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Abstract

Classifying agility levels presents challenges due to variations in team members’ per-
sonalities, roles, and undesirable behaviors. This study aims to enhance classification
accuracy by comparing the performance of three algorithms: K-Nearest Neighbors
(KNN), Random Forest, and Fuzzy-Particle Swarm Optimization (F-PSO) in clas-
sifying agility levels using simple feature scaling as part of the data preprocessing.
Simple feature scaling is employed to ensure that all parameters are on the same
scale, thereby improving the model’s effectiveness in learning classification patterns.
F-PSO was selected for its ability to perform adaptive global search optimization
within a fuzzy environment, while KNN and Random Forest serve as benchmarks.
The study involved 160 participants from various Scrum teams to evaluate the effec-
tiveness of these algorithms. The parameters considered included team members’
personalities (based on the Keirsey model), roles within the team, and the identifica-
tion of negative behavior patterns (antipatterns). The results indicated that the F-PSO
algorithm significantly outperformed KNN and Random Forest in terms of accuracy,
improving from an average accuracy of 25% before optimization to 93.75% after
applying F-PSO. This approach enables Scrum teams to identify and address obsta-
cles affecting agility, facilitating earlier problem prediction and resolution, leading
to more adaptive and effective teams.
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1 INTRODUCTION

The digital revolution, Industry 4.0, has necessitated substantial changes in work practices across various sectors [1]. Businesses
must adapt swiftly to remain competitive in this rapidly evolving digital landscape [2]. Agility, a concept that originated in
software development, has emerged as a critical focus for organizations across all domains [3].

Agility extends beyond a mere methodology; it embodies a mindset that empowers individuals and teams to operate more
effectively [4]. The Agile Manifesto underscores the significance of human interaction and collaboration in software development,
a process fundamentally driven by human efforts [5]. Consequently, effective teamwork is essential for the success of software
projects [6].

Nevertheless, ineffective project management strategies, termed antipatterns, can inhibit development teams, resulting in
increased costs, delays, and diminished product quality [7]. Identifying and addressing these antipatterns can improve team
productivity and efficiency [8].

Prior research has investigated various methods for classifying agility levels, including K-nearest neighbors (KNN) and Ran-
dom Forest algorithms. While these classification techniques have demonstrated promising outcomes, they often struggle with
accuracy and adaptability when applied to complex and dynamic team environments. These limitations highlight the need for
more advanced approaches to accommodate the nuances of team dynamics and individual personalities [9].

This research focuses on a comparative analysis of the KNN, Random Forest, and Fuzzy-Particle Swarm Optimization (F- PSO)
algorithms for classifying agility levels, incorporating simple feature scaling during the data preprocessing phase. Simple feature
scaling normalizes the data, ensuring each feature contributes equally to the model’s performance. The primary contribution of
this study lies in the evaluation and comparison of these algorithms regarding their effectiveness when simple feature scaling is
applied in the preprocessing stage.

The proposed approach integrates personality classification based on the Keirsey Temperament Sorter [10] and team roles to
predict potential occurrences of anti-patterns [11]. Fuzzy Logic and Particle Swarm Optimization mitigate ambiguity in agility
classification, enabling early identification and minimizing the risk of anti-patterns [12].

Software development teams comprise various antipatterns with distinct responsibilities. System analysts are intermediaries
between business needs and technical specifications [13]. Designers concentrate on the aesthetics and functionality of user inter-
faces [14]. Programmers write, test, and maintain software code [15]. Software testers ensure that applications are bug-free and
meet quality standards [16].

Agile methodologies facilitate flexibility, allowing teams to respond swiftly to changing project requirements [3]. By segmenting
work into short cycles and consistently gathering feedback, teams can make rapid adjustments and improve client collabora-
tion [17]. Early identification of problems during development produces a higher-quality final product [18]. Understanding team
members’ strengths, weaknesses, and personalities is crucial for achieving optimal outcomes [19] and effectively managing
conflicts [20].

This study contributes by developing a classification method utilizing advanced techniques (Fuzzy Logic for addressing data
uncertainty and Particle Swarm Optimization for process optimization) and emphasizing the importance of personality and
team interactions [21–25]. Assigning individuals to roles that align with their personalities and skills can improve efficiency,
productivity, adaptability, and overall project effectiveness [21, 24, 26–32]. This research validates the proposed method through
case studies and real-world applications, including implementing optimization algorithms in industry settings [28, 33].

2 PREVIOUS RESEARCHES

Various studies have focused on the classification of agility levels in software development teams due to their impact on project
efficiency and success. Agility emphasizes flexibility, collaboration, and adaptability in responding to changing project require-
ments. This approach relies on effective team roles, including system analysts, designers, programmers, and testers, each with
specific responsibilities within the software development process [13, 14].
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Various algorithms have been utilized to classify team agility levels. Previous research has employed KNN and Random Forest
algorithms for this classification task. KNN is known for its simplicity and ability to handle non-linear data, while Random
Forest provides advantages in overcoming overfitting and enhancing accuracy through an ensemble approach [12]. However,
studies have also indicated that these algorithms have limitations when dealing with high complexity and dynamic variations in
team data [11].

Research by Neill [16] and Settas and Stamelos [11] has shown that errors in team management are often influenced by antipatterns,
which are recurring practices that negatively impact project effectiveness. Early detection of these antipatterns is crucial for
boosting productivity and reducing the risk of project failure. Algorithms that address these challenges are needed to provide
more accurate and reliable classification outcomes.

Fuzzy-Particle Swarm Optimization (F-PSO) has been proposed to enhance accuracy in classifying agility levels. F-PSO com-
bines the global optimization strengths of Particle Swarm Optimization with the ability of fuzzy logic to handle data uncertainty
(Picha & Brada, 2019). Using F-PSO in classification allows for better adaptive adjustments to data variations compared to
classical methods such as KNN and Random Forest.

This research also highlights the importance of data preprocessing, where simple feature scaling is employed to normalize data so
that each feature contributes equally to the model’s performance. Feature scaling helps improve algorithm accuracy by ensuring
that data is not distorted by differences in feature scales. This is highly relevant in comparative algorithm studies, ensuring that
each algorithm is tested under comparable conditions.

By employing simple feature scaling in the data preprocessing stage, this study evaluates and compares the performance of
KNN, Random Forest, and F-PSO algorithms in classifying agility levels. This evaluation aims to provide deeper insights into
which algorithm is most effective for identifying potential antipatterns in software development teams, enabling early detection
and mitigation to enhance overall project productivity and quality.

3 METHOD

This study uses data from two sources: a previous research project involving students [2] and industry data on hard skills provided
by PT Maulidan Teknologi Kreatif (accessed through the Rasyid Institute platform, www.rasyidinstitute.com). To ensure consis-
tency, the data undergoes reprocessing using a simple feature scaling method, resulting in all values being scaled to a maximum
of 100. This study compares the KNN, Random Forest, and Combined Fuzzy-PSO methods to determine agility levels.

KNN method starts with data pre-processing. The processed data is converted into a format suitable for the KNN algorithm.
The preprocessing must determine parameter K. This parameter represents the number of nearest neighbors to be considered.
It is determined based on testing or trial and error to achieve optimal results. KNN bases its decision on distance calculation.
The distance between the data to be classified and the training data is calculated using a specific metric, such as the Euclidean
distance. For classification (scoring), the new data is classified based on the majority class of its K nearest neighbors, or a score
is calculated based on the average values of the nearest neighbors.

The Random Forest method uses training data to construct multiple decision trees in the ensemble. Each tree is trained using dif-
ferent subsets of the data (with bagging technique). Random Forest uses a random feature selection mechanism, where features
are selected randomly at each split in the tree to minimize overfitting and increase tree diversity. Random forest also utilizes
an aggregate prediction process. For each new input, all trees in the forest generate predictions, and the final result is deter-
mined through majority voting or averaging the predictions. The trained model is evaluated to ensure prediction accuracy and
consistency in determining agility scores.

The combined Fuzzy-PSO method begins with input data bounds definition. The process identifies the minimum and maximum
values in the processed data. The next process is fuzzification and fuzzy set definition, where data is converted into fuzzy values
using predefined fuzzy sets. As for the rule formation and application, the method applies fuzzy logic rules to the data to produce
uncertain or approximate outputs. The fuzzification results are transformed into exact numerical values in the defuzzification and
control process. Finally, the agility scoring utilizes the Particle Swarm Optimization (PSO) algorithm. PSO is used to maximize
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FIGURE 1 Illustrating the Fuzzy-PSO agility process.

TABLE 1 The distribution of datasets according to participant role and gender.

Gender Role Total
Developer Product Owner

Man 95 21 116
Woman 37 7 44
Total 132 28 160

TABLE 2 The participant data according to the Keirsey Temperament Sorter (KTS) classification system.

Role #Person Role #Person Role #Person Role #Person
Artisan 43 Guardian 42 Rational 22 Idealist 53
Promotor 7 Supervisor 6 FieldMarshals 9 Teacher 15
Crafter 4 Inspector 6 Masterminds 9 Counselor 14
Performer 16 Provider 17 Inventor 1 Champion 13
Composer 16 Protector 13 Architect 3 Healer 11

TABLE 3 The number of participants according to the anti-pattern types identified.

AntiPattern Type #Participants AntiPattern Type #Participants
Warm Bodies 73 Ultimate Weapon 22
Doppelganger 48 Road to Nowhere 8
Technology Bigot 7 Fear of Success 21
Divergent Goals 134 Boiling Frog 35
Sidelining 1 Mediocracy 7
Buzzword Mania 19 Kiosk City 21
Institutional Mistrust 15 Ant Colony 70

the outcome of the complex mathematical model, with the final agility score calculated by optimizing the output from the fuzzy
system. These processes are further explained in Figure 1 .

3.1 Size of Dataset
Table 1 presents data collected from partners in 160 participants. This data encompasses information from 116 male participants
and 44 female participants. Two Scrum roles are represented within the data set: 132 Developers and 28 Product Owners.

Table 2 provides a breakdown of the 160 participants from Table 1 based on the Keirsey Temperament Theory. The data shows
that the largest group (53 people) identifies as Idealists, followed by Artisans (43), Guardians (42), and Rationals (22).

Table 3 further reveals that participants identified various recurring negative patterns known as antipatterns. These included
Warm Bodies, Ultimate Weapon, Doppelganger, and others. In this identification of antipatterns, many participants exhibited
multiple antipatterns. In total, 481 antipatterns were identified from the 160 participants.
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TABLE 4 The example of data before and after pre-processing.

Team ID Data Type Before After
𝑋max 𝑋old 𝑋max-new 𝑋new

Project 1 2 Keirsey 400 230 100 57.50
Antipattern 140 52 100 37.14
Role 11 11 100 100.00

Drawing upon existing data, 160 students were categorized into 31 projects, with an average of 5 members per project.
Subsequently, Keirsey Temperament Sorter data, Scrum data, and anti-pattern data for each team member will be collected.

3.2 Data Processing
Each of these datasets undergoes pre-processing using the simple feature scaling method. This method transforms the values of
variables or data into smaller ranges, typically between 0 and 1 or -1 and 1. By performing feature scaling, we can reduce the
scale differences between variables, making data analysis easier and improving the performance of machine learning algorithms.

Example of Preprocessing, As illustrated in Table 4 , for the Keirsey data type, a student with ID "2" classifiPreprocessingject
team "Project 1" has a maximum value (𝑋max) of 400 calculated by adding together the highest scores for each part of the Keirsey
personality type, a minimum value (𝑋min) of zero, and an original value (𝑋old) of 230 from the Keirsey data. The standardized
scale (𝑋max-new) is 100, which will then be normalized using Equation 1 to produce the normalized value (𝑋new).

𝑋new =
𝑋old −𝑋min

𝑋max −𝑋min
×𝑋max-new (1)

3.3 Determining Agility Level
3.3.1 KNN
Determining the level of agility using the K-Nearest Neighbors (KNN) algorithm is done through several stages. The first
stage is data pre-processing, where the raw data is converted into a format suitable for processing by the KNN algorithm. This
ppreprocessings data normalization, removing outliers, or converting categorical data to numeric so that it can be compared
with existing training data. The second stage is determining the parameter (K), which is the number of closest neighbors used
to determine the class or score of new data. The value (K) is usually determined through testing or trial and error methods to
obtain optimal results.

After the parameter (K) is determined, the third stage calculates the distance between the data to be classified and the training
data. This distance is important for determining the nearest neighbors of the new data. In the fourth stage, new data is classified
or assessed based on the majority class of (K) its nearest neighbors or by calculating the average score of those neighbors. For
example, if most of the nearest neighbors of the new data are in a certain class, then the new data will be classified into the same
class.

Based on the results shown in Figure 2 , the data is divided into three intervals, namely 1 to 26 (low level), 33 to 63 (medium
level), and 66 to 100 (high level), which indicate different groups or levels of agility. The values above each bar graph (71, 47,
and 42) represent the results or scores calculated using KNN for each interval. This graph indicates a decrease in agility scores
as the interval increases, so it can be used as a basis for determining a certain agility level based on the results of the KNN
algorithm calculation.

3.3.2 Random Forest
Determining the agility level using the Random Forest algorithm involves several stages. The first stage is constructing a decision
tree, where the training data is used to build several decision trees. Each tree is trained using different data through the bagging
technique, which helps increase the diversity of the trees and thus improves the overall prediction accuracy. The second stage
involves random feature selection at each branch in the tree, where several features are randomly selected to reduce the risk of
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FIGURE 2 Agility score of KNN.

FIGURE 3 Agility score of Random Forest.

overfitting and increase the forest’s diversity. This strategy allows the model to handle the data more effectively and prevents
the model from relying on a particular set of features.

In the third stage, prediction aggregation is performed. For each new input, all trees in the random forest produce individual
predictions, and the final result is determined through majority voting (for classification) or the average of the predictions (for
regression). This approach provides a final score based on the combined predictions from all three trees when determining the
agility level. Finally, in the evaluation and assessment stage, the accuracy and consistency of the model are evaluated to ensure
reliable agility score predictions. This evaluation is important to verify the model’s ability to produce accurate predictions based
on real data.

Based on Figure 3 , the data is divided into three intervals: 1–29 (low level), 33–65 (middle level), and 66–160 (high level),
which may represent different groups or levels of agility. The values displayed above each bar (26, 39, and 95) indicate the
scores generated by the Random Forest algorithm for each interval. This graph shows the increase in agility scores as the interval
increases, which provides a basis for categorizing certain levels of agility based on the Random Forest results.

3.3.3 Fuzzy-PSO
To utilize the fuzzy method and Particle Swarm Optimization (PSO) in calculating agility scores, the process began by defining
the lower and upper bounds for the input data. A value of 1 was selected as the lower limit, representing the minimum non-zero
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FIGURE 4 Agility score of F-PSO.

TABLE 5 The confusion matrix of KNN results.

Target Matrix Value Accuracy (%) Training Time (sec) Amount of Data
Individual TP: [ 0 25 2] 31.25 0.260 160

TN: [29 0 8] (ρ= 0.828)
Team FP: [35 7 49] 53.12

FN : [ 0 32 5] (ρ= 0.614)

value found in the Keirsey data, role data, and anti-pattern data. Conversely, the upper limit was set at 100, corresponding to the
highest observed value within these datasets.

Once these limits were established, fuzzification was performed. This step involved converting the data into fuzzy values and
categorizing them into appropriate sets: low (1-50), medium (51-100), and high (the set difference between 1 and 100). Fuzzy
rules were then defined to connect fuzzy inputs to fuzzy outputs, simulating human decision-making through linguistic logic.
This study applied nine rules, covering combinations of low, medium, and high values for each data point.

Following the rule definition, defuzzification was conducted, resulting in a range of values from 17.3 to 81. Subsequently, PSO
optimization was carried out using predetermined parameters: a maximum score of 100, 100 iterations, a minimum step of
0.000001, and a minimum value of 0.000001. This optimization process yielded clusters representing three distinct agility levels
(see Figure 4 for visualization).

4 RESULT AND DISCUSSION

The computational results were evaluated using Anaconda Navigator software, which operates in Python. The Flask framework
was used for the user interface (UI), and various Python libraries were used to facilitate the programming process.

This study compares different ways to improve agility. This study looks at how well agility improves without special methods.
Then, it compares it with the results of classification methods (Random Forest and K-Nearest Neighbor methods), fuzzy logic
combined with particle swarm optimization (Fuzzy-PSO). All of these methods were tested using a standard data splitting
process where 80% of the data is used for training and 20% for evaluation.

4.1 KNN Classification Results
Table 5 and Figure 5 present the confusion matrix for the KNN classification method. The accuracy for the agility level
category ranges from only 31.25% to 53.12%, with standard deviations between 0.61 and 0.83. However, the fastest computation
time is achieved at 0.260 seconds.
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FIGURE 5 The confusion matrix of KNN.

TABLE 6 The confusion matrix of Random Forest results.

Target Matrix Value Accuracy (%) Training Time (sec) Amount of Data
Individual TP: [ 1 15 2] 37.50 0.265 160

TN: [ 3 1 42] (ρ= 0.758)
Team FP: [60 4 18] 18.75

FN : [ 0 44 2] (ρ= 0.708)

TABLE 7 The confusion matrix of F-PSO results.

Target Matrix Value Accuracy (%) Training Time (sec) Amount of Data
Individual TP: [ 1 59 0] 87.50 201.61 160

TN: [ 0 4 0] (ρ= 0.758)
Team FP: [63 1 60] 100.00

FN : [ 0 0 4] (ρ= 0.175)

4.2 Random Forest Classification
Results

Table 6 and Figure 6 present the confusion matrix for the classification performance of the Random Forest method. The
accuracy for the agility level categories ranges from a mere 18.75% to 37.5%, accompanied by standard deviations between 0.70
and 0.75. Despite these low accuracies, the Random Forest method offers the fastest computation time, reaching a mere 0.265
seconds.

4.3 Fuzzy-PSO Classification Results
The results of applying the fuzzy-PSO method to categorize the level of agility are presented in Table 7 and Figure 7 . This
approach shows high accuracy, with success rates ranging from 87.5% to 100%. However, the processing time is relatively long,
with the fastest calculation taking quite a long time, namely 201.61 seconds for 160 data points.
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FIGURE 6 The confusion matrix of Random Forest.

FIGURE 7 The confusion matrix of F-PSO.

4.4 Analysis
During the testing phase, researchers successfully analyzed the classification process to determine the level of agility for both
teams and individuals. This analysis employed the early stopping and train_test_split methods from the sci-kit-learn library,
using an 80:20 training-to-testing data ratio.



172 Nugroho ET AL.

TABLE 8 The early stopping and train test split test results.

Method Target Test Matrix Parameter (%)
Acc Prec Recall F1-Score ρ Time

Random Forest Personal 37.50 37.50 37.50 37.50 0.758 0.265
Teams 18.75 18.75 18.75 18.75 0.709 0.265

KNN Personal 31.25 31.25 31.25 31.25 0.828 0.260
Teams 53.12 53.12 53.12 53.12 0.614 0.260

Fuzzy-PSO Personal 87.50 87.50 87.50 87.50 0.111 201.610
Teams 100.00 100.00.00 100.00 100.00 0.175 201.610

Three different computer methods, i.e., KNN, Random Forest, and Fuzzy-PSO, were compared using data presented in Table
5 , Table 6 , and 7 . The results showed that Fuzzy-PSO was the most accurate and reliable method, outperforming the other
two in overall performance. However, KNN and Random Forest were quicker to set up. A comparison summary can be found
in Table 8 .

5 CONCLUSION

The findings show that the combined Fuzzy-PSO method outperforms the Random Forest and KNN methods in classifying the
agility level. The Fuzzy-PSO method can increase the accuracy rate to an average of 68.75%, from an average of 25% before
optimization to an average of 93.75% after optimization on a dataset of 160 participants.
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