methods for Optimal Control Using 

Nonlinear Programming. SIAM, Philadelphia, 2001. 

3. P. E. Gill, W. Murray, and M. H. Wright., “SNOPT: An SQP 

algorithm for large scale constrained optimization”. SIAM 

Journal on Optimization, 12(4):979–1006, 2002. 

4. C. R. Hargraves and S. W. Paris., “Direct trajectory optimization 

using nonlinear programming and collocation”. Journal 

Guidance, Control, and Dynamics, 10(4):338– 342, 1987. 

5. O. von Stryk., “User’s guide for DIRCOL – a direct collocation 

method for the numerical solution of the optimal control 

problem”. Technische Universität Darmstad. 1999 

6. O. von Stryk and R. Bulirsch., “Direct and indirect methods for 

trajectory optimization”. Annals of Operations Research, 37(1-

4):357–373, 1992. 


