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AbstractOne of the major problem facing the data 
modelling at social area is multicollinearity. Multi-
collinearity can have significant impact on the quality and 
stability of the fitted regression model. Common classical 
regression technique by using Least Squares estimate is 
highly sensitive to multicollinearity problem. In such a 
problem area, Partial Least Squares Regression (PLSR) is a 
useful and flexible tool for statistical model building; 
however, PLSR can only yields point estimations. This pa-
per will construct the interval estimations for PLSR 
regression parameters by implementing Jackknife tech-
nique to poverty data. A SAS macro programme is develop-
ed to obtain the Jackknife interval estimator for PLSR. 
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I. INTRODUCTION 

ocial researchers frequently work in a situation with 
complex and massive amount of variables. In such 

situation, problem which is often faced in statistical 
model building is that the independent variables are 
many and highly collinear. This phenomenon is called 
multicollinearity or collinearity. Collinearity means co-
dependence. This collinearity problem increases standard 
error of their estimated regression coefficients. The 
higher the collinearity among the variables, the higher of 
the standard error of regression coefficients. High 
standard error yields a wide interval estimation of para-
meters. Thus, it increases risk of predictor to be rejected 
from regression model as non-significant variable [1]. 

There are a number of ways to detect multicollinearity. 
One of them is simply to look the correlation between 
variables by using scatter plot. However, this is not 
always good enough for a complex multicollinearity case 
[2]. Another approach is to compute Variance Inflation 
Factor (VIF). The VIF measures how much the variance 
of each regression coefficient is inflated because of 
multicollinearity compare to a situation with uncorre-
lated variables. The larger the VIF, the more serious is 
the multicollinearity problem.  

The inverse of the VIF is the tolerance. When tolerance 
is small, say less than 0.1, then it would indicate the 
present of multicollinearity. Another way to diagnose 
multicollinearity is through the R2 values. Multicolline-
arity might exist in condition where there is a high value 
of R2 with a few significant coefficients or even with no 
significant coefficients. In a serious case of multicol-
linearity, the indication can be figured out from a change 
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sign (positive/negative) of the regression coefficients 
when a new variable is added to the regression model. 

In a case of multicollinearity, common classical regres-
sion technique by using Least Squares yields unstable 
result [2]. Therefore, a such calibration technique is 
needed to overcome multicollinearity problem in regres-
sion model. 

Several methods have been developed to cope with 
multicollinearity problem such as Principle Component 
Regression (PCR), Ridge Regression (RR) and Partial 
Least Squares Regression (PLSR). PCR and RR are 
commonly used methods. However the computation 
process of PCR and RR is getting more complex when 
the number of variables is getting large. While the com-
putation process of PLSR is less complex compare to 
those two methods. PLSR overcomes multicollinearity 
with smaller number of components than PCR [4]. PLSR 
also uses a unique way of chosing component by using 
singular value of decomposition of dependent and inde-
pendent variables [2]. While in PCR, each component is 
obtained based on spectral decomposition of independent 
variables. So, the components in PLSR are more directly 
related to variability of dependent variable than PCR. It 
is also shown that PLSR and RR perform better than 
PCR [5]. Another characteristic of PLSR is statistical 
efficiency [6]. For moderate number of dependent va-
riables, PLSR is most efficient than others [5]. Thus for 
some reasons, PLSR can avoid the dilemma in PCR and 
RR. 

PLSR can only yield point estimations of their para-
meters. And there is a difficulty to measure such estima-
tes of accuracy for PLSR by using analytical technique. 
Alternatively, empirical technique such as Jackknife and 
Bootstrap might be used in an easy way to measure that 
precision [2]. Jackknife and Bootstrap are techniques for 
estimating standard error of an estimator through 
resampling process. Compare to Bootstrap, Jackknife is a 
useful resampling technique in a case of small sample 
and minimal assumption [10]. The Jackknife is also less 
computationally process [13] than other. The main 
purpose of this article is to construct the Jackknife inter-
val estimation of the regression coefficient estimates in 
the PLSR model for poverty data analysis by developing 
a SAS macro program in order to measure the accuracy 
of PLSR coefficient regression estimators. 

II.  MODEL SPECIFICATION OF PARTIAL LEAST  SQUARES 

REGRESSION 

Partial Least Squares (PLS) is method developed by 
Herman Wold in the 1960s as a method for constructing 
statistical models in a condition where the explanatory 
variables are many and highly collinear [3]. This method 
might also be used with any number of explanatory 
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variables which is more than the number of observation 
[7]. Basically, PLSR is a method which combines 
dimension reduction process and constructing a regres-
sion model. Those two processes are performed simul-
taneously in PLSR. 

The general idea of PLSR is quite similar with 
Principle Component Regression (PCR) approach. PLSR 
is indirect modeling since it tries to construct a 
regression model by transforming a set of independent 
variable which is highly collinear to a set of new variable 
which is uncorrelated [1]. This new variables are called 
latent variables or components. Each component is an 
orthogonal linear combination of the explanatory vari-
ables. Therefore, PLS has also been taken to mean 
“projection to latent structure”. Thus, PLS is based on 
latent component decompositions concept. Unlike in 
similar approaches such as PCR, the latent components 
obtained by PLSR are computed by taken into account 
both the independent and dependent variables of the 
regression [7]. 

To regress the response with the explanatory variables, 
PLSR uses Ordinary Least Squares (OLS) method. Since 
this estimation method does not need a strict distribution 
assumption. This is one of the reasons that PLSR is also 
addressed as a soft modeling method [8, 9]. 

Consider the general setting to predict q continuous 
response variables Y1, …, Yq using p continuous 
predictor variables X1, …, Xр and the available data 
sample consist of n observations. There is the nxp matrix 
X with vector  xi = (xi1, xi2, …, xiр)

Tas a row element. 
Similarly, Y is the nxq matrix containing the yi = (yi1, yi2, 
…, yiq)

T. The latent component decomposition of PLSR 
is given by 
Y = TQT + F  (1) 
X = TPT + E  (2) 
Where � ∈ 	ℝ�×� is a matrix of latent components,  
� ∈ 	ℝ	×�and 
 ∈ 	ℝ�×�are matrices of coefficients 
(loading matrices of response variable and predictor 
variables, respectively), � ∈ 	ℝ�×�and 
 ∈ 	ℝ�×	are 
matrices of random errors. In general, a PLSR analysis 
consists of the stages: 
Step 1. Centering and scalling process to both response 

and predictor variables. 
Step 2. Construct a matrix of weights (W) where 

Wϵℝ���. 
Step 3. Construct a matrix of latent components (T) as a 

linear transformation of X, i.e 
T = XW  (3) 
where the columns of W and T are wi = (wi1, wi2, …, 
wрi)

T and ti = (t1i, t2i, …, tni)
T. Thus the equations of linear 

transformation of X1, …, Xр,… are 
T1 = w11X1 + … + wр1Xр 
T2 = w12X1 + … + wр2Xр 
… = … 
Tc = w1cX1 + … + wрcXр 
Step 4. Compute a matrix of component loading Q. 

This matrix is obtained from Equation (1) by 
using the least squares method. 

Y = YQT 
TTY = TTTQT 
QT = (TTT)-1 TTYQT 
Step 5. Compute a matrix of regression coefficients (B) 

for the Y=XB+F.Since X = TWT and   Y = XB 

thus = TWTB. From Equation (1),  Y = TQT 
consequently, QT = WT B. Then the solution for 
B can be obtained from the following equation. 

WTB = QT = (TTT)-1TTY 
B = WQT 
= W(TTT)-1TTY   (4) 
Step 6. Calculate the response predictions (Ŷ) 
Y� = XB� Ŷ  
sinceX = TWTand 
B� 	= W(T�T)��T�Y 
Ŷ = TWTW (TTT)-1TTY 

= T(TTT)-1TTY   (5) 
Thus, the predicted response can be calculated by only 

using the information of latent components and the 
response variable. 

It is shown that the dimension reduction approach and 
the regression model is performed simultaneously in 
PLSR since it produces the matrix of regression 
coefficients B as well as the matrices W, T, P and Q [6]. 

III.  THE JACKKNIFE PROCESS 

Jackknife is a statistical technique which was intro-
duced by Maurice Henry Quenouille in 1949 for esti-
mating the bias of an estimator and to correct for it [10]. 
Thus, it yields a bias corrected estimator. In 1958, John 
Wilder Tukey proposed the variance of the estimator and 
hence for its standard error. It is a nonparametric method 
of statistical error such as the bias and standard error of 
an estimator [11, 12]. Since it yields standard error of an 
estimator, it also can compute the confidence intervals of 
an estimator [12]. This nonparametric technique is 
trustworthy since parametric analysis required assump-
tions that are difficult to justifiy [11]. The advantage of 
the Jackknife is less computationally process [13]. 

Jackknife is a versatile resampling technique. The basic 
idea of Jackknife is similar to cross validation procedure. 
In general, the process is performed by deleting one or 
several observations at a time and the regression coef-
ficients are computed for each subset of data. This 
process is repeated in order to get a set of regression 
coefficient vectors [10, 11]. This set of coefficient 
vectors gives information about the variability as well as 
the standard error of the regression coefficients. The 
Jackknife is a useful resampling technique in a case of 
small sample and minimal assumption [10]. According to 
[10, 11, 14], the scheme of Jackknife process can be 
summarized as  inFig. 1. 

Let an independently and identically distributed sample 
of size n which is used to estimate a parameter	� and 
yields an estimator ���. Then, removing a group of m 
observations from the sample to get a set of sample of 
size n-m andlet ���� be the estimator of the same para-
meter � based on a sample of size n-m.  

The estimated bias of ��� is reflected from the 
difference between ���and ���� .  

The Jackknife bias is calculated by using the following 
equation.  
!"#$%&'�( = () − 1)(���� − ���)	   (6) 

	�, = 	��� −	!"#$%&'�( 
		= 	 ��� −	() − 1)(���� − ���)	 
					= 	)��� −	() − 1)����     (7) 
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If the size of deleted observation (m) is relatively small 
compared to n, the bias of ��- is generally much smaller 
than the bias of ���. The bias of ��- is commonly of order 
n-2 while the bias of ��� is generally of order n-1 [10]. 

A.  Jackknife by Deleting One Observation 

Let ��� is an estimator of parameter � which is obtained 
from a sample of size n. Then, ��(.) is an estimator of the 
same parameter � by removing the i-th observation from 
the sample. The deleted one observation Jackknife 
estimator is given by: 
��-(�) = )	��� −	() − 1)�̅(�)  (8) 
where �̅(�) =	)��∑ ��(.)�.1�  

The Jackknife variance estimator by deleting one 
observation based on the pseudo values  �2(.) = )	��� −
() − 1)��(.), 4 = 1,2, … , ) is given by 

789-(�) =	
�
�∑

�
���

�.1� (�2(.) −	 ��∑ �2(()�(1� )9  

									= 	 ���� ∑ (��(.) − �̅(�)	)9�.1�  (9) 

789-(�)is a consistent estimator of the asymptotic  

 

 

variance of ��� and ��-(�). 
B.  Jackknife by Deleting m Observations 

Suppose the sample is divided into g groups which are 
mutually exclusive and independent with equal size m 
where m>1 and m = n/g. The estimator of parameter � by 
deleting m observations of j-th group is ��(&). In this case, 
the estimator is obtained based on sample of size n-m. 
The Jackknife estimator by removing m observations is 
given by 

��-( ) = :	��� −	(: − 1)�̅( ) (10) 

where  �̅( ) =	:��∑ ��(&);
&1� . Thus, ��-( ) is calculated 

based on g estimators ��(&) where each ��(&) is obtained 
from a sub sample of size n-m. The Jackknife variance 
estimator by deleting m observations based on the 
pseudo values  �2(&) = :	��� −	(: − 1)��(&), 4 = 1,2, … , :   

is given by 

789-( ) =	
1
:<

1
: − 1

;

&1�
(�2(&) −	

1
:<�2(()
;

(1�
)9 

 

 

Fig. 1. The Scheme of Jackknife interval estimation process 
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	= 	 ;��; ∑ (��(&) − �̅( )	)9;
&1�  (11) 

C.  The Jackknife Confidence Interval 

The (1-α)*100% approximate confidence intervals for 
parameter � is given by 
[	��-( ) − >?@(���)78-( )	; 		��-( ) + >?@(���)78-( )] (12) 

For large sample size, a student’s t distribution conver-
ges to a standard normal distribution. 

IV.  APPLICATION  TO POVERTY DATA  

Poverty data analysis usually involves social variables 
which are many or highly correlated. There are many 
factors that might affect the poverty level in particular 
area. Some of those factors are demographical variables.  

In this case, the PLSR is applied to analyze whether 
number of poor people (Y) in Nanggroe Aceh Darus-
salam (NAD) is influenced by number of children aged 
0-4 years old (X1), number of worker (X2), number of 
elderly people (X3), number of school age people who 
are not attending school anymore (X4), and number of 
people who work on agriculture sector (X5). The data set 
is based on Socio-economic survey 2008 conducted by 
Statistics Indonesia (BPS). 

Table 1 shows the high values of VIF for the first three 
predictors, since the values are over 10. There are also 
some tolerance values which are less than 0.1. Those 
indicate multicollinearity in data. The PLSR is used to 
analyze data by handling the multicollinearity. The result 
is shown below. 

Table 2 illustrates the individual and cumulative 
variation accounted for the five PLS factors, for both the 
factors and the response. There are five principal 
components can be constructed by fivefactors. In 
general, Table 2 shows that the first components account 
for about 90 % of variation for both factors and 
responses. This gives a strong indication that one 
component are appropriate for modeling the data. It is 
confirmed by the cross validation analysis through the 
Predicted Residual Sum of Squares (PRESS) values 
since model with only one component yields the 
minimum PRESS (0.3172). Thus for this case, one 
component will be used in analysis. The point estimation 
of PLSR based on one component is given in Table 3. 
The accuracy of those estimations is measured from the 
interval estimation of the regression coefficients. And the 
Jackknife technique constructs the interval estimation of 
PLSR coefficients (Table 4). 

The Jackknife confidence interval shows the interval 
estimations of PLSR coefficients.  It also confirms that 
all of the factors (number of children aged 0-4 years old, 
number of worker, number of elderly people, number of 
school age people who are not attending school anymore, 
number of people who work on agriculture sector) are 
positively and significantly influence the number of poor 

people in NAD. Increasing number of children aged 0-4 
years old will lead to increasing number of poor people 
as much as 0.2054. At the same vein, the addition of a 
single elderly people will increase the number of poor 
people around 0.2129. The contribution of three other 
factors to the increasing number of poor is almost the 
same at around 0.2. 

V. CONCLUSION 

PLSR is a powerful method for modeling data with 
multicollinearity problem. PLSR yields a point 
estimation while its interval estimation can be 
constructed by using Jackknife technique. The Jackknife 
confidence interval also can be used to measure the 
accuracy of PLSR estimation. The application of PLSR 
and Jackknife process to poverty data analysis in NAD 
shows that all of the coefficients regression produced by 
PLSR are positively significant to measure number of 
poor people in that area. Thus, numbers of children aged 
0-4 years old, workers, elderly people, school age people 
no longer attending school, and people working on 
agriculture sector give positive contribution to the 
increase of numbers of poor people in NAD. 
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TABLE 1. 
TOLERANCE AND VIF VALUES 

Model 
Collinearity Statistics 

Tolerance VIF 

 X1 .045 21.987 

X2 .020 50.364 

X3 .082 12.262 

X4 .186 5.380 

X5 .205 4.871 
 

TABLE 2. 
PERCENT VARIATION AND PRESS OF PLSR 

Comp. 
Model Effects 

 

Dependent 
Variables 

 

Root 
Mean 

PRESS 

 
Current Total Current Total 

 
0 

    
1.0936 

1 87.8376 87.8376 92.3822 92.3822 0.3172 
2 4.7803 92.6179 2.2505 94.6327 0.3424 
3 4.343 96.9609 0.5184 95.1511 0.3377 
4 2.5368 99.4977 0.5085 95.6596 0.3245 
5 0.5023 100 0.5605 96.2201 0.348 

 
TABLE 3. 

POINT ESTIMATION OF PLSR COEFFICIENTS 
Parameter Estimates Values 

β1 0.2054 
β 2 0.2134 
β 3 0.2129 
β 4 0.1893 
β 5 0.2044 

 
TABLE 4. 

ESTIMATORS OF PLSR COEFFICIENT 

Parameter 
Estimates 

Point Estimators 
Interval Estimators (95%) 

Lower 
Bound 

Upper 
Bound 

β1 0.2054 0.18741 0.21811 
Β2 0.2134 0.19146 0.23078 

Β3 0.2129 0.17550 0.23738 

Β4 0.1893 0.14995 0.24885 

Β5 0.2044 0.19046 0.22211 

 
Attachment 
SAS Macro Program 

%MACROjacknife(indata=, size=, numf=); 
  %LET j=0; 
  %DO %WHILE(&j<=&size); 
 DATA d_1;SET&indata; 
 IF _N_=&j THEN DELETE; 
 ods output CenScaleParms=solution; 
 proc pls data=d_1 nfac=&numf method=pls details; 
  TITLE Observation &j is deleted.; 
 model Y = X1 X2 X3 X4 X5 /solution; 
 run; 
 proc transpose data=solution out=solution; 
 data solution;  
 set solution;  
 rename COL1 = Beta0 COL2 = Beta1 COL3 = Beta2 COL4  = Beta3 COL5 = Beta4 COL6 = 
Beta5; 
 run; 
 PROC APPEND BASE = JackBeta DATA = solution force;  
 RUN; 
  %LET j=%EVAL(&j+1); 
  %END; 
%MEND; 
data Pov11; 
input WilCode $ Y X1 X2 X3 X4 X5 @@; 
datalines; 
%jacknife(indata=Pov11,size= 23, numf= 1); 
RUN; 



IPTEK, The Journal for Technology and Science, Vol. 21, No. 3, August 2010 

data value;set Jackbeta; 
if _N_ = 1; 
proctranspose data=value out=value; 
data value;set value; 
rename Y=OriValue; 
rename _NAME_=Statistik; 
data value;set value; 
label Statistik=' '; 
data Jackbeta;set Jackbeta; 
if _N_= 1 then DELETE; 
procmeans data=JackBeta noprint vardef=n; 
var; 
output out=stat(drop=_type_ _freq_); 
proctranspose data=stat out=stat; 
data stat(drop=COL2 COL3) ; set stat; 
rename _NAME_=Statistik; 
rename COL1=n COL4=Mean COL5=STD; 
data stat; set stat; 
label Statistik=' '; 
data Stat; 
merge Stat value; 
data stat;set stat; 
if _N_= 1 then DELETE; 
data stat; 
set stat; 
    Bias = (n- 1)*(Mean-OriValue); 
    BiasCorr = OriValue-Bias; 
    JackSTD = sqrt(n- 1)* STD; 
    t= 2.074; 
    BatasBawah=BiasCorr-t*JackSTD; 
    BatasAtas=BiasCorr+t*JackSTD; 
procprint data=Stat; 
title "Hasil Simulasi Jackknife PLS"; 
procexport data=stat 
outfile="D:\JackPov11" dbms=excel200 
replace; 
sheet="JPLS11"; 
run; 
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