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Abstract

This research investigates the applicability of failure detection models based on
machine learning and statistical approaches to reduce unplanned downtime in a food
production company. Sensor data is utilized to for identifying early failure symptoms.
To capture temporal and sequential dependencies in time-series data, we employ one
of potential network based method so called the Long Short Term Memory (LSTM)
Autoencoder. Furthermore, we contrast the performance of the result with the tradi-
tional statistical method, the multivariate Exponentially Weighted Moving Average
(EWMA). While both models successfully detected all failures, LSTM-AE demon-
strated superior performance by reducing false alarms and providing true alarms with
a longer time-to-failure. The findings highlight the potential of leveraging limited
data for failure prediction, demonstrating the effectiveness of both models in detect-
ing anomalies while emphasizing their role in enhancing productivity through early
failure detection.
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1 INTRODUCTION

Maintenance is crucial for optimal performance and lifetime of industrial infrastructure and equipments. In general, it includes
regular inspections, repairs, strategic asset management, and life cycle planning to reduce risks, prevent failures, and improve
performance. As industries adopt new technologies, effective maintenance strategies are vital for maintaining operational effi-
ciency and competitiveness. Unplanned downtime due to sudden failures and emergency maintenance affect around 90% of
organizations in European companies [1], with traditional maintenance methods often failing to prevent these disruptions [2]. Even
with planned maintenance, unexpected breakdowns can still occur, leading to inefficiencies.
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Detecting a failure before its occurrence can prevent sudden machine breakdowns, which contribute to significant production
losses. Early detection allows for proactive maintenance, reducing downtimes and managing costs more effectively. Data-driven
failure detection models have been extensively applied to wind turbines, leveraging sensor data collected through Supervi-
sory Control and Data Acquisition (SCADA) systems to enhance operational reliability [3–6]. Similarly, recent studies by [7]

and [8] demonstrate the potential of predictive models in forecasting failures within manufacturing machinery. Building on these
advancements, this study aims to implement and evaluate failure detection models within a selected case study to further explore
their applicability and effectiveness.

Our case study focuses on a production machine of a leading poultry-based food industry in Indonesia. The maintenance team has
observed several instances of abnormal machine behavior, including increased noise levels, reduced performance, and elevated
temperatures, which have resulted in breakdowns. Some of these breakdowns cause the production line to come to a complete
halt, leading to significant financial losses. In some cases, the unavailability of replacement parts further prolongs the down-
time, exacerbating the impact on production. This highlights the critical importance of implementing effective failure detection
mechanisms, such as anomaly detection models, which can monitor equipment conditions, provide early warnings of potential
failures, and enable proactive interventions. By preventing unexpected downtimes and ensuring the availability of necessary
parts, such systems can significantly enhance operational efficiency, reduce costs, and maintain the continuity of production.
Anomaly detection identifies deviations from expected patterns in data, signaling potential equipment failures [9]. However, false
alarms, where normal conditions are inaccurately flagged as anomalies, pose a significant challenge [3, 7]. A systematic approach
is needed to filter out false alarms and improve model accuracy.

In light of the above details, this study covers three main objectives. The first objective is to apply one of machine learning
techniques that has shown some excellent performance in failure detection – long short term memory (LSTM), which in our
case will be combined with autoencoder and refer to as LSTM-AE. The second objective is to investigate whether the classical
statistical-based approach, i.e multivariate exponentially weighted moving average (EWMA) can also work comparably well in
the case study. Additionally, we would like to understand how much the two differ by comparing their performance.

The subsequent sections of this document are organized to provide a comprehensive understanding of the study. Section 2
focuses on the data used in the analysis. Section 3 provides the methodologies applied, detailing the approaches, techniques,
and models employed to address the research objectives. Section 4 presents the results of the analysis and provides an in-depth
discussion of the findings, highlighting their implications and relevance to the study. Finally, Section 5 reports the conclusion,
the key insights summary, contributions, and potential directions for future research or practical applications.

2 THE DATA

In this study, the dataset was collected from a production machine in the poultry-based food production line. The machine, a
Townsend NL-17 sausage linker, has been recently equipped with sensors to enhance maintenance and operations. However,
due to resource limitations, the collected data has not been adequately utilized. The sausage linker is a critical component of the
production line, frequently failing and accounting for over 50% of the downtime in sausage production.

The dataset consists of four variables collected from four different types of sensors, with measurements recorded every 5 minutes
over one month of machine operation. The dataset has a dimension of 10,397 rows and 5 columns. Table 1 outlines the variables
included in the dataset.

TABLE 1 Available variables from sensor measurement in the dataset.

Variable measured Description Unit of measurement
Current Flow of electrical charge in the linker conductor Ampere (A)
Voltage Electrical potential difference in the linker’s electrical circuit Volt (V)
Power Rate of energy conversion in the linker component Watt (W)
Power factor Ratio of real power to total power supplied Ratio
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To validate the early failure detection results, failure log data was also utilized. Our analysis focuses on breakdowns caused by
linker component failures in the sausage linker machine. Table 2 presents details of these breakdowns, including their duration,
timestamp, and description.

TABLE 2 Failure record in the dataset.

Duration (in minutes) Failure time Failure description
480 2024-03-02 10:20 Linker chain dislodgement
300 2024-03-15 03:30 Bearing problem (wear and tear)
355 2024-03-22 02:30 Linker chain tension issue
480 2024-04-05 19:20 Linker chain problem (dullness)

3 METHOD

We apply two methods in the analysis: the LSTM-AE and multivariate EWMA. The LSTM-AE combines the feature reconstruc-
tion capabilities of autoencoders with LSTM’s ability to capture dynamic relationships in time-series data, enabling effective
anomaly detection in sequential, unlabeled data. Because it is an unsupervised model, we do not actually need to split the data
into training and testing sets. However, we will do the splitting to evaluate the performance on the training period to see the
consistency of the results when it is applied on the test set. Multivariate EWMA, on the other hand, employs a multivariate
time-series approach with exponentially decreasing weights to the historical data, enhancing its ability for detecting changes in
the data especially in time series contexts. Although multivariate EWMA does not required labeled data, it is categorized as
semi-supervised learning. In order to detect abnormality using multivariate EWMA, a baseline needs to be determined for the
normal data. Because the sensor data is accompanied by the failure logs, the task of identifying normal data is less complicated.

The following subsections explain the LSTM-AE, multivariate EWMA, and the implementation details that we used in this
study.

3.1 Long Short Term Memory Autoencoder (LSTM-AE)
Long Short Term Memory (LSTM) networks is an advanced type of Recurrent Neural Network (RNN) that are particularly
effective in capturing long-term dependencies in sequential data such as time series data. LSTMs use gates and memory cells
to selectively store or discard information, enhancing their ability to model sequential data [10], which is similar to the case like
predictive maintenance. The primary advantage of LSTM is its ability to identify long-term dependencies in sequential data.
Figure 1 presents the structure of LSTM.

FIGURE 1 The structure of LSTM.
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In Figure 1 , 𝑥𝑡 is the input vector at timestamp t, ℎ𝑡 and ℎ𝑡−1 represent the current and previous output, respectively. 𝐶𝑡 and 𝐶𝑡−1
represent the new and previous cell states or memory at timestamp 𝑡 and 𝑡−1, respectively. The × and + in the circle are vector
multiplication and vector addition, respectively; tan1 and tan2 are tanh neural networks and tangent function. The equations for
the gates are provided in Equation 1 – 3.

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), (1)

𝑓𝑡 = 𝜎(𝑤𝑓 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ), (2)

𝑜𝑡 = 𝜎(𝑤0[ℎ𝑡−1, 𝑥𝑡] + 𝑏0), (3)

where 𝑓𝑡,𝑖𝑡, and 𝑜𝑡 represent forget gate, input gate, and output gate, respectively. The sigmoid function is represented by 𝜎, 𝑤𝑥
is relevant weight in respective gate 𝑥 associated with each block, and 𝑏𝑥 is bias neurons at gate 𝑥. The equations for the cell
state, candidate cell state and the final output are presented in Equation 4–6 as follows:

𝐶̃𝑡 = tanh
(

𝑤𝑐
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑐
)

(4)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡, (5)

ℎ𝑡 = 𝑜𝑡 ∗ tanh
(

𝐶𝑡
)

, (6)

where 𝐶̃𝑡 refers to a tanh output and represents candidate for cell state at timestamp t, and * represents the element wise
multiplication of the vectors.

LSTMs have demonstrated superior performance over traditional machine learning models in predicting the remaining useful
life of equipment [11, 12], as well as fault detection in different application such as aircraft engines [13, 14], and wind turbine sys-
tems [15–17]. LSTM was also reported to perform better that other models like Decision Tree, Random Forest, Convolutional
Neural Networks, and XGBoost in terms of accuracy and other metrics [18, 19].

Autoencoders are a specialized type of feedforward neural network designed to reproduce input data as accurately as possible
in the output. They achieve this by transforming the input into a lower-dimensional representation, often called the latent space
or code, and then reconstructing the original input from this compact representation [20]. The latent code serves as a condensed
summary, capturing the most essential features of the input. An autoencoder is composed of three primary components: the
encoder, the code, and the decoder as illustrated in Figure 2 . The encoder compresses the input data to generate the latent code,
while the decoder reconstructs the input using only this compressed representation. This structure enables autoencoders to learn
efficient data representations and uncover underlying patterns.

In manufacturing, combining Autoencoders with Long Short-Term Memory (LSTM) deep learning models is recommended
for anomaly detection [18]. LSTM, with its Encoder-Decoder architecture, can process input sequences of varying lengths and
generate corresponding output sequences. LSTM-Autoencoder (LSTM-AE) is particularly effective in capturing the dynamics
and complex relationships within time-series data, making it well-suited for detecting anomalies in manufacturing processes [21].

Studies highlight LSTM-AE’s effectiveness in different applications. [22] demonstrates its success in detecting anomalies in
industrial gas turbines and CPU utilization. Similarly, [23] showcases its potential for fault detection in electric drives. Another
study integrates LSTM and Autoencoder networks into a specialized encoder-decoder LSTM architecture, enhancing monitoring
capabilities in complex dynamic processes [24].

In our case study, we set the sequence length of data used in the model to 5, which is equal to 25 minutes based on the nature
of the data The selection was based on the result from autocorrelation analysis. Furthermore, we used Mean Squared Error
(MSE) as the loss function in training and testing of the model. MSE is particularly suited for this study because it squares the
error term, making it more sensitive to large deviations or outliers. This means that large errors (anomalies) disproportionately
impact the final MSE value, making significant deviations easier to identify [25]. Anomalous data points are identified as those
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FIGURE 2 Autoencoder illustration (Reprinted from Wolpe and Waal, 2019).

with higher reconstruction errors compared to the majority of the data. Finally, a threshold was selected by targeting the need
for proper lead time in detecting failures in the training data and acceptable number of false alarms justified by the maintenance
engineers in the observed production line.

3.2 Multivariate EWMA
The exponentially weighted moving average (EWMA) control chart is a well known statistical process control (SPC) method
renowned for its effectiveness in identifying small shifts in process parameters. In contrast to traditional Shewhart control charts,
which analyze individual data points, EWMA prioritizes trend detection by applying exponentially decreasing weights to older
observations. This characteristic enhances its sensitivity to subtle deviations, often serving as early indicators of potential fail-
ures. As [26] notes, the cumulative approach of EWMA offers a distinct advantage in identifying gradual changes in processes,
making it particularly valuable for applications that demand timely failure detection. EWMA tracks the mean value of a process
by giving recent observations more importance through exponentially decreasing weights. This method provides a smoothed
estimate of the process mean, making it sensitive to subtle changes in data that the traditional control chart method might miss [27].

In multivariate anomaly detection, EWMA has been adapted from its original use with single variable to handle complex datasets
with multiple interconnected variables. This adaptation brings several advantages. For instance, multivariate EWMA can effec-
tively capture relationships between variables by incorporating covariance matrices. This capability allows it to detect anomalies
that affect multiple variables simultaneously, which is crucial and has become the most rapidly developing area in industries
like manufacturing and complex systems monitoring [28].

The application of EWMA in detecting anomalous data points has been widely reported to be effective. [29] highlights that
EWMA excels in the early detection of anomalies across interconnected variables, providing a proactive approach to system
monitoring, particularly in scenarios where anomalies can impact multiple parameters simultaneously. When combined with
other methods, EWMA performs well in simulated data for failure detection [30, 31].

Successful implementations of EWMA, as well as its modified version, the Unscented Kalman Filter (UKF)-based EWMA, in
fault detection for wastewater treatment plants further demonstrate its applicability across various domains [32, 33]. The study in [32]

also compares EWMA with m-CUSUM, revealing that EWMA outperforms its counterpart in fault detection for wastewater
treatment plants.

In photovoltaic systems, the EWMA control chart effectively monitors abnormal states and accurately identifies the specific
string where a fault occurs [34]. Its detection power can be further enhanced when integrated with other methods [35]. Similarly,
in wind turbine systems, EWMA has successfully detected outliers up to one week before bearing failure [36], allowing for early
fault alarms and proactive maintenance.

Based on its capability and the nature of the case study, we consider multivariate EWMA model as a potential alternative of
solution for early failure detection. Unlike machine learning approaches, there is no iterative training on the multivariate EWMA
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approach. This study uses the basic form of the multivariate EWMA chart to monitor shifts in the mean vector of a multivariate
process. The multivariate EWMA score per data point is the output of the multivariate EWMA approach and can be obtained
using Equation 7 and 8.

𝒛𝑡 = 𝜆.𝒙𝑡 + (1 − 𝜆)𝒛𝑡−1

=
𝑖−1
∑

𝑗=1
𝜆(1 − 𝜆)𝑗𝒙𝑖−𝑗 + (1 − 𝜆)𝑖𝒛0,

(7)

𝑇 2
𝑖 = [𝒛𝑡 − 𝝁0]𝑡.𝚺−1

𝑧𝑖
[𝒛𝑡 − 𝝁0] (8)

where 𝝁0 is the mean vector of 𝒙𝑖 and 𝚺𝑧𝑖 are the the covariance matrix of 𝒛𝑖. When 𝑖 is large, i.e. 𝑖 → ∞, 𝚺𝑧𝑖 can also be
estimated as: 𝜆

2−𝜆
𝚺0, where 𝚺0 is the covariance matrix of 𝒙𝑖. In our case, 𝒙𝑖 was defined as the vector of variables in data points

that are considered normal, i.e. at least 24 hours away from the failure events.

Furthermore, the implementation of EWMA requires two parameters to be determined: the smoothing constant 𝜆, and the
threshold or the control limit that acts as a boundary between the anomalous and normal. [37] proposed the use of a smoothing
constant (𝜆) that ranges between 0.05 and 0.25. In our study, we used 𝜆 = 0.20 as it has been proven robust in anomaly
detection [38] and it also produced best result in our case study. The selection of the control limit was based on the training data by
targeting the true detection of the actual failure. Any multivariate EWMA value higher than the threshold indicates anomalous
data behavior and to be flagged as an alarm.

3.3 Implementation Details
We begin our analysis with data preprocessing, where we normalized the variables using a robust scaling approach. This tech-
nique adjusts features by subtracting the median and scaling them based on the interquartile range (IQR). Unlike methods that
rely on the mean and standard deviation, robust scaling is less sensitive to outliers and extreme values [39], making it particularly
suitable for anomaly detection context. The scaled values were using the formula in Equation 9.

𝑥′𝑖 =
𝑥𝑖 −𝑄2(𝑥)

𝑄3(𝑥) −𝑄1(𝑥)
(9)

where 𝑥′𝑖 is the transformed value of the 𝑖𝑡ℎ variable, 𝑥𝑖 is the original value of the 𝑖𝑡ℎ variable, and 𝑄1(𝑥), 𝑄2(𝑥), 𝑄3(𝑥) represent
the first, second, and third quartile of the data, respectively.

After the transformation, we employ the autocorrelation function (ACF) to analyze the relationships between past and current
data points for each feature, determining if the data sequence should be treated in a time-series context. The ACF results showed
significant short-term dependencies, especially up to five lags, indicating that recent past values influence future values, which
informed our decision to set the LSTM sequence length to five. While the voltage did not show time-dependent behavior, it
was still included as a predictor due to its relevance in indicating potential failures. The data exhibited short-term temporal
dependencies, underscoring the need for a time-series approach in our predictive modeling to capture these patterns effectively.

Next, we divided the data into two subsets: 70% for the training set and 30% for the testing set. While the two methods primarily
rely on unsupervised and semi-supervised learning techniques, we performed the split in the same way as in supervised learning.
This approach allows us to simulate real-world conditions, where future observations are unavailable during model training.
Consequently, we tuned the model parameters based solely on the training set.

We applied two models, LSTM-AE and multivariate EWMA, to the subsets. The LSTM-AE model was trained using the training
set and evaluated on the test set. The multivariate EWMA approach, however, was implemented in two distinct phases. In Phase
I, normal data was selected to establish 𝒎𝒖0, 𝚺0, and the control limit (𝐻) tailored for anomaly detection. In Phase II, the entire
dataset was analyzed using all those parameters defined in Phase I to perform the fault detection.

Finally, we evaluated the performance of both approaches using two metrics: the total number of false alarms and the failure
detection lead time. The failure detection lead time refers to the time interval between the first alarm or detection and the actual
machine failure. For this case study, we established a maximum lead time of 24 hours, based on input from maintenance experts
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familiar with the production machines and processes. This threshold was chosen to reflect the machine’s historical behavior and
the characteristics of the components monitored by the sensors.

Furthermore, since production operates on three shifts per day, a lead time exceeding 8 hours was considered preferable in
practice. This would provide the maintenance team with sufficient time to plan and execute maintenance activities during shift
changes. Consequently, we defined a false alarm as any alarm triggered more than 24 hours before a failure or less than 8 hours
before a failure.

The numerical analysis was conducted using Python, with PyTorch specifically used for the LSTM-AE model. Since the dataset
is not large, the implementation runs efficiently on any computer with at least 8 GB of memory.

4 RESULT AND DISCUSSION

Once the models are implemented, we calculate a score that is used for failure detection. To trigger an alarm, a threshold is
established. If the score exceeds this threshold, an alarm is raised. The alarm will remain active until the score drops back below
the threshold. The tricky part is where to set the threshold, considering the balance between the true detection and false alarms.
Naturally, lowering the threshold increases the likelihood of false alarms. However, it also reduces the chances of missing a
true failure, resulting in a higher true positive rate. Conversely, raising the threshold decreases the number of false alarms but
increases the risk of failing to detect actual failures. Practitioners often look for the balance between the two, aiming at the
highest detection rate with considerably acceptable number of false alarms.

In practice, missed detections are the most critical issue to avoid, as their impact is significantly more severe. Missed detection
results in an unscheduled production line stoppage, leading to lost production and reduced productivity for all other resources that
depend on the production process. Furthermore, unexpected failures often create additional challenges, such as the unavailability
of necessary inventory to restore operations, further compounding delays and inefficiencies. For this reason, sometimes the
performance of a model can be measured from the number of miss detections produced from the model.

In many machine learning applications, model performance is commonly evaluated using metrics such as F1 score, accuracy,
precision, and recall. While these metrics are effective in many contexts, they are not always ideal for failure detection. In
practice, production managers often prioritize the practical benefits of a model, such as the cost savings or financial impact it
brings to real-world operations. Although this type of metric is less commonly used, it has been introduced in certain studies. For
example, [3] calculated the total savings generated by a method based on real-world maintenance costs, including replacement
costs, inspection costs, and repair costs.

In our case, we lack the necessary data on these costs to perform a similar analysis. However, we can still evaluate the models
using alternative metrics, such as average lead time, the number of false alarms, and the number of missed detections, which
can provide comparable insights into the practical effectiveness of the models.

Table 3 and Table 4 present a small range of threshold, denoted as H, that were implemented on the two methods. From these
two tables, we can see how different values of H affect the results of the detection. Suppose our goal is to detect all failures
within 8 to 24 hours of their occurrence. Based on Table 3, we have two options to consider for detection: setting the threshold
at 𝐻 = 4.5 or 𝐻 = 4.0. Considering the nature of the case, where the production line operates in three working shifts, we
can conclude that the average lead time between the two thresholds is not significantly different. In other words, detections will
typically occur within one or two shifts of the actual failure. This lead time should provide sufficient opportunity to arrange
maintenance actions during shift changes, when the machine is normally shut down. Therefore, 𝐻 = 4.5 is the more favorable
option to be used with LSTM-AE scores, as it leads to fewer false alarms. In a similar fashion, using information presented in
Table 4, 𝐻 = 7 or 𝐻 = 8 are two very good options for the multivariate EWMA scores.

With the thresholds set for both methods, we can now compare their performance in terms of the number of false alarms and
the average lead time. There are two approaches to this comparison:

1. Set 𝐻 to values that result in a comparable average lead time for both methods, then evaluate the number of false alarms.
2. Set 𝐻 to values that produce a similar number of false alarms for both methods, then assess the average lead time.



8 Latiffianti ET AL.

TABLE 3 LSTM-AE performance based on selected threshold.

Threshold Average lead time (hour) # of false alarms # of true alarm # of total alarm # of miss detection

𝐻 = 5.0 6.67 8 3 11 2
𝐻 = 4.5 14.54 10 8 18 0
𝐻 = 4.0 16.92 18 17 35 0

TABLE 4 Multivariate EWMA performance based on selected threshold.

Threshold Average lead time (hour) # of false alarms # of true alarm # of total alarm # of miss detection

𝐻 = 12 6.00 15 5 20 2
𝐻 = 11.5 7.90 17 5 22 2
𝐻 = 10 10.23 24 6 30 1
𝐻 = 9 10.25 28 7 35 1
𝐻 = 8 13.67 28 10 38 0
𝐻 = 7 16.19 30 11 41 0
𝐻 = 6 16.67 35 13 48 0

Both approaches are expected to lead to the same conclusion.

On the first approach, let 𝐻 = 4.5 for the LSTM-AE and 𝐻 = 8 for multivariate EWMA. Based on Table 3 and Table 4, this
will result in the average lead time of 14.54 hours and 13.67 hours for LSTM-AE and multivariate EWMA, respectively. With
these thresholds, the total number of false alarms are 10 and 28 for LSTM-AE and multivariate EWMA, respectively, which
means LSTM-AE outperformed multivariate EWMA.

On the second approach, let 𝐻 = 4.0 for the LSTM-AE and 𝐻 = 11.5 for multivariate EWMA. This will give us 18 and 17
false alarms for LSTM-AE and multivariate EWMA, respectively. In terms of average lead time, LSTM-AE was able to detect
all 4 failures with average lead time of 16.92 hours, while multivariate EWMA could not detect the first and second failures,
resulting in only 7.90 hours lead time in average. Again, LSTM-AE outperformed multivariate EWMA.

Table 5 presents detection time and time to failure produced from LSTM-AE with 𝐻 = 4.5 and MEWMA with 𝐻 = 8. The
detection plots for both methods are presented in Figure 3 .

TABLE 5 Failure detection times resulted from LSTM-AE and multivariate EWMA

Failure time
LSTM-AE EWMA

Earlierst alarm Lead time (hour) Earlierst alarm Lead time (hour)
2024-03-02 10:20 2024-03-01 15:40 11.66 2024-03-01 16:10 11.16
2024-03-15 03:30 2024-03-14 08:00 12.50 2024-03-14 11:25 9.08
2024-03-22 02:30 2024-03-21 05:05 14.42 2024-03-21 06:25 13.08
2024-04-05 19:20 2024-04-04 16:45 19.58 2024-04-04 15:00 21.33

Both the LSTM-AE, a machine learning-based method, and EWMA, a statistical approach, effectively detect anomalies to
provide early failure warnings. However, the LSTM-AE outperforms the multivariate EWMA model by detecting failures earlier,
i.e. about an hour or 5.05% earlier. Furthermore, when the multivariate EWMA threshold is adjusted to match the failure detection
lead time of the LSTM-AE, the multivariate EWMA model generates more false alarms, i.e. two times higher (or 211%). This
highlights the LSTM-AE’s superiority over the multivariate EWMA model, both in terms of earlier failure detection and reduced
false alarms.
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FIGURE 3 Detection plots of multivariate EWMA (left) and LSTM-AE (right). The solid horizontal line represents the thresh-
old 𝐻 , the vertical solid lines mark the time of the actual failures’ occurrence, and the vertical dashed lines are the time of the
earliest alarms.

In practice, an early warning system enables management to anticipate failures more effectively. For instance, if the warning
provides a lead time of more than eight hours, the maintenance team can schedule an inspection during the next shift change
when the machine is normally stopped, minimizing production loss.

Additionally, if maintenance personnel are unavailable when the alarm is triggered, the advance notice allows sufficient time to
bring them on-site for the scheduled inspection. Based on the inspection, appropriate maintenance actions can be determined.
If immediate repairs are not possible, preventive measures can be taken to avoid failure until the necessary maintenance is
performed. This proactive approach helps prevent prolonged downtime, production losses, and productivity declines.

To understand what happened during the period after the earliest alarms, we perform additional analysis on the measured
variables. The begin by dividing the data into five subsets: the normal data points, and four subsets of data points where the
score from one or both methods are greater than the control limit. We plotted the density of each variable from those subsets
in Figure 4 . We differentiated the plots from each subset using different colors. Based on Figure 4 , we can clearly see that
voltage does not provide pronounced clue about the failure except for Failure #1 and Failure #3 where the sensor readings yield
wider density, with spikes on the right side, indication some higher values compared to the rest of the data. The current and
the power on the other hand, present similar patterns across different failures, showing sort of bimodal distribution with some
density raising on the opposite direction of the normal ones. Finally, on the power factor, small portions of failure signatures
show larger values, but at the same time, the density from all failures also shifted to the left, indicating that all four failures also
present nearly zero power factor as the one of the symptoms.

In summary, the exploration of the sensors’ reading values reveals that all four variables we used in the model contributes to the
detection resulted by the two models. However, we cannot isolate nor differentiate the exact cause of each of the failures solely
based on this analysis.

The early failure warning capability demonstrated in this study is based on a limited dataset. Nevertheless, the results serve as
a validation of the anomaly detection model, showing that it can successfully identify anomalies as early indicators of failure
and provide timely warnings. While these results may vary when tested on larger datasets, the findings presented here offer an
initial understanding of the model’s ability to provide early failure warnings.

5 CONCLUDING REMARKS

This research highlights the benefits of using machine learning and statistical models for early anomaly detection in predictive
maintenance. By analyzing time-series data, the LSTM-AE and multivariate EWMA models effectively identified early signs
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FIGURE 4 Variable exploration based on combined subset from both LSTM-AE and multivariate EWMA.

of equipment failure. These models detected failure patterns that were not apparent in the raw data, with the LSTM-AErelying
on reconstruction errors and the multivariate EWMA model using statistical measures. While the results may vary with larger
datasets, they provide an initial understanding of the models’ ability to deliver early failure warnings.

A crucial aspect of effective anomaly detection is setting appropriate detection thresholds. Lower thresholds improve precision
but result in shorter lead times, whereas higher thresholds allow for longer lead times but generate more false alarms. Finding
the right balance between early detection and reliability is the key. Among the two models, the LSTM-AE showed better per-
formance, particularly in detecting subtle anomalies and providing earlier warnings, while also generating fewer false alarms.
However, the multivariate EWMA model remains valuable for its ability to effectively handle short-term patterns.

In summary, the LSTM-AE demonstrates strong potential for enhancing early failure detection by providing accurate and timely
warnings. Future research should aim to test these models with larger datasets and refine threshold optimization to further
improve their reliability and effectiveness. Another promising direction is the integration of machine learning-based anomaly
detection with real-time industrial monitoring systems, such as Industrial IoT platforms, to enable automated decision-making
and predictive maintenance. While this study is centered on a food production company, further research could investigate the
applicability of these models in other industries, such as automotive manufacturing, pharmaceuticals, and energy production, to
assess their robustness in different operational environments. Additionally, conducting a cost-benefit analysis of implementing
machine learning-based predictive maintenance would provide decision-makers with valuable insights into cost savings, return
on investment, and overall productivity improvements.
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