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The Jackknife Interval Estimation of
Parametersin Partial Least Squares Regression
Modelfor Poverty Data Analysis

Pudiji Ismartint, Sony Sunaryg and Setiawa

Abstract/70ne of the major problem facing the data
modelling at social area is multicollinearity. Multi-
collinearity can have significant impact on the quality and
stability of the fitted regression model. Common classical
regression technique by using Least Squares estimate is
highly sensitive to multicollinearity problem. In such a
problem area, Partial Least Squares Regression (PLSR) isa
useful and flexible tool for statistical modd building;
however, PLSR can only yields point estimations. This pa-
per will construct the interval estimations for PLSR
regression parameters by implementing Jackknife tech-
nique to poverty data. A SAS macro programme is devel op-
ed to obtain the Jackknife interval estimator for PL SR.

Keywordg7Partial Least Squares Regression, multicol-
linearity, interval estimator, Jackknife

|. INTRODUCTION

sign (positive/negative) of the regression coedffits
when a new variable is added to the regression mode

In a case of multicollinearity, common classicajres-
sion technique by using Least Squares yields ulestab
result [2]. Therefore, a such calibration technigae
needed to overcome multicollinearity problem inresg
sion model.

Several methods have been developed to cope with
multicollinearity problem such as Principle Compone
Regression (PCR), Ridge Regression (RR) and Partial
Least Squares Regression (PLSR). PCR and RR are
commonly used methods. However the computation
process of PCR and RR is getting more complex when
the number of variables is getting large. While ¢oen-
putation process of PLSR is less complex compare to
those two methods. PLSR overcomes multicollinearity
with smaller number of components than PCR [4]. RLS

ocial researchers frf-:'quently work in a situatiothwi also uses a unique way of Chosing Component b)gusin
Scomplex and massive amount of variables. In suckingular value of decomposition of dependent amtb-n

situation, problem which is often faced in statigki

pendent variables [2]. While in PCR, each compoiignt

model building is that the independent variablee arobtained based on spectral decomposition of inctgren
many and highly collinear. This phenomenon is calle yariables. So, the components in PLSR are morettjire

multicollinearity or collinearity. Collinearity mes co-
dependence. This collinearity problem increasawdstal

related to variability of dependent variable tha®RP It
is also shown that PLSR and RR perform better than

error of their estimated regression coefficientheT PCR [5]. Another characteristic of PLSR is statisti

higher the collinearity among the variables, thghker of

efficiency [6]. For moderate number of dependent va

the standard error of regression coefficients. Highiables, PLSR is most efficient than others [5]ugHor

standard error yields a wide interval estimatiorpafa-
meters. Thus, it increases risk of predictor tadjected
from regression model as non-significant variafile [
There are a number of ways to detect multicolligar
One of them is simply to look the correlation betwe

variables by using scatter plot. However, this @& n

always good enough for a complex multicollineaciase
[2]. Another approach is to compute Variance |mblat

some reasons, PLSR can avoid the dilemma in PCR and
RR.

PLSR can only yield point estimations of their para
meters. And there is a difficulty to measure sustinea-
tes of accuracy for PLSR by using analytical teghai
Alternatively, empirical technique such as Jack&rahd
Bootstrap might be used in an easy way to measaite t
precision [2]. Jackknife and Bootstrap are techegfor

Factor (VIF). The VIF measures how much the vagancestimating standard error of an estimator through

of each regression coefficient is inflated becao$e
multicollinearity compare to a situation with unosr
lated variables. The larger the VIF, the more sevits
the multicollinearity problem.

The inverse of the VIF is the tolerance. When tolee
is small, say less than 0.1, then it would indictite
present of multicollinearity. Another way to diageo
multicollinearity is through the Rvalues. Multicolline-
arity might exist in condition where there is athigalue

of R? with a few significant coefficients or even witb n

significant coefficients. In a serious case of iwolt
linearity, the indication can be figured out fronsleange
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resampling process. Compare to Bootstrap, Jackisde
useful resampling technique in a case of small gamp
and minimal assumption [10]. The Jackknife is déxs
computationally process [13] than other. The main
purpose of this article is to construct the Jackkiiter-

val estimation of the regression coefficient estesan

the PLSR model for poverty data analysis by devatpp

a SAS macro program in order to measure the acgurac
of PLSR coefficient regression estimators.

Il. MODEL SPECIFICATION OFPARTIAL LEAST SQUARES
REGRESSION

Partial Least Squares (PLS) is method developed by
Herman Wold in the 1960s as a method for constigcti
statistical models in a condition where the explana
variables are many and highly collinear [3]. Thisthod
might also be used with any number of explanatory
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variables which is more than the number of obs@amat thus = TWB. From Equation (1), Y = TQ
[7]. Basically, PLSR is a method which combines consequently, ®= W' B. Then the solution for
dimension reduction process and constructing aesegr B can be obtained from the following equation.
sion model. Those two processes are performed simulv™B = Q" = (T'T)*TTY
taneously in PLSR. B=wQ'

The general idea of PLSR is quite similar with=w(T'T)TTY 4

Principle Component Regression (PCR) approach. PLSBtep 6. Calculate the response predictiaf)s (

is indirect modeling since it tries to construct ay =xB Y

regression model by transforming a set of independe sinceX = TWand

variable which is highly collinear to a set of neariable g = w(rTT)-11TY

which is uncorrelated [1]. This new variables aafledd ¢ = Tw'w (T™T)'TTY

latent variables or components. Each componennis a = 7(17'1)*TTY (5)
orthogonal linear combination of the explanatoryiva  Thus, the predicted response can be calculatedlyy o
ables. Therefore, PLS has also been taken to me@Bing the information of latent components and the
“projection to latent structure”. Thus, PLS is b&sEn  response variable.

latent component decompositions concept. Unlike in |t is shown that the dimension reduction approauth a
similar approaches such as PCR, the latent comp®nernthe regression model is performed simultaneously in
obtained by PLSR are computed by taken into accoumLSR since it produces the matrix of regression
both the independent and dependent variables of th®efficients B as well as the matrices W, T, P @né].
regression [7].

To regress the response with the explanatory Vesab IIl. THE JACKKNIFE PROCESS
PLSR uses Ordinary Least Squares (OLS) methodeSinc
this estimation method does not need a strictibigion
assumption. This is one of the reasons that PLSHs®
addressed as a soft modeling method [8, 9].

Consider the general setting to predict g contisuou,
response variables ;Y ..., Yy using p continuous
predictor variables X ..., X, and the available data
sample consist of n observations. There is themaix
X with vector x = (X1, X2, ---, xp)Tas a row element.
Similarly, Y is the nxq matrix containing they (yi1, Yo,

O yiq)T. The latent component decomposition of PLSF

Jackknife is a statistical technique which wasaintr
duced by Maurice Henry Quenouille in 1949 for esti-
mating the bias of an estimator and to correcitffi0].
Thus, it yields a bias corrected estimator. In 19&#n
Wilder Tukey proposed the variance of the estimatat
hence for its standard error. It is a nonparametethod

of statistical error such as the bias and standemat of

an estimator [11, 12]. Since it yields standaredreaf an
estimator, it also can compute the confidence walsrof

an estimator [12]. This nonparametric technique is
trustworthy since parametric analysis required agsu

$3¥8P+b,):/ ) tions that are difficult to justifiy [11]. The adutage of
X=TP 4+ E ) the Jackknife is less computationally process [13].

Jackknife is a versatile resampling technique. GdmEc
idea of Jackknife is similar to cross validatiogedure.
In general, the process is performed by deleting @n
several observations at a time and the regressieft ¢
ficients are computed for each subset of data. This
process is repeated in order to get a set of reigres
coefficient vectors [10, 11]. This set of coefficie
vectors gives information about the variabilityvesll as
the standard error of the regression coefficiefise
Jackknife is a useful resampling technique in & aafs

Where T € R™¢is a matrix of latent components,
Q € R7*°and P € RP*“are matrices of coefficients
(loading matrices of response variable and predictc
variables, respectively),E € R"*Pand F € R™are
matrices of random errors. In general, a PLSR aimly
consists of the stages:

Step 1. Centering and scalling process to bothoresp

and predictor variables.
Step 2. Construct a matrix of weights (W) where

WeRP*. _ small sample and minimal assumption [10]. According
Step 3. Construct a matrix of latent componentsaTa [10, 11, 14], the scheme of Jackknife process can b

linear transformation of X, i.e summarized as inFig. 1.
T=XW (3) Let an independently and identically distributechpte
where the columns of W and T are w (Wy, Wy, ...,  of sizen which is used to estimate a param Oteand
w,)" and £= (ty, t, . tn) Thus the equations of linear yjelds an estimatod,. Then, removing a group ah
transformation of X ..., X;... are observations from the sample to get a set of samiple
Ti=wXy+ .+ V%lxp sizen-m andletd,_,,be the estimator of the same para-
To= WXy + .o+ WX, meteré based on a sample of sizen.

Te=wWpeXy + +V\f)c
Step 4. Compute a matnx of component loading Q.
This matrix is obtained from Equation (1) by

The estimated bias 0'9 is reflected from the
difference betwee@ and@
The Jackknife bias is calculated by using the foiim

sing the least squares method Y equation.

usi u ' ) )

Y=YQ' 9 q Buasjaer = (0 — 1) (Bpm — 8,) ©)
Ty — 7T T _

ot = ()’ 0= 0,— Buasjge

QT =(TN'TYQT — D — (n—1VD _ _B
Step 5. Compute a matrix of regression coeffici¢Bjs _ =h-@ 1)@1"’” G
for the Y=XB+F.Since X = TWand Y=xB8 = "~ (= Dbrm ()
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If the size of deleted obsAervatiarm)(is relatively small  variance o, andQ](l).
compared ta, the bias o8, is generally much smaller
than the bias of),,. The bias 09 is Commonly of order
n? while the bias of, is generaIIy of orden™ [10].

B. Jackknife by Deleting m Observations

Suppose the sample is divided irgaroups which are
mutually exclusive and independent with equal size
A. Jackknife by Deleting One Observation wherem>1 andm = n/g. The estimator of parameterby
Let 8, is an estimator of parame#@which is obtained deletingm observations of-th group isf;. In this case,
from a sample of size. Then,§;, is an estimator of the the estimator is obtained based on sample of size n
Lo . The Jackknife estimator by removimg observations is
same parameté by removing the-th observation from . en b
the sample. The deleted one observation Jackknif@V y

estimator is given by: Omy=96,— (g —10m (10)
Oy =18 — (n— Dy, ®  where Omy = g7 29_1 8jy- Thus, b,y is calculated

WhereQ(l) = n_l Z?:lg(i)
The Jackknife variance estimator by deletmg one.
observation based on the pseudo vallf_b(g =né,

based org estimatorsd ;, where eacld;, is obtained
om a sub sample of sizzm. The Jackknife variance
estimator by deletingm observations based on the

(n—1)8), i =12,..,nis given by pseudo valuesf ;) = g 6, — (g — D, i =12,..,9
Fig. 1. The Scheme of Jackknife interval estimafioycess
sz(l) Zz 1y (6(1) _Z}Z:l Q(k))z IS given b)g/ g
_ n-1 2 L ) ) . )
= T Tl 1L(l) 6(1) ) (9) sz(m) = _Z—_ 1 (Q(]_) —_ _Z Q(k))z
~2 . ) P 2 7 p 4
[ ](1)IS a consistent estimator of the asymptotlc j=1 %=1

Fig. 1. TheScheme of Jackknife interval estimat
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- 9_—129_ (g( ) _Q_(m) )2 people in NAD. Increasing number of children agedl O
g “Im= years old will lead to increasing number of pooogie
C. The Jackknife Confidence Interval as much as 0.2054. At the same vein, the additfca o
The (1e)*100% approximate confidence intervals for Single elderly people will increase the number obip
paramete® is given by people around_ 0.2129_). The contribution o_f threeeoth
factors to the increasing number of poor is alntbst
same at around 0.2.

(11)

[9)m) — tegu-nGyamy i Qsom) + tag_nGyom)] (12)
For large sample size, a student’s t distributionver-

ges to a standard normal distribution. V. CONCLUSION

PLSR is a powerful method for modeling data with
IV. APPLICATION TOPOVERTY DATA multicollinearity problem. PLSR yields a point
Poverty data analysis usually involves social \des  estimation while its interval estimation can be
which are many or highly correlated. There are mangonstructed by using Jackknife technique. The Jaitikk
factors that might affect the poverty level in partar  confidence interval also can be used to measure the
area. Some of those factors are demographicalblesia  accuracy of PLSR estimation. The application of RLS
In this case, the PLSR is applied to analyze whetheyng jackknife process to poverty data analysis ADN

number of poor people (Y) in Nanggroe Aceh Darusgpows that all of the coefficients regression poeiiby
salam (NAD) is influenced by number of children dge p| gg gre positively significant to measure numbkr o

0-4 years old (X1), number of worker (X2), numbér o
elderly people (X3), number of school age peopl® wh
are not attending school anymore (X4), and numlifer
people who work on agriculture sector (X5). Theadst

is based on Socio-economic survey 2008 conducted
Statistics Indonesia (BPS).

Table 1 shows the high values of VIF for the ftteee
predictors, since the values are over 10. Thereabs®
some tolerance values which are less than 0.1.€eTho#l]
indicate multicollinearity in data. The PLSR is ds®
analyze data by handling the multicollinearity. Theult [2]
is shown below.

Table 2 illustrates the individual and cumulative[s]
variation accounted for the five PLS factors, fottbthe
factors and the response. There are five principaf!
components can be constructed by fivefactors. In
general, Table 2 shows that the first componentewat
for about 90 % of variation for both factors and
responses. This gives a strong indication that one
component are appropriate for modeling the datas It [6]
confirmed by the cross validation analysis throulgé
Predicted Residual Sum of Squares (PRESS) valu
since model with only one component yields the
minimum PRESS (0.3172). Thus for this case, ongg]
component will be used in analysis. The point estiom
of PLSR based on one component is given in Table ?g
The accuracy of those estimations is measured frem ]
interval estimation of the regression coefficiedtsd the 10
Jackknife technique constructs the interval esionabf
PLSR coefficients (Table 4).

The Jackknife confidence interval shows the intervallll
estimations of PLSR coefficients. It also confirthat
all of the factors (number of children aged 0-4rgezd,
number of worker, number of elderly people, humtier
school age people who are not attending school argm  [13]
number of people who work on agriculture sectog ar
positively and significantly influence the numbémpaor [14]

(12]

poor people in that area. Thus, numbers of childged
0-4 years old, workers, elderly people, school pegple
no longer attending school, and people working on

riculture sector give positive contribution toeth
increase of numbers of poor people in NAD.
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TABLE 1.

TOLERANCE ANDVIF VALUES

Model

Collinearity Statistics

Tolerance VIF
X1 .045 21.987
X2 .020 50.364
X3 .082 12.262
X4 .186 5.380
X5 .205 4871
TABLE 2.
PERCENTVARIATION AND PRESSOFPLSR
Dependent Root
Comp. Model Effects Variables Mean
PRESS
Current Total Current Total
0 1.0936
1 87.8376 87.8376  92.3822 92.3822 0.3172
2 4.7803 92.6179  2.2505 94.6327 0.3424
3 4.343 96.9609 0.5184 95.1511 0.3377
4 2.5368 99.4977 0.5085 95.6596 0.3245
5 0.5023 100 0.5605 96.2201 0.348
TABLE 3.

POINT ESTIMATION OF PLSRCOEFFICIENTS

Parameter Estimates

Values

Bs
B2
Bs
Ba
Bs

0.2054
0.2134
0.2129
0.1893
0.2044

ESTIMATORS OFPLSRCOEFFICIENT

TABLE 4.

Interval Estimators (95%)

Par_ameter Point Estimators
Estimates Lower Upper
Bound Bound
By 0.2054 0.18741 0.21811
B> 0.2134 0.19146 0.23078
B3 0.2129 0.17550 0.23738
B4 0.1893 0.14995 0.24885
Bs 0.2044 0.19046 0.22211

Attachment
SAS Macro Program

9%VACRGacknife(indata=, size=, numf=);

%LET j=0;

%DO %WHILE(&j<=&size);
DATA d_1;SET&indata;
IF _N_=&j THEN DELETE;

ods output CenScaleParms=solution;
proc pls data=d_1 nfac=&numf method=pls detalils;

TITLE Observation &j is deleted.;

model Y = X1 X2 X3 X4 X5 /solution;

run;

proc transpose data=solution out=solution;

data solution;
set solution;

rename COL1 = BetaO COL2 = Betal COL3 = Beta2 COL4

Beta5;
run;

PROC APPEND BASE = JackBeta DATA = solution force;

RUN;

%LET j=%EVAL(&j+1);

%END;
%VEND;
dat a Povll;
input WilCode $ Y X1 X2 X3 X4 X5
datalines;
% ackni f e(indata=Pov11,size=
RUN;

Q@;

23, numf=

1);

= Beta3 COLS5 = Beta4 COL6 =
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dat a value;set Jackbeta;

if_N_= 1;

proct r anspose data=value out=value;
dat a value;set value;

rename Y=0OriValuge;

rename _NAME_=Statistik;

dat a value;set value;

label Statistik="";

dat a Jackbeta;set Jackbeta;

if _N_= 1 then DELETE;

pr ocneans data=JackBeta noprint vardef=n;
var;

output out=stat(drop=_type_ _freq );

pr oct r anspose data=stat out=stat;
dat a stat(drop=COL2 COL3) ; set stat;
rename _NAME_=Statistik;

rename COL1=n COL4=Mean COL5=STD;
dat a stat; set stat;

label Statistik="";

dat a Stat;

merge Stat value;

dat a stat;set stat;

if _N_= 1 then DELETE;

dat a stat;

set stat;
Bias = (n- 1)*(Mean-OriValue);
BiasCorr = OriValue-Bias;
JackSTD = sqrt(n- 1)* STD;
t=  2.074;

BatasBawah=BiasCorr-t*JackSTD;
BatasAtas=BiasCorr+t*JackSTD;
procprint data=Stat;
title "Hasil Simulasi Jackknife PLS";
procexport data=stat
outfile="D:\JackPov11" dbms=excel200
replace;
sheet="JPLS11";
run;
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