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AbstractIn this paper, a micromechanical model based 
on the Mori-Tanaka method and the spring-layer model is 
developed to study the stress-strain behavior of concrete. 
The concrete is modeled as a two-phase composite. And the 
failure of concrete is categorized as mortar failure and 
interface failure. The research presents a method for esti-
mating the modulus of concrete under its whole loading 
process. The proposed micromechanical model owns the 
good capabilities for predicting the entire response of con-
crete under uniaxial compression. It is suitable that tensile 
strain is as the criterion of concrete failure and the 
prediction of crack direction also fits with experimental 
phenomenon.

KeywordsMori-Tanaka method, interface, mortar, 
Weibull distribution

I. INTRODUCTION

ecently some researchers studied the elastic 
properties of concrete using the micromechanical 

model [1]. The interface zone is usually considered as a 
new elastic phase. However, concrete contains many 
microcracks, especially in the interface zone, even before 
any loading is applied (Fig. 1). Some experiments have 
shown that the matrix just surrounding the aggregate is 
found to have quite different stiffness properties than that 
away from the aggregate[2]. Here concrete is considered 
as a kind of two-phase composite (the mortar and coarse 
aggregates). They are bonded together by the interface 
zone. Softening of concrete is considered as the appear-
ance and development of microcracks.

II. BASIC FORMULATION

In the Mori-Tanaka method, consider an infinitely ex-
tended mortar medium D containing many spherical in-
clusions (coarse aggregates) with an imperfectly bonded 
interface (Fig. 2). The elastic stiffness of the mortar and 
coarse aggregate are L0 and L1. Homogeneous boundary 
condition in the external surface S of D is employed:
n(S) = 0.n (1)
where 0 is constant stress tensor, and n denotes the ex-
ternal normal to the external surface S. If the solid did 
not contain any inhomogeneity, the strain field would be
0 = L0

-1.0 (2)
The stress and strain in mortar differ from 0 and 0 by 

~ and~ . ~ is the perturbed strain due to the presence 
of all the coarse aggregates. The average stress is

    ~~ 0
0

00  L (3)
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The stress and strain of the coarse aggregates expe-
rience further perturbations from those of the surround-

ing mortar by pt and pt . The average stress in aggre-
gate is
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here * is the equivalent transformation strain. 
There is an assumption that the two sides of interface 

always are connected with each other so there is only the 
displacement jump. The interfacial traction remains con-
tinous, while both the normal and the tangential dis-
placements might experience a jump across the interface 
[3]. The interface conditions is
[ij]nj = 0 (5)
[ui] (ik-nink) = T.Tk (6)
[ui]nink = N.Nk (7)

In which T and N denote the compliance in the 
tangential and the normal directions. [.] =(out)-(in), ni is 
the outward unit normal on the interface, and Ti=
kj.nj(ik-nink) and Ni=kj.nk.nj.ni represent the shear and 
the normal tractions. ij is the Kronecker . T and N

should be positive.
For the coarse aggregates with imperfect interface, we 

have the relationship between the eigenstrain and pertur-
bation strain in coarse aggregates is
ij

pt = Sijkl.kl
* (8)

where
S
ijkl

E
ijklijkl SSS  (9)

Here E
ijklS is Eshelby's solution for uniform eigenstrain 

problem of inclusion with perfectly bonded interface. For 
the spherical inclusion, it gives
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Here 0 is Poisson's ratio of cement paste. If there is an 
infinite medium D containing a uniform eigenstrain ij

*

in a spherical inclusion  with an imperfectly bonded

Concrete Failure Modeling Based 
on Micromechanical Approach Subjected

to Static Loading
Endah Wahyuni 11

R



2   IPTEK, The Journal for Technology and Science, Vol. 21, No. 1, February 2010

  

(a) 

   

(b)

    Fig. 1. The microstructure of transition zone in concrete by use of SEM
(a) Normal concrete; (b) High performance concrete [14]

Fig. 2. Three-Phase model with imperfect interface
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interface , which is modeled by an equivalent 
Somigliana dislocation field [4], we define S

ijklS is
*
kl

S
ijkl

S
ij S   (12)

where

 S
ij

S
ji

S
ij uu ,,2

1
 (13)

Here s
iu is the displacement field caused by the inter-

facial sliding and normal separation. S
ij is the body 

average of S
ij inside the spherical inclusion:
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If we separate S
ij into its hydrostatic and deviatoric 

components, we can write (12) as 
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Furthermore, for spherical inclusion, we have
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The perturbation stress can also be divided into two 
parts

SEpt   (17)

In this case, Eshelby's solution for spherical inclusion 
with perfect interface gives
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where 0 is the shear modulus of cement paste phase, 0

Poisson's ratio of cement paste phase, and ij
’* is the 

deviatoric part of ij
*.

The stress S inside the inclusion [4] is
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where a is the radius of the spherical inclusion 
(aggregate) defined by xi.xi < a2 for which ni=xi/a. 
According to Zhong and Meguid's derivation, it is
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We solve the body average of S, as
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According to Equation (16), we have
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where
SESE   , (25)
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If  denotes the overall average stress tensor and ci (i
= 0, 1) represent the volume fractions of cement paste 
and aggregate, separately, we have

   1
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0
0  cc  (27)

If there is not special statements below, hydrostatic and 
deviatoric components of the stress and strain tensors 
will be written as  and ’, , and ’.

When the geometry of coarse aggregates is considered 
as sphere, the average stresses in the mortar and the 
coarse aggregates then follow Eqs. (3), (4), (24), and 
(27), as
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where 
i (i = 0, 1) are the bulk moduli of mortar and 

coarse aggregates and i (i = 0, 1) are the shear moduli 
of mortar and coarse aggregates. The strains are their 
forms by
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The body average of the strain can be defined as
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in which V is the volume of whole body [5].
According to Zhong and Meguid's solution, [ui] can be 

written as :

  ilkkljijilli xxxB
a

xAxu
*'

02

*'
0

*
0

1   (37)

Substituting Eqs. (32), (33), (34), (35), and (37) into Eqs. 
(36), we have
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Thus we further leads to the effective bulk and shear 
moduli of the concrete as
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Due to the isotropy of concrete here,  and  known, 
the Young's modulus E is
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III. RESULT AND DISCUSSION

Weibull statistical distribution function has been 
applied broadly in the field of damage mechanics and 
concrete failure analysis [5-8]. Lambrigger pointed out 
Weibull function could correctly characterize the 
strength and failure of macroscopically homogeneous 
specimens [9]. Here it is applied to evaluate the failure 
volume of mortar and interfaces.

In the framework of Mori-Tanaka method, the modulus 
of concrete is calculated by the procedure in Fig. 3 if on-
ly the effect of interfaces is considered.

We assume the volume ratio of aggregates, whose in-
terfaces have been destroyed, conform to a Weibull dis-
tribution function. Its form is
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where ci is the volume ratio of interface failure,  is the 
effective strain of concrete. In the state of the pure com-
pressive stress,  is equal to 3. The '3' means the com-
pressive stress direction. The th is the strain threshold, in 
the state of pure compressive stress, it should be equal to 
the peak strain of concrete, which is corresponding to the 
strain value when the concrete reaches the ultimate com-
pressive stress (about th  0.002). If we consider that ci

should be equal to 1 when  is equal to th, we normalize 
Equation (43) and have
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The Weibull distribution can model the distribution of 
microscopic flaws in the material. The following 
equation is used to decide the failure volume ratio under 
the current principal tensile strain.
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where 1 is the first principal tensile strain in mortar, 
tensile is a strain threshold value (when 1 reach the value, 
the cracks appear in mortar), u is the maximum tensile 
value (when 1 reach the value, the mortar is completely 
destroyed), mm is a shape index. 

Here the main failure reason of concrete is considered 
as the development of microcracks in mortar and 
interface microcracks. Microcracks in mortar are 
considered as a series of aligned microcracks. Interface 
microcracks are considered as a kind of non-thickness 
spring layer.

In order to calculate the modulus of concrete, firstly, 
the modulus of mortar is computed. The principal 
tension causes the initial aligned microcracks arising if 

the principal tension strain reaches the critical value. 
These aligned microcracks should be perpendicular to 
the direction of the principal tension strain. These a-
ligned microcracks are considered as a kind of materials 
whose modulus is zero.

For the two-phase composite, we have Equation (46) to 
follow to solve the overall modulus of composite accord-
ing to Mori-Tanaka method [10].
L = L0 + c1 [(L1 – L0) T] [c0.I + c1 [T]]-1 (46)
with
T = [I+(c0.S + c1.I)L0

-1(L1-L0)]
-1

Here subscript 0 represents matrix and subscript 1 is 
inclusion.

Microcracks in mortar are considered as a kind of 
aligned crack. They can be modeled as a sort of special 
constituent in composite: void. So we have
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Here cm is the volume ratio of cracks in mortar and 0 
represents the material properties of mortar. If there is a 
series of aligned inclusion in a certain composite (Fig. 
4), the corresponding Eshelby's tensor can be given as 
the following Equation (11):
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For the plane stress problem (Fig. 5), Equation (49) can 
be expressed like below.
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When the principal tension reaches the critical value 
for cracking, we can calculate the current modulus for 
concrete. Using Equation (45) to get the current volume 
ratio of aligned microcracks for mortar, we can get the 
current modulus of mortar.

When the principal tension reaches the critical value 
for cracking, we can calculate the current modulus for 
concrete. Using Equation (45) to get the current volume 
ratio of aligned microcracks for mortar, we can get the 
current modulus of mortar. 

After the modulus of mortar is calculated, the modulus 
of concrete can be solved. The volume ratio of interface 
failure for concrete is calculated by Equation (44). The 
modulus of concrete is shown as follows.
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Fig. 3. Outline for calculation of concrete modulus

For the plane stress problem, the Eshelby tensor S can 
be expressed as the following equation.
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For perfect interfaces, we can get the modulus of con-
crete for perfect interfaces: Lp. And we can get the mo-
dulus of concrete for interfaces destroyed: Ld.

For a certain load stage, the overall modulus of con-
crete is

  dipi LcLcL  1 (52)

IV. MODEL PARAMETER

Here the main parameters are the shape index: m, mm,
and the threshold value of strain: εu, εth. These para-
meters usually can not be measured directly. Based on si-
mulation for concrete, m and εth, related to the interface 
failure and compression of concrete, are set to 3 and 
0.008. mm and εu are related to the mortar failure and ten-
sion of concrete and the basic assumption of concrete 
failure is tensile strain. Here εu is defined as follows [12, 
13].

mt

F
u lf

G2
 (53)

where ft is tensile strength for concrete, GF is fracture 

energy of concrete and lm is eigen-length for mortar. 
According to CEB-FIP Code (1993), we have the simple 
empirical formula relating GF (J/m2 = N/m) to the con-
ventional quality control parameter–namely the mean 
compressive strength of concrete fc’ (MPa) [7] as GF = 
αF (f’c)

0.7. The empirical coefficient αF depends on the 
maximum aggregate size g (Table 1). Normally, the 
compressive strength of concrete is given in the common 
experiment. If the proposed model is used, the tensile 
strength should be calculated by some empirical 
equations. There is an empirical formula, which has been 
suggested by ACI Committee 209 for computing the 
direct tensile strength of different weight concrete.

'

3

1
ct wff  psi; w in pcf; and f’c in psi

If we change all of the units to SI units, we have the 
following equation:

'2187.0 ct wff  kPa   w in kg/m3 and f’c in kPa (54)

For normal weight concrete, f’c, ft are expressed in MPa 
by the following equation:
ft = 1.5909 f’c

1/2 (55)
Then the parameter lm should be defined. According to 

Bazant's random particle model, there is lm = βF.g and 
roughly βF is considered to be equal to 1/2. The 
expression of εu can be written like the following equa-
tion.

g
f F

cu




2.0'5143.2 (56)

Major unknown parameter
0  Tangential parameter of interfaces
0  Normal parameter of interfaces

Condition 1
When interfaces are perfect

0 = 0
0 = 0

Condition 2
When interfaces are imperfect

0 
0  

Using Eqs. (20), (21), and (22) get the 
parameter 0, A0, and B0

Using Eqs. (11), (25), and (26) get  and 

Using Eqs. (40), (41), and (42), calculate the modulus 
of concrete 

Step 1:
Decide the value of the 
two important parameters 

Step 2:
Compute the corresponding 
parameters further 

Step 3:
Get the modulus of concrete 
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TABLE 1.
COEFFICIENT αF WITH MAXIMUM AGGREGATE SIZE g

(KARIHALOO, 1995)

Maximum Aggregate Size g
(mm) αF

8 4

16 6

32 10

TABLE 2.
SPECIFIC WEIGHT RATIO FOR MORTAR AND CONCRETE

Grade Cement Sand Water Coarse 
Aggregate

G40 
Mortar 1 2.8 0.35 None

GC40 
Concrete 1 2.8 0.35 2.8

GC50 
Concrete 1 2.8 0.35 1.4

TABLE 3.
ELASTIC PROPERTIES OF G40 MORTAR

Initial Modulus 
(GPa)

Compressive 
Strength 
(MPa)

εu mm

25.3 37.74 0.0016 1.51

If these parameter values of the certain concrete are 
given in experiments, the proposed model can predict the 
stress-strain behavior very well. Studies in this research 
show the mm is related to the strength of mortar. The 
stronger the strength of mortar, the larger the value of mm 

is εu is related to the ductile properties of concrete. The 
smaller the strength of mortar/concrete, the better the 
ductile properties of concrete or mortar is so εu is larger. 
When we do not know the exact value of mm and εu, we 
should use Equations (57) and (58) to calculate them. 
Here εu is revised as εr. For the different strength level, 
the following equations are recommended to calculate 
the ultimate tensile strain and mm.

48.205101.359.134.3
 uer

 (57)
57.31.055.74.8  emm

(58)

where

r

u




 

V. DAMAGE EFFECT

Here it is worth nothing that the lateral deformation in-
creases significantly at higher stress level after the peak 
loading point. And the large cracks appear and crack 
growth becomes unstable. Therefore, the change from 
volume decrease to sudden volume increases leads to 
find a proper way for the description of lateral strain du-
ring the descending branch. Here the following equation 

is assumed to modify the behavior of lateral strain after 
the peak loading point under uniaxial compression.

lateral
e

lateral

l

e 
5667.1

200


where
λ1 = 1 - compression /f’c

Fig. 4. Mortar with aligned microcracks (3D)

Fig. 5. Mortar with aligned micro cracks

There are some suitable experimental data available 
[14]. The concrete and mortar are tested. The mortar and 
concrete were pan-mixed in the laboratory and were cast 
in steel moulds (100 mm in diameter and 200 mm in 
height). The mix design is shown in Table 2. The pro-
perties of mortar are shown in Table 3.

In Fig. 6, it is shown that the proposed model can pre-
dict the mortar behavior very well, especially for the as-
cending part and the peak point. It is also shown that the 
aligned microcrack model can properly evaluate the 
failure of mortar.

The proposed model is further used to predict the com-
pressive behavior of concrete. The volume ratio of mor-
tar and coarse aggregates (Table 4) can be calculated if 
their densities are known. Here they are assumed. All 
related data are shown in Table 4. These responses of the 
predicted compressive behavior are shown in Fig. 7- Fig. 
12. These results also show that the comparison for late-
ral strain does not agree very well. The main reason is 
that the behavior of concrete in the tensile direction is 
considered in the model to be that of a continuum mate-
rial no matter how serious the cracks are.

In order to explore the model capabilities of predicting 
the transition in behavior from low to high strength con-
crete, the experimental data for different strength level of 
concrete are collected in Tables 5 and 6. In comparison 
with that obtained experimentally, these predictions are 
very accurate shown in Fig. 13 and Fig. 14.

x1

x2

x3

Aligned
Crack

---- Aligned 
Crack

---- Aligned 
Crack
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Fig. 6. Stress-Strain curve for mortar

Fig. 7. Stress-Strain relation of concrete GC40-1

Fig. 8. Stress-Strain relation of concrete GC40-2

Stress (MPa)

Strain (10-3)

Stress (MPa)

Strain (10-3)

Stress (MPa)

Strain (10-3)
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Fig. 9. Stress-Strain relation of concrete GC40-3

Fig. 10. Stress-Strain curve of concrete 50-1

Fig. 11. Stress-Strain curve of concrete 50-2

Stress (MPa)

Strain (10-3)

Stress (MPa)
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Stress (MPa)
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Fig. 12. Stress-Strain curve of concrete 50-3

Fig. 13. Stress-Strain curves of different strength for concrete 

Fig. 14. Stress-Strain curves of different strength for concrete [15]

Stress (MPa)

Strain (10-3)
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TABLE 4.
PROPERTIES OF CONCRETE

Grade
Density of Mortar 
(assumed) (kg/m3)

Density of Coarse 
Aggregates (assumed) 

(kg/m3)

Volume Ratio 
of Mortar

Elastic Modulus 
of Concrete 

(GPa)

Elastic Modulus of Coarse 
Aggregates (GPa)

GC40-1 2400 2640 0.6198 32.69 50.69

GC40-2 2400 2640 0.6198 30.78 42.7

GC40-3 2400 2640 0.6198 30.25 40.69

GC50-1 2400 2640 0.7653 31.02 63.41

GC50-2 2400 2640 0.7653 31.06 63.83

GC50-3 2400 2640 0.7653 31.31 66.57

TABLE 5.
MATERIAL PROPERTIES AND COEFFICIENTS FOR THE PROPOSED MODEL (NEVILLE, 1996)

f'c(MPa) Ec (GPa) E0 (GPa) mm εu (10-3) εr (10-3)

20.8329 20.23 12.6347 0.9 1.7307 3.3

28.6999 24.66 16.6408 1 1.8452 2.9

35.7387 28.28 20.3116 1.25 1.9279 2.3

42.3858 30.34 21.2075 1.6 1.9948 2

55.8684 34.13 27.0243 1.8 2.1081 1.9

69.7838 37.53 31.3671 2.1 2.204 1.8

83.6917 38.98 33.3155 2.5 2.2856 1.8

TABLE 6.
MATERIAL PROPERTIES AND COEFFICIENTS FOR THE PROPOSED MODEL (DAHL, 1992)

American Society of Mechanical Engineers, Applied Mechanics Division, AMD, Vol. 205, pp. 21-34

VI. CONCLUSION

The proposed micromechanical model owns the good 
capabilities for predicting the entire response of concrete 
under uniaxial compression. It is suitable that tensile 
strain is as the criterion of concrete failure and the pre-
diction of crack direction also fits with experimental 
phenomenon. And Weibull distribution function can 
describe the behavior of crack development for mortar 
and interface.
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f'c (MPa) Ec (GPa) E0 (GPa) mm εu (10-3) εr (10-3)

105.8 42.85 38.786 2.815 2.395 1.758

94.17 40 34.72 2.663 2.34 1.763

67.4 33.3 26.013 2.219 2.189 1.802

50.3 30 22.195 1.772 2.064 1.917

31.7 26.6 18.563 1.092 1.882 2.578

22 20 12.441 0.93 1.75 3.28


