
AbstractResearch on the emergence of force 
fluctuations and shaft vibration responses of ocean currents 
turbine generator become a serious concern to the 
researchers. This paper was conducted with the aim of 
investigation into the characteristics of lateral shaft 
vibration of a fixed-pitch vertical-axis ocean current 
turbine (VAOCT). The work was carried out numerically 
and experimentally using tank test. A cantilever type of 
shaft has been used and modeled using finite element 
method, and simulated using lumped mass matrix to obtain 
the vibration characteristics and responses. Variations of 
incoming fluid velocity and the corresponding rotation 
velocity (rpm) of VAOCT were used to identify the pattern 
of lateral displacement responses. Analysis of displacement 
responses at all nodes in x and y-direction at the same time 
was carried out. The presents of displacement shapes 
recognized have close agreement to the 1st mode shape. 
Potential problems on the tip of shaft obviously due to half 
of the force of turbine received concentrated at cantilever 
tip. The pattern of vibration responses from the test data 
shows suitable with simulation. Periodic pattern responses 
resulted from simulation and experiment at the validated 
node produce the minimum displacement error of 14% at 
Var-3 (U=1 m/s) and maximum of 24% at Var-2 (U=0.9 
m/s). 
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I. INTRODUCTION 

esearch on the effect of fluctuations of the force on 
the output power generated by energy conversion 

system from renewable energy sources (wind, ocean 
currents) has become a serious concern among research-
ers [1, 2]. In the case of ocean current turbine system, the 
force of the fluid causes structure to rotate and change its 
orientation to the incoming fluid flow. Force fluctuations 
which follow the turbine during rotation was strongly 
influenced by foil’s position to the incoming flow and 
become potency of vibrations on the turbine shaft. The 
use of fixed-pitch not allowed foil to change its relative 
position to the arm.  

This paper discussed the characteristics of lateral 
vibration on the main shaft of vertical-axis ocean current 
turbine with the use of fixed-pitch blade. A cantilever 
type of shaft was used and modeled using finite element 
method. Simulation was carried out using lumped mass 
matrix in the Matlab package to obtain the natural 
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frequencies, mode shapes and deflection of vibration 
response. Fourier force function used in the simulation 
was taken from force fluctuations data obtained at 
previous CFD simulation by Hantoro, et al [3, 4]. 
Experiment was conducted as validation of the 
simulation results at a node of the finite element model. 

II.  THEORIES AND LITERATURE REVIEW 

For dynamic response analysis, a linearized finite 
element model was employed to establish a control 
scheme for rotor systems [5]. The finite element method 
was also applied to a complex rotor system to evaluate 
its vibration response due to fluid forces [6], and 
gyroscopic moments [7]. Although early dynamic 
models of rotor systems were formulated either 
analytically [8] or using transfer matrix approach [9], the 
potential of the powerful finite element technique was 
recognized at a very early stage [10]. In general, a 
structure is analyzed as a system of continuous or 
discrete systems (lumped system). A uniform structures 
like rod can be more appropriate if treated as a 
continuous system. Finite element method in fact can be 
called a combination of two methods, namely the 
continuous and discrete elements in the level of general 
coordinates.  

In this study, the vertical axis turbine is modeled as a 
system consisting of the shaft which is divided into 10 
elements. Three foils as producer of excitation force rests 
at two points on the shaft (node-3 and node-10), as 
shown in Fig. 1. With the total length of 1400 mm, each 
element has length of 140 mm. Magnetic probe sensor 
(eddy currents) is placed at node-1 in the x and y-
direction with a distance of 140 mm from the bearing 
(node-1) in order to obtain displacement data. Parameters 
of flexible cantilever shaft turbine with specified 
stiffness used in simulation and experiment are: 

 
TABLE 1. 

MATERIAL SPECIFICATIONS 
- shaft material : SS304 

- modulus elasticity (E) : 200 GPa 

- shear modulus (G) : 86 GPa 

- shaft dimension : Length 1400mm,  
diameter 44.5 mm 

- density : 8000 kg/m3 

 
The element stiffness matrix can be developed using 

basic strength of materials techniques to analyze the 
forces required to displace each degree of freedom a unit 
value in the positive direction. Using the degrees of 
freedom of element stiffness matrix results in the 
following element stiffness matrix: 

 
The element stiffness matrix can be developed using 

basic strength of materials techniques to analyze the 
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forces required to displace each degree of freedom a unit 
value in the positive direction. Using the degrees of 
freedom of element stiffness matrix results in the 
following element stiffness matrix: 
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 (1) 

For cantilever beam with two element model with one 
end not allowed to move, it is necessary to eliminate the 
degree of freedom. Elimination made to the rows and 
columns which correspond to the constrained global 
degrees of freedom, reducing the global stiffness matrix 
to a 4x4 matrix, resulting as in Equation (2). 
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(2) 

The same method can be performed on the number of 
element more than two with considering of the comput-
ing capability to perform high order matrix operations. 
For a beam which is modeled with finite element method 
there are several method to form the mass matrix, name-
ly: (a) lumped mass for the translation, (b) lumped mass 
for the translation and rotation,  and (c) consistent mass - 
distributed mass effects. The parameters of mass and 
inertial mass matrix element connecting rods in the iner-
tial load point to point and given the acceleration in the 
diagonal matrix. Equation (3) shows the lumped mass 
matrix (LM), including translation and rotation, 
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With the acquisition of mg and kg then the eigenvalue 

problem for homogeneous equations of motion can be 
writen, 
���� + ��� = [0]                                                           (4)  

Fourier-force function are used to obtain the vibration 
response with respect to time and the external forces 
acting on the shaft. It is obtained by making Equation (4) 
becomes, 
������[�̅] = [��]                                                                     (5) 
and all nodes in the deviation of  z is, 
[�̅] = ������

��
[��]   (6) 

CFD simulation performed on previous research by 
Hantoro et al. [4] have resulted the pattern of force 
fluctuations in variations of flow velocity and rotation 
speed of turbine. Limited variations due to carriage 
capability that are performed in this study  are shown in  
Table 2. The increment of incoming fluid velocity (U) 
and rotation velocity (rpm) is compared and shows a 
linear correlation. 

TABLE  2. 
TOWING  TANK  VARIATIONS  TEST 

Variation U (m/s) RPM 
Var-1 0.8 37 
Var-2 0.9 39 
Var-3 1 42 

Force fluctuation patterns appear in a full rotation at all 
variations classified in two directions as defined in Fig. 
2. Simulation of lateral vibration on the main shaft for 
every variation was performed in two directions, namely 
in x and y-direction. Force in x-direction is the force 
acting on a rotating turbine in the same direction with the 
incoming fluid flow, while the y-direction is for the force 
that is perpendicular to the incoming fluid flow. 

The resulted force fluctuations of turbine for all 
variations which are acting on the shaft provides periodic 
pattern as shown in Fig. 3. 

The use of fixed pitch foil on turbine results periodic 
fluctuation pattern in Fx and Fy, with three periods in a 
full rotation. A period of fluctuation occurred at the 
position of azimuth (θ) in 1200 interval. The number of 
foils used in this study were three foil and give the 
distances between them of 1200. Therefore, it can be 
concluded that the periodicity of fluctuation pattern in a 
vertical axis turbine is correlated to the distance between 
the foils used. 

Fourier force function modeling performed by taking a 
period (T) of fluctuation patterns, coefficients a0, an, and 
bn were obtained with the equation : 
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(9) 

The coefficient of a0, an, and bn produced by perform-
ing n iterations to obtain the sum of sine and cosine 
functions in accordance with the pattern of force 
fluctuation. Rearrange these coefficients resulting Fou-
rier equation functions of the force versus time in the 
form of, 
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Results of modeling achieve agreement to fit after the 
6th order iterations. Plots of Fourier force function fluc-
tuations performed with Matlab provides good agree-
ment compared with the results of force fluctuation from 
CFD data simulation. Fig. 4 shows an example of the 
suitability at Var-2 variation. 

The natural frequency (ωn) was obtained by 
solving the roots of the determinant of the 
equations of motion using, 

]0[]][[ =zkm gg
                  (11) 

]det[ ggn km=ω                   (12) 

Coupling between elements gives the degrees 
of freedom two times the number of elements, 
resulting 20 varieties of natural frequency as 
shown in Fig. 5 and Table 3.The first three of 20 
mode shapes that occurred is shown in Fig. 6.  



Modes are associated with structural resonances. The 
majority of structures can be made to resonate. That is, 
under the proper conditions, a structure can be made to 
vibrate with excessive, sustained motion. Resonant vi-
bration is caused by an interaction between the inertial 
and elastic properties of the materials within a structure. 
Furthermore, resonant vibration is the cause of, or at 
least a contributing factor to, many of the vibration 
related problems that occur in structures and operating 
turbine. 

In eigen problems of finite element analysis, both 
stiffness and mass matrices are, in fact, functions of 
natural frequencies. In the analysis, however, the natural 
frequencies are not known a priori. Hence, the static 
stiffness and mass matrices are employed to obtain the 
natural frequencies, which can be good approximations 
for the lowest modes.  

Usually, the highest frequencies are considered to be 
less important in finite element dynamic analysis. Firstly, 
it is difficult, using the finite element method, to 
calculate the exact values in a continuous structural sys-
tem which has an infinite number of degrees of freedom. 
Secondly, the highest frequencies may not have any 
practical meaning in large finite element systems when 
the real structures do not vibrate with those high 
frequencies.  

In bending vibrations, higher modes have many points 
of zero displacement which are called nodes. As the 
number of nodes increases with each mode, severe 
wrinkling can occur in the vibration mode shape. Hence, 
for the highest modes, the effect of shear deformation 
and rotation may not be neglected and the simplified 
theory of beam bending is no longer valid. 

III.  METHOD  

Experiments included the manufacture and testing of 
the work piece was carried out at the towing tank facility 
at Hydrodynamics Laboratory, Faculty of Marine Tech-
nology ITS, with specifications:  
1. Length 50 m, 
2. Width 3 m,  
3. Depth 2 m. 

The foil chord was set at 100 millimetres, with span of 
1000 mm giving aspect ratio of 10, and 500 mm arm to 
the shaft. The turbine was designed with three foils. The 
NACA 0018 profile was chosen as the foil section with 
data from Sheldahl and Klimas [11]. This section is 
commonly used for Darrieus turbines. Its relatively high 
thickness to chord ratio gives it good strength in bending. 
The radial arms of the turbine were made from high 
strength aluminium. Turbine shaft using cantilever type 
with one end fixed by the bearing and the other end free 
(overhanging) as shown in Fig. 6. 

Data collection was conducted with the same variation 
as mention in Table 1. The use of fixed-pitch was not 
allowed foil to change itsrelative position to the arm, as 
shown in Fig. 9. 

Magnetic probe sensor (eddy currents) is placed at 
node-1 in the x and y-direction with a distance of 140 
mm from the bearing in order to obtain displacement da-
ta (Fig. 10). Data collection was performed after towing 
tank carriage speed has stable with time sampling of 0.01 
second. 

Data collecting during test performed during the tur-
bine move along the carriage. Displacement data of tur-
bine shaft vibration taken at the position corresponding 
to the location of the node-1 infinite element modeling.  

Displacement of shaft for on erotation of the measured 
data in x and y-direction was obtained in time domain(t). 
Data for on rotation is provided by synchronization and 
matching time of the carriage velocity chart in the 
control room, time of video recorded, and the timeof 
displacement data which recorded in data logger. 

IV.  RESULTS AND DISCUSSION 

Resulted displacement from simulation at all nodes at 
the same time indicating the possibility of mode shape 
occurance. Fig.11 and Fig. 12 shows sample the dis-
placement resulted at all nodes in x and y-direction for 
all variations at ti = 1, ti = 10, ti = 30. Similar mode of dis-
placement at all node was presented for all variations in 
x and y-direction, and these modes recognized  have 
close agreement to the 1th mode shape resulted from 
simulation (Fig. 6.(a)). 

Changes in inter-elements in the node-9 to give 
significant difference when compared to the other nodes 
(Fig. 11 and Fig. 12). This indicates that the use of the 
cantilever shaft for vertical-axis ocean current turbine 
gives potential problems on the tip of shaft. It is obvious 
due to half of the force received on turbine concentrated 
at cantilever tip. 

Vibration response generated in the simulation and 
testing in all variations and directions gives a periodic 
pattern follows the force pattern on the turbine shaft (Fig. 
13, Fig. 14, and Fig. 15). Displacement resulted at node-
1 from the test provide lower values compared with 
simulation.  

Responses of displacement appears in x-directionare 
consistent inpositive value. According to the definition 
of the direction of displacement which has been 
described previously, the position displacement is always 
in the region of x +. Displacement at this area generated 
by the excitation force resulted form interaction between 
the incoming fluid and foils according to the position at 
the azimuth as the turbine rotates. This indicates that 
turbine shaft always experience lateral bending along its 
rotation.  

Different direction of vibration response in y-direction 
showing strong influence of lift force generated by fixed-
pitch foil as force producer for vertical-axis ocean 
current turbine. Real displacement obtained using simple 
Pythagoras formula for displacement in x and y-
direction. The average error between the 
simulation and measurement at each of 
variation are given in Table 4.  

Lumped mass matrix is a method by which dynamic 
coupling that appears in various degrees of freedom 
between the elements are not considered. However, since 
the mass matrix has the form of diagonal lumped, the 
computing time required in the shorter term. Moreover, it 
is well known that lumped mass matrices over estimate 
the mass effect and hence give higher value of vibration 
response than the exact ones. 



V. CONCLUSIONS 

Simulation and testing of lateral shaft 
vibration of fixed-pitch vertical-axis ocean 
current turbine has been performed. Finite 
element method and lumped mass matrix was 
used to perform vibration respond. The present 
of similar mode of response displacement at all node 
recognizedhave close agreement to the 1st mode shape 
resulted from simulation. Resulted displacement from 
simulation at all nodes in the same time indicating the 
present of critical part at node-9. 

Turbine shaft always experience lateral bending along 
its rotation and strongly affected by the excitation force 
resulted form interaction between the incoming fluid and 
foils to the azimuth position. Potential problems on the 
tip of shaft obviously due to half of the force of turbine 
received concentrated at cantilever tip. 

The use of eddy currents sensor for displacement 
measurement has given consistent response pattern com-
pared to simulation results with the maximum displace-
ment error of 24% at Var-2 (U = 0.9 m/s) and the 
minimum of 17% at Var-3 (U = 1 m/s) in x and y-
direction. 

Displacementtest data at node-1 shows discretized 
pattern, i.e sensor reading in the form of magnetic induc-
tion in the interval range of 0.001 mm. This resulted in 
the polarization of displacement values generated. When 
the induction was slightly above or below one of the 
intervals above the limit, the excess or lack of value will 
be truncated. 
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TABLE 3. 
 NATURAL FREQUENCY OF  TURBINE SHAFT 

Mode ωn (Hz)  Mode ωn (Hz) 
1 0.8  11 135.1 
2 4.6  12 155.8 
3 12.6  13 175.6 
4 23.9  14 193.9 
5 38.1  15 210.5 
6 54.7  16 224.9 
7 73.3  17 236.9 
8 93.3  18 246.5 
9 114.1  19 253.4 
10 135.1  20 257.7 

 
TABLE 4. 

AVERAGE ERROR FOR ALL VARIATIONS 

U (m/s) 
Average Error (%)  

x-direction  
Average Error (%) 

y-direction 

0.8 18% 18% 

0.9 24% 24% 

1 17% 17% 



 
Fig. 1. Finite element model of vertical-axis turbine 

 

 
(a) 

 
(b) 

Fig. 3. Fluctuation pattern of the force at all variation, (a) x-direction, 
(b) y-direction 
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Fig. 2. Definition of the lateral direction of the force and the vibration 

on the main shaft of turbine 

 

 
 

(a) 
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Fig. 4. The suitability of the force fluctuation pattern at Var-2 
variation,(a) x-direction  (b) y- direction 

 

 

Fig. 5. Natural frequency of turbine shaft 
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Fig. 6. First three mode shapes of main turbine shaft 

 
 

Fig. 7. Towing tank facility at FTK ITS 

 

 
Fig. 8. Vertical-axis turbine withthree straight foils 

 

 

Fig. 9. Fixed-pitch position relative to arm 

 

 

 
 
 

Fig. 10. Installation of Eddy current sensorsto the turbine shaft 
 

 



 
(a) 

 
(b) 

 
(c) 

Fig. 11. Displacement in x-direction at all nodes for  all variations at (a) 

ti = 1, (b) ti = 10, (c) ti = 30 
 
 
 

 
(a) 

 
(b) 
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Fig. 12. Displacement in y-direction at all nodes for  all variations at (a) 

ti = 1, (b) ti = 10, (c) ti = 30 

 

 
(a) 

 
(b) 

Fig. 13. Responses at node-1 at Var-1, (a) x-direction,(b) y-direction 
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(a) 

 
(b) 

Fig. 14. Responses at node-1 at Var-2, (a) x-direction, (b) y-direction 
 

 
(a) 

Fig. 15. Responses at node-1 at Var-3, (a) x-direction, (b) y-direction 
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