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ABSTRACT 
This paper will review atomic-like phenomena in a semiconductor quantum dot which their size, shape and 
interactions can be precisely controlled through the use of nanofabrication technology.  It has been shown that 
by confining electrons in three dimensions inside semiconductors, quantum dots can show many of the 
phenomena observed in atoms and nuclei and so called artificial atom.  Because of its controlable system, it is 
possible to explore the correlation effects in regimes that cannot otherwise be accessed in other physical systems.  
For simplicity, this work will focus on a circular-shape single electron quantum dot trapped by polar two-
dimensional harmonic potential in the presence of an external magnetic field.  Both Zeeman splitting and spin 
orbit interaction are neglected in our calculation.  The calculation show that Fock-Darwin spectrum will enter 

Landau regime, where 1

2
n cE n 

 
  
 

 when cyclotron frequency is much larger than potential confinement 

0 c
. 

Keywords: quantum dot, nanotechnology, electron confinement, artificial atom. 
 
ABSTRAK 
Paper ini meninjau fenomena sifat-sifat yang menyerupai atom dalam quantum dot semikonduktor, yang mana 
ukuran, bentuk, maupun interaksi-interaksi yang ada dapat diatur dengan mudah melalui teknologi nano-fabrikasi.  
Telah ditunjukkan bahwa dengan mengungkung elektron-elektron ke semua arah dalam ruang di dalam 
semikonduktor, quantum dot menunjukkan fenomena-fenomena yang juga dapat diamati dalam atom maupun inti 
atom, sehingga disebut atom buatan.  Karena merupakan sistem terkontrol, quantum dot dapat digunakan untuk 
mengeksplorasi efek-efek korelasi yang tidak dapat diberikan oleh sistem fisis lain.  Untuk penyederhanaan, paper 
ini hanya fokus pada quantum dot berbentuk lingkaran yang berisi satu elektron dan terkungkung pada potensial 
harmonik dua dimensi dalam pengaruh medan magnet luar.  Efek pemecahan Zeeman maupun interaksi spin 
orbit diabaikan dalam perhitungan ini.  Perhitungan menunjukkan bahwa spektrum Fock-Darwin akan memasuki 

aras-aras Landau, yaitu 1

2
n cE n 

 
  
 

 jika frekuensi siklotron jauh lebih besar daripada frekuensi yang terkait 

dengan potensial pengungkung 
0 c
. 

Kata kunci: quantum dot, nanoteknologi, pengungkungan elektron, atom buatan. 

 
1. INTRODUCTION 

Semiconductor technology has come along in 
leaps and bounds since the development of the 
transistor in 1948.  The major trend of the 
development of electronic components is to 
improve fabrication methods so that the size of 
the components becomes smaller and more 
circuits can be included on a chip.  Smaller 
components also work with smaller currents and 
voltages and therefore more efficiently with less 
energy consumption.  This progress in 
semiconductor material fabrication has given 
scientists the opportunity to explore a new world 
between the macroscopic world which obeys 
classical physics and the microscopic world 
which obeys quantum mechanics.  This new 
world which has the range of nanometers (then 
called mesoscopics) offers a large variety of 
interesting phenomena. 

The growth of nanotechnology is started with 
the Thouless idea (Thouless 1977) about 
possibility to reduce the conductor dimension to 
the size of just few atoms. This question was 
replied immediately by the growth of 
microelectronics fabrication which has 
succeeded to make a controlled system which is 
only consisted of just few particles. The 
restriction particle into two dimensions is known 
as a quantum well, then the advanced 
confinement in one dimension is referred to a 
quantum wire, and electron confinement into all 
three spatial directions is known as a quantum 
dot. 

Quantum dots are usually made by restricting 
the two dimensional electron gas (2DEG) in the 
semiconductor heterostructure laterally using a 
very small electrostatic gate or vertically by 
etching technique.  Gallium Arsenide (GaAs) 
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and Alumunium Gallium Arsenide (AlxGa1-xAs) 
are semiconductors with similar lattice constants 

( 5.65 Å for GaAs) and thus can be brought 
together to form a heterostructure.  At room 
temperature the bandgap for GaAs is 1.424 eV, 
while the bandgap in AlGaAs depends on the 
mixing factor x and can be approximated by 
(Palmer 2003) 

   21.424 1.429 0.14 0 0.44gE x x x eV x    

       .......(1) 
i.e., it varies between 1.424-2.026eV, leads to a 
discontinuity at their interface.  Working with 
the GaAs-AlGaAs mentioned above, a two-
dimensional electron system is typically created 
by n-doping the AlGaAs in a heterostructure 
(Figure 1). 
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Figure 1.Two-dimensional electron gas seen 

along the confining dimension. 
 

By doping AlxGa1-xAs-layer with Si-donors, 
the conduction electrons move to the GaAs-
layer, since it has a lower bandedge.  Some of the 
electrons added will eventually migrate into the 
GaAs. These electrons will still be attracted by 
the positive donors in the AlGaAs, but be unable 
to go back across the heterojunction because of 
the conduction band discontinuity.  Squeezed in 
between the discontinuity and the donor 
potential, they are trapped in a narrow potential 
well (see Fig 1) and their energy component in 
this dimension will be quantized.  At sufficiently 
low temperatures all electrons will be in the same 
(the lowest) energy state with respect to motion 
perpendicular to the interface.  In other word, 
electrons are free to move in the plane parallel to 
the heterojunction, but restricted to the same 
(lowest) energy state in the third dimension. 

This paper is organized as follows.  In 
Section 1, a brief review of quantum dot 
including history and fabrication method are 
reviewed.  Comparison between quantum dot 
and real atom is given in Section 2.  Section 3 
will present the model of quantum dot.  A 
quantum dot trapped in 2D polar harmonic 
oscillator potential in the absence of external 
magnetic field is analyzed.  Shell structure of this 
quantum dot model also given in Section 3.  In 

Section 4, analytical results for a single electron 
quantum dot in the influence of external 
magnetic field perpendicular to the dot are 
derived.  Finally, Section 5 and 6 give a summary 
and further research to be done respectively. 
 
2. QUANTUM DOT VS REAL ATOM 

The interesting features of quantum dots are 
that they show similar physical properties which 
we have already seen in atomic physics, then they 
are called artificial atom.  Discretization energy 
levels, Shell filling, the Zeeman effect, Kondo 
effect can be found in both real atom and 
semiconductor quantum dot.  In atomic physics, 
the chemical inertness and special stability of 
noble gases are explained by a mean-field 
approach that describes the motion of electrons 
bound to the three-dimensional spherically 
symmetric Coulomb potential of the nucleus. 
This potential around the atoms gives rise to the 
shell structure 1s, 2s, 2p, ....  The shell filling is 
reflected by large maxima in the ionization 
energy for atomic numbers 2, 10, 18, ...., 
corresponding to noble gas atoms He, Ne, Ar, ....  
The mid-shell levels are filled according to 
Hund‟s rules, i.e. by maximizing the total 
electron spin for half-filled orbitals (Chakraborty 
dan Apalkov  2003).  In a quantum dot, atomic 
shells are described by a set of degenerated 
energy levels (Tarucha et al. 1998).  Each 
degenerated set is filled by 2, 6, 12, ... electrons.  
The set number of 2, 6, 12, ... are known as 
“magic number” of electrons in the circular-
shaped 2-D harmonic potential confinement. 

The Kondo effect is a universal phenomenon 
which is manifest itself when a localized state 
with a net spin couples with conduction 
electrons in the Fermi sea (Tamura et al. 2003).  
In a normal metal, a sea of conduction electrons 
and the localized moment of spin in a magnetic 
impurity are coupled by the effective exchange 
interaction, forming a spin-singlet bound state. 
The localized moment of spin is screened by the 
so-called “Kondo cloud” of conduction 
electrons as if the localized spin disappeared.  
This many-body effect is called the Kondo 
effect, i.e. a peculiar phenomenon in the 
temperature dependence of the resistance.  The 
resistance decreased with temperature due to the 
reduction of phonon scatterings, but increased 
upon cooling to very low temperatures called 
Kondo temperature.  The Kondo effect in 
quantum dots arises from the singlet coupling 
between a localized electron spin in a dot and a 
Fermi sea of conducting electrons in the source 
and drain (Tarucha et al. 2001).  Tarucha et al. 
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observe a strong Kondo effect when the spin 
singlet and triplet are degenerate by tuning the 
spin configuration out of two electrons as a 
function of magnetic field (Tarucha et al. 2001). 

The physical characteristics of an artificial 
atom differ considerably from that of a real atom 
because of its size typically much greater than 
real atoms.  The electron orbits do not simply 
scale with size because in quantum dots one can 
control their size.  As it is made larger, the 
Coulomb energy arising from the repulsion 
between electron decreases because the average 
spacing between electrons increases.  As the 
atomic size increases, the difference in the orbital 
energies decreases faster than the Coulomb 
energy.  It shows that in large atom, the effects 
of electron-electron interaction are relatively 
more important than in small atom (Ashoori 
1996).  What is most exiting is that many of 
quantum phenomena in real atom can be easily 
observed in quantum dots by simply changing its 
size or shape (Kouwenhoven dan Marcus 1998).  
Because of its tunable size, some phenomena 
which only occur in hundreds Teslas in real 
atom, can occur in a range of a few Teslas inside 
the quantum dot.  It is caused by the larger area 
of the dot can receive more quantum magnetic 
flux. 
 
3. A MODEL FOR SINGLE ELECTRON 
QUANTUM DOT 

This paper will consider a two-dimensional 
electron system in a semiconductor 
heterostructure created by n-doping the AlGaAs 
on GaAs.  Figure 2 shows type of sample use in 
this analysis schematically. 

 

 
Figure 2. Heterostruacture AlGaAs-GaAs in   

the vertical cross-section. The 2DEG is localized 
in the substrate near the interface with            

the spacer. Bias voltage Vg is applied between 
the gate and the substrate. 

 
At negative gate voltages, the 2DEG is 
electrostatically squeezed from underneath the 
gate into the regions under the uncovered 
openings. As a result, the conduction band 
electrons will be confined in the x–y plane, in 

addition to the vertical confinement at the 
heterointerface. By changing the lithography of 
the split gate, one can reduce the 2DEG to 1-D 
forming quantum wires and 0-D forming 
quantum dots. 
 According to the similarity with real atom 
that electrons attracted to central potential i.e. 
nuclei attraction, this paper will consider bowl 
like potential confinement.  The cross-section is 
a parabola so that electrons tend to move to 
bottom of the bowl so they exhibit oscillating in 
this bowl.  The appropriate potential chosen 
here is harmonically oscillator potential 

* 2 2

0

1

2
V m r , where *m  is the effective mass of 

the electron, 
0  is harmonic oscillator frequency, 

and r  measures the distance from the centre of 
quantum dot.  Starting with Hamiltonian system 

2
* 2 2

0*

1

2 2

p
H m r

m
     .......(2) 

one can find Schrödinger equation in the polar 
coordinate system as 

2 2 2
* 2 2

0* 2 2 2

1 1 1

2 2
m r E

m r r r r
   



   
     

   

     .......(3) 
Using variable separation methods, the 
wavefunction  ,r   can be written as the 

product of a radial part  R r  and an angular part 

   

     ,r R r       .......(4) 

Angular part of Schrödinger equation can be 

easily solved by  
1

2

im

m e 


  , where 
ime 

 is 

an eigenfunction of zL  with integer quantum 

number 0, 1, 2,...m     as they satisfy boundary 

condition    2      .  Then, radial part 

of Schrödinger equation is formulated by 

   
   

2 2
2 2 2

2 2

1
0

R r R r m
R r k r R r

r r r r


  
          

       .......(5) 

with 2k  connected to the eigenvalue 
2 2

*2

k
E

m
 , 

and 
*

0m 
   is a characteristic oscillator 

quantity. 
By mean of a meaningful physical 

wavefunction namely  R r remains finite as 

0r   and   0R r   as r  , differential 

equation (5) in the neighbourhood of 0r   at 
the lowest order 
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   
 

2 2

2 2

1
0

R r R r m
R r

r r r r

 
  

 
  .......(6) 

Because  R r  must be finite around the 

origin,  R r  can be write down as a Taylor 

expansion for 0r   and the first term in the 
expansion has to be   sR r r  with s is an integer 

(a constant is not a solution of (6)).  From the 

compatibility condition 
2 2 0s m  , the value 

of s m  must be chosen to keep  R r  finite at 

the origin.  By means of a similar argument, the 
asymptotic form of   0R r   as r   can be 

formulated by  
2 / 2e rR r  .  Thus combining 

the two results above, the form of the true 
wavefunction of radial part is given by 

   
2 / 2e

m rR r r F r    .......(7) 

where  F r  must tend to a non-zero constant 

value as 0r   and cannot diverge faster than 
2 / 2e r

 as r  .  Inserting (7) into (5) give a 
result 

   
   

2

2

2

d d2 1
2 2 1 0

d d

F r F rm
r m k F r

r r r
 

 
         

 

       .......(8) 
Introducing a new dimensionless variable 

2x r ,  F r  is transformed into Kummer 

equation 

 
 

 
   

2 2

2

d d 1
1 1 0

d d 2 2

F x F x k
x m x m F x

x x 

 
         

 

       .......(9) 

whose solution regular at 0x  is the Confluent 
Hypergeometric Series (Abramowits dan Stegun 
1972). 

   , 1;F x M a m x     .....(10) 

where  
21

1
2 4

k
a m


   .  For large values of x , 

this function would diverge as e x
, thus 

preventing normalization. If, and only if a n   
with 0,1,2,...n   integer radial quantum number, 

the Hypergeometric Confluent Series becomes a 
polynomial and the wavefunction can be 
normalized.  Then the solution of eq. (3) is given 
by 

   
2 / 2 2, e , 1; e

m r im

nm nmr C r M n m r      

     .....(11) 
and  

 0 2 1nmE n m      .....(12) 

Here, nmC  are normalization factors, nmE  is the 

eigenvalue depending on the couple of radial and 

azimuthal quantum number  ,n m  and nm  

are called Fock-Darwin states, after Fock and 
Darwin calculated eigenvalue of a particle in a 
harmonic potential and an external magnetic 
field independently (Fock 1928). 

Figure 3 shows the shell structure of the 
single-particle energy spectrum and the 
associated degeneracies schematically.   
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Figure 3. Shell structure of single-particle energy 

spectrum. 
 
Each shell corresponds to the energy  0 1N   

where 2N n m   is fixed, and  ,n m  are the 

radial and azimuthal quantum numbers, 
respectively. The degeneracy of each shell (not 
taking account of spin) is 1N  . 

Since an electron can have spin-up or spin-
down, each energy level can be occupied by two 
electrons. The state 0n  , 0m   occupied by two 
electrons with opposite spin. The next state can 
be occupied by 4 electrons, two electrons are in 
state (0, 1) and the others are in state (0,−1).  
Finally, the second shell is fully filled by N = 6 
electrons.  The third shell can be occupied by 6 
electrons, each pair occupies the (0, 2), (0,−2) 
and (1, 0) state. So the third shell is fully filled by 
12 electrons. These fully filled shells lead to the 
magic number of N = 2, 6, 12, 20 which are 
exactly similar to the experiment result done by 
Tarucha et al. 1996. 

In order to calculate normalization 

factors nmC  of equation (11), let consider the 

Confluent Hypergeometric Series.  For special 
values of parameters, it reduces to simpler 
classes of orthogonal polynomials, in this case 
the Generalized Laguerre Polynomials.  The 
connection is formulated by 

 
 

 
!

, 1;
! !

m

n

n m
L x M n m x

n m


     .....(13) 

and an expression for  m

nL x  is given by 

   
 

   0

!
1

! ! !

n
im i

n

i

n m
L x x

n i m i i


 

 
  .....(14) 

with the first few polynomials can be write down 

as  0

0 1L x  ,  1

0 1L x  ,  2

0 1L x  , 
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 0

1 1L x x   ,  3

0 1L x  ,  1

1 2L x x   ,....  

Thus, the orthogonality relations give 

   
 -

' , '

0

!
d e

!

m m mx

n n n n

n m
x x L x L x

n


 
  .....(15) 

which combining of equation (13) and (15) make 
it possible to calculate normalization factors 

nmC .  Then, expression (11) for the properly 

normalized Fock-Darwin states turns into 

   

 
 

21 / 2 / 2 2!
, e e

!

m m mr im

nm n

n
r r L r

n m

    


  


     .....(16) 
with few explicit formula are given below: 

   

     

2 2

2 2

- / 2 - / 2

00 0 1

2 - / 2 2 2 - / 2

0 2 10

, e , e e

, e e , 1 e
2

r r i

r i r

r r r

r r r r

  

  

 
   

 

 
     

 





 

  

  

   

     

2 2

2 2

- / 2 - / 2

00 0 1

2 - / 2 2 2 - / 2

0 2 10

, e , e e

, e e , 1 e
2

r r i

r i r

r r r

r r r r

  

  

 
   

 

 
     

 





 

  

  

     .....(17) 
A few wavefunctions corresponding to the 

three lowest energy shells are plotted in Figure 4.  

The plot is along the x-axis, at 0y   and 

 0,   where all wavefunctions 
nm  are real 

along x-axis and depend only on the absolute 
value of m while in general wavefunctions are 
complex, and the phase depends both on the 
value and sign of m.  It has seen that the state 

 0, 1  changes sign under x x  reflection (in 

general, under a reflection with respect to a plane 
containing the origin and the z-axis), while the 
other states are symmetric. 
 
4. FOCK-DARWIN SPECTRUM IN AN 
EXTERNAL MAGNETIC FIELD 

It is interesting to observe the effect of 

magnetic field B  on the atom-like properties.  
This paper will review the influence of an 
external magnetic field perpendicular to a 2D 
single electron polar harmonic potential.  A 
magnetic field has a negligible effect on both 

Zeeman spin splitting, Bg B  which is only 

0.025 meVT-1 in GaAs since GaAs 0.44g    

(Kouwenhoven et al. 2001), and the spin-orbit 
interaction.  In this case, Hamiltonian system is 

 
2

* 2 2

0*

1 1

2 2

e
H p A r m r

m c


 
   

 
 ....(18) 

 

 

 
Figure 4. Plot of Fock-Darwin wavefunctions 

along the x -axis, with all nm ‟s are real along 

this direction. 
 

where ˆB B z  and vector potential  A r  is 

specified to be Gauge symmetric with 
1

2
A B r  .  It‟s mean that the symmetric gauge 

is also a Coulomb gauge, i.e.  . 0A r  , and 

hence  ˆ ˆ, 0A r p  
  

.  Then, the term in bracket 

can be derived as 

   
2 2 2 2

2

* * * * 2

1

2 2 2 8

e p e e B
p A r p r B r

m c m m c m c

 
      

 

     .....(19) 
By means of the triple product rule 

A B C A B C      and defining the 

cyclotron frequency 
*/c e B m c  , 

Hamiltonian system become 
* 2 * 22 2 2

2 20

* 2 2 2

1 1

2 2 8 2

c c
z

m m
H L r r

m r r r r

  



    
        

     

     .....(20) 

 By setting 
2

2 2

0
4

c    and using the 

eigenvalues of 
zL m  , the same procedure has 

been used in previous section give a new energy 
egenvalues as 

 

 2 2

0

2 1
2

1
2 1

4 2

c
nm

c
c

E n m m

n m m




 

    

    

 .....(21) 

 
 
From the Fock-Darwin spectrum appears in 
(21), when 

0c   electron will enters Landau 

regime where 1

2
n cE n 

 
  
 

.  In this region, the 

harmonic potential is smaller than the external 
magnetic field, so the electrons inside the dot 
behave as if they are free particles under the 
magnetic field.  Thus, the Fock-Darwin 
spectrum can be seen in Figure 5  
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(Kouwenhoven et al. 2001) as a few lowest 

eingenvalues nmE  (in units of 0 ) vs the 

magnetic field B  (expressed as 0/c  ). 

 

 
Figure 5. Plot of a few lowest eigenvalues nmE  

(in units of 
0 ) for a single particle parabolic 

confinement potential vs magnetic field (in units 
of 

0/c  ). 

Figure 5 shows that as B  is increased, the 
levels labeled by the maximum value of m  go 
first downwards and then slightly upwards 
crossing all levels of lower shells but the ones 
corresponding to the maximum value of m  
within one shell.  In other word, when the 
external magnetic field is increased, the electron 
in the highest state can cross to a different state.  

In the limit B  , these lowest eigenvalues 
(i.e. those labeled by  0,m , with 0m  ) tend to 

an asymptotic form corresponding to the lowest 
Landau level.  A second asymptote, with a 
steeper slope, corresponding to the first excited 
Landau level, accumulates a second bunch of 

Fock-Darwin states, as long as B  rises, and so 
on.  This oscillation will end after the electron 
enters the Landau regime.  Reference (Datta 
1995) gives more detailed analysis. 

 
5. CONCLUSION 

Theoretical study of a single electron 
quantum dot has been reviewed in this paper.  
Analytical solutions show many of atomic-like 
phenomena observed in semiconductor quantum 
dots.  Calculation of shell structure, Fock-
Darwin state and the Fock-Darwin spectrum in 
an external magnetic field give a good agreement 
with experimental result. 
 
6. FURTHER RESEARCH 

Theoretical investigation on electronic 
structure of few electron quantum dots will be 
done using density functional theory approach 
based variational principle.  The physics of 
quantum dot, e.g. thermodynamic properties of 
quantum dot and possibility of phase transition 

phenomena is an interesting subject to be 
studied in the next work. 
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