
 IPTEK The Journal for Technology and Science, Vol. 29(2), August. 2018. 2088-2033 (pISSN: 0853-4098) 56

Generating Requirement Dependency Graph

Based on Class Dependency

Hernawati Samosir1, Daniel O. Siahaan2

Abstract⎯A set of software requirements is an important element in software development. Engineers realize that

requirements are interrelated. The interconnections between requirements indicate interdependences between

requirements. This interdependence is crucial in decision-making processes of requirements engineering, such as a

requirements change management, version launch plan, and requirements quality control. Researchers have been focused

on visualizing dependency between requirements, analyzing the impact of changes in software by using changes to UML

class diagrams, and predicting bug occurrences based on dependencies between requirements. Previous studies assumed

that the requirements dependency information was pre-build by requirements engineer during the previous development

process. This paper introduces a method that builds a requirements dependency model. The model was built based on

realization associations between requirements and classes in the system design as well as dependencies between classes. The

modeling process used semantic similarities between the requirements and the classes. A class is said to have a realization

association with a requirement if and only if the semantic similarity is higher than a certain threshold. The output obtained

from the dependent software development method was compared with the output produced by annotators. The method

reliability was measured by the level of agreement between the method and the annotator using kappa statistical index. The

preliminary result shows that the method was fair agreement (0.37) reliable as an annotator when generating requirements

dependency graph.

Keywords⎯ class dependencies, requirements, requirements dependency graph, semantic similarity, threshold.

I. INTRODUCTION1

oftware requirements engineering is a series of

activities includes eliciting, specifying, validating,

and managing software requirements. Those activities

produce a requirement specification document. It is an

iterative and revolutionary process which occurs

throughout the development process. Requirements

change could happen during the development process.

Requirements change statements may affect other

requirement statements inevitably. There are several

reasons why it is needed [1]. First, dependency

requirement can be used to anticipate the impact of

changes that occur if a requirement changes. Second, by

knowing the impact of changes in a requirement to the

other requirements, project manager could estimate the

total cost due to the impact of a single requirement

changes. Lastly, in the development of a requirement

recommendation system, the developer can looks for

other depending requirements given a predefined

requirement. Interdependence requirements provide

necessary information as how requirements

dependencies affect activity in software engineering and

how interdependence knowledge can facilitates software

development.

This paper introduces a methodology to model the

impact of requirement changes of a software project. The

modelling process produces a requirements dependency

graph which is built based on class dependency

1 Hernawati Samosir Informatics Department,

Institut Teknologi Del, Toba Samosir, Indonesia
2 Daniel O. Siahaan Informatics Department,

Institut Teknologi Sepuluh Nopember, Surabaya,

Indonesia

e-mail: 1 hernawati@del.ac.id, 2 daniel@if.its.ac.id

information extracted from class diagrams. The process

of generating the model can be taken place after each

iteration within a software development cycle. Classes in

the class diagram, as a realization of previously defined

software requirements, are mapped to a set of

requirements from the respective software project. This

mapping is based on class-requirement semantic

similarity and dependencies between each class.

There are a number of studies related to the graph

modeling dependencies [2]–[6]. Widiastuti and Siahaan

(2008b) introduced the visualization of requirements

dependency in Labeled Transition System for

Requirement Change (LTS-RC). LTS-RC is a state

transition system of requirement changes which is

helpful to visualize the requirements dependency in term

of transitions of changes in requirements. The labels

represent a predefined weight of changes dependency

between requirements. The visualization facilitates the

stakeholders to observe the flow of requirements changes

and their impact. This method can play a role in the

preparation of an optimal need of change strategy [7].

Furthermore, Muller and Rumpe analysed software

changes impact by using some changes in UML class

diagrams [8]. This study models the impact of changes

by using dependencies information between classes. If

there is any change, the proposed model is expected to

identify the object changed and also its impact. However,

this study does not relate the change impact with the

level of requirement. In addition, Wang and Wang

investigated how the requirements dependencies

correlate with software integration bugs and predict the

bugs [9]. This study provides early estimation regarding

software quality and

S

IPTEK The Journal for Technology and Science, Vol. 29(2), August. 2018. 2088-2033 (pISSN: 0853-4098) 57

facilitate decision making process early in the software

lifecycle.

II. METHODOLOGY

This section explains the method to produce

modelling requirement dependency. The steps of the

methodology proposed are described as follows.

1. Prepare the requirement data and class diagrams,

2. Mapping the requirements and classes,

3. Generate the dependencies based on class

dependencies,

4. Generate the requirement dependency model

Figure 1 explains that SRS documents and class

diagrams are inputs to the dataset. Two datasets element

used are requirements statement and class information

like class names, attributes and methods. The next step is

pre-processing for both inputs. Furthermore, this process

generates two types of data, namely: text of requirement

and text of class. Value of similarity of those texts is

calculated. Furthermore, next process is mapping

requirements and class to generate requirement

dependency graph. The output of this process is

requirement dependency graph.

The detail of those methods is described as follows:

a) Prepare the requirements data and class diagrams.

The Software Requirement Specification (SRS) is

used to define the requirement data. This requirement

data includes the requirement statement and class

diagram. For the sake of illustration, a library system is

used as an example. Table 1 lists the requirements of the

library system. The first column is the requirements

identity. The 'F' alphabet in the first character indicates

that the respective requirements is a functional

requirement statement.

TABLE 1
LIST OF REQUIREMENTS STATEMENT

ID Requirements Statement

F01 Patron or Library can manage account

F02 Patron or Library can search catalog

F03 Patron or Library can reserve book item

F04 Library can renew book item

F05 Patron can provide feedback

Figure 1 shows the classes that become part of the

requirement list. The library system has 10 classes and 2

interface classes. There are Book, Author, Book Item,

Account, Library, Catalog, Patron, Librarian, Account,

and Library. The interface classes are Search and

Manage.

The next step is mapping each functionality to a class

in the class diagram. The mapping of each class in class

diagram is shown in Table 2. Each requirements

statement and class are pre-processed. Pre-processing

aims to convert the text input of the requirement

statement and text of the class diagram information into

current format for the further analysis. The pre-

processing includes cleaning process to remove the noise

[10]. In the general process, the text must be proceeded

first. Unnecessary elements in the text such as: symbols,

punctuation, spaces, conjunctures and affixes is needed

to be omitted. This process will help in processing and

analysing the text for the next process.

The pre-processing phase is shown in Figure 3. The

first step is splitting the text into set of words. This step

is also known as tokenization. The letters in the alphabet

is converted to the lowercase. Furthermore, punctuation

removal is used to omit numbers, symbol. The last step is

stemming. This step is to remove conjunction and

affixes. This will result the only important words. There

are two types of the input text: the requirement statement

and the information of class diagram including the code,

class name, attributes and methods. The required

statement text is stored in the txt file that contain the

requirement statement. This file is shown in Figure 4.

The text in the class diagram is also stored in a

txt formatted file. From the list of classes that have been

provided previously, the text is separated based on the

code, class name, attributes, and methods. This is shown

in Figure 5. The following illustrates how the pre-

processing was carried out on (F01) "Patron or Library

can manage account".

Figure 1 Modeling Requirements Dependencies Method

IPTEK The Journal for Technology and Science, Vol. 29(2), August. 2018. 2088-2033 (pISSN: 0853-4098) 58

Figure 2. Class Diagram of Library

TABLE 2

MAPPING OF EACH CLASS IN THE CLASS DIAGRAM

ID Class Attribute Method Type

C01 Book ISBN, name, subject, overview,

publisher, publicationDate

- Class

C02 BookItem Barcode, tag, ISBN, subject, title, lang,

numberOfPages, format, borrowed,

loanPeriod, dueDate, isOverDue

- Class

C03 Author Name, biography, birthdate - Class

C04 Account Number, history, opened, state - Class

C05 Library Name, address - Class

C06 Patron Name, address - Class

C07 Librarian Name, address, position Class

C08 Catalog - - Class

C09 Search - - Interface

C10 Manage - - Interface

IPTEK The Journal for Technology and Science, Vol. 29(2), August. 2018. 2088-2033 (pISSN: 0853-4098) 59

Figure 3. The Phase of Pre-processing Text

Figure 4 Text of Requirement List

Figure 5 Text on The Class (Class ID, Class Name, Attributes and Methods)

b) Mapping the requirements and classes

To map the requirement into the class, first a matrix

of m×n is created. The m denotes the number of

requirements, while the n denotes the number of class.

Any information of a class, such as ID, names, attributes,

and methods should be mapped against the existing

functionalities of the library system. The similarity value

of each text in the class diagram information should be

mapped to the text on the requirement list. Table 4 shows

an ilustration on how the mapping between a class (CO1)

and a requirements statement (F01) is done.

The value of word similarity from each column (text

of requirement) and row (text in class) was obtained

using Wu-Palmer's word similarity method. Since the

method relies on Wordnet Thesaurus, the method would

only return valid values on word pairs that are the same

word type (part of speech). Therefore, for word pairs

that are different word type, our solution used

Levenshtein Distance as word similarity method. The

similarity between the requirements statement (F01) and

the class (C01) was obtained using Greedy Algorithm

Text in
functionality

and class
Tokenization

Convert text data to
lowercase

Eliminate numbers,
symbols and space

Stemming
Text to be
processed

Start

Finish

IPTEK The Journal for Technology and Science, Vol. 29(2), August. 2018. 2088-2033 (pISSN: 0853-4098) 60

[11]. The algorithm start by selecting a cell with the

highest value, i.e. cell of ‘publication-library’-pair. The

rest of cells of the same column and rows are removed. If

there are still cells exist, the process is repeated. If no

more cell left to be selected, the process stops. Given

Table 4, the grayed cells are the best set of cells with the

highest possible values according to the algorithm. The

result of similarity is shown by Equation 1.

TABLE 3

RESULT OF REQUIREMENTS STATEMENT AND CLASS AFTER PRE-PROCESSING

Req. ID Req. Token Class ID Class data

R01 patron; library;

manage; account

C01 book;isbn; name subject;

overview; publisher; publication; date

R02 patron library

search catalog

C02 book; item barcode tag isbn subject

title langnumberofpages format

borrowed loanperiodduedateisoverdue

R03 patron library

reserve book

item

C03 author name biography birthdate

R04 library renew

item

C04 account number history opened state

R05 patron provide

feedback

C05 library name address patron name

address

 C06 librarian name address position

C07 catalog

C08 search

C09 manage

TABLE 4

THE WORD SIMILARITY VALUES BETWEEN C01 AND F01

ID
Class/

Attribute

FO1 (Patron Library manage account)

patron library manage account

C01

book 0.38 0.52 0.00 0.12

Isbn 0.00 0.00 0.00 0.14

Name 0.14 0.13 0.50 0.31

Subject 0.15 0.14 0.00 0.50

Overview 0.13 0.13 0.00 0.43

Publisher 0.12 0.11 0.00 0.25

Publication 0.40 0.56 0.00 0.13

Date 0.14 0.13 0.33 0.31

Sim 𝑆𝑚𝑥𝑛 =

2 × (∑ 𝑚𝑎𝑘𝑠 𝑡𝑜𝑘𝑒𝑛𝑆𝑖𝑚|𝑚𝑖||𝑛𝑖|
min[𝑚][𝑛]
𝑖=1)

𝑚+𝑛
 (1)

 =
2 × (0.56+0.50+0.50+0.38)

(8+4)

 =
1.94

12

 = 0.32

By using Equation 1, the obtained matrix results from

C01 and F01 is 0.32. This calculation was carried out on

all pairs of requirements statement and class. This

process produces

The similarity value of all requirements-class pairs

are stored in into a matrix as shown in Table 5. The next

step is determining which pairs are considered correct

pair, i.e. the class realizes the requirements. To

determine the correct pairs, this method uses a threshold.

Any pair that has similarity value higher than the

threshold should be considered correct pair. In this

experiment, the value of the threshold was defined based

on expert judgement, i.e. 0.40. As shown in Table 5,

cells marked bold are considered correct pairs. For

instance, C01 is considered realizing requirements F03

and F04. The same interpretation applies on the rest of

bolded cells.

TABLE 5

REQUIREMENTS-CLASS SIMILARITY VALUES

ID F01 F02 F03 F04 F05

C01 0.32 0.33 0.43 0.44 0.18

C02 0.21 0.22 0.30 0.28 0.10

C03 0.56 0.27 0.37 0.35 0.29

C04 0.42 0.25 0.21 0.30 0.21

C05 0.54 0.36 0.46 0.53 0.30

C06 0.44 0.37 0.46 0.36 0.39

C07 0.47 0.28 0.40 0.42 0.31

C08 0.20 0.40 0.32 0.38 0.18

C09 0.11 0.40 0.11 0.13 0.08

C10 0.40 0.16 0.07 0.09 0.14

IPTEK The Journal for Technology and Science, Vol. 29(2), August. 2018. 2088-2033 (pISSN: 0853-4098) 61

Given the result in Table 5, the method produces

Table 6. This table describes all requirements with its

respected implementation classes. A check mark (√)

denotes the a requirement was implemented by a specific

classes. One requirement statement may be realized by

one or more classes. One class may realize one or more

requirements. F01 is implemented by C03, C04, C05,

C06, C07 and C10. F02 is implemented by C08 and C09.

F03 is implemented by C01, C05, C06, C07. F04 is

implemented by C01, C05 and C07. According to the

experimentation, a class may have no correct pair with

any requirements, as well as a requirement may have no

correct pair with any class. This may happen due to the

following two situations. First, the designer missed a

requirements statement. Second, the requirements

engineer failed to identify a necessary feature during the

requirements specification process.

c) Generate the dependencies based on class

dependencies

The next step is mapping the source class (source)

into the destination class. The relation between the

source class and the destination class is taken from the

class diagram. The mapping results of each class toward

to the other classes shown in Table 7 should be mapped

again to the available functionality in the system. Table 7

shows the dependency in the class diagram. There are a

number of dependencies of class diagram, i.e. s, c, h, i, u.

The s stands for specializes, h stands for has (strong

aggregation), c stands for contain (weak aggregation), u

stands for uses, i stands for implements, and d stands for

dependency. For example, the relation between C02 and

CO1 is specialization, the relation between C03 and C01

is weak aggregation, the relation between C05 and C08

is strong aggregation, and the relation between C07 and

C09 is dependency.

d) Generate the requirement dependency model.

After getting the result of class relations from the

class diagram, the destination class should be mapped to

the requirements statement list based on the class

dependencies. Table 8 represents mapping the

dependency between one functionality and other

functionality. For instance F01 has a strong aggregation

with F02. F01 correlates weak aggregation with F03 and

F04. F03 and F04 have the same relation to F01, that is

weak aggregation and uses. F03 and F04 have the same

relation to F02, which is strong aggregation and uses.

Table 8 shows that the relation between functionalities

based on class dependencies. For example: From the

table, it is known that the relation F01 to F02 is "h"

(strong aggregation). The strong aggregation relationship

is derived from the following steps:

1. From Table 6 it is known that F1 is implemented

by C03, C04, C05, C06, C07 and C10 or F1 =

{C03, C04, C05, C06, C07, C10},

2. One of the functionalities used is F01 implemented

by C05 (see step 1). Then in Table 7 it is known

TABLE 6

MAPPING THE CLASS AND REQUIREMENTS

ID F01 F02 F03 F04 F05

C01 ✓ ✓

C02

C03 ✓

C04 ✓

C05 ✓ ✓ ✓

C06 ✓ ✓

C07 ✓ ✓ ✓

C08 ✓

C09 ✓

C10 ✓

TABLE 7.

RELATION AMONG CLASS IN CLASS DIAGRAM

Source class Destination class

C01 C02 C03 C04 C05 C06 C07 C08 C09 C10

C01

C02 s

C03 c

C04 c

C05 c c h

C06 u

C07 u u

C08 c i i

C09

C10

TABLE 8

 MODEL DEPENDENCIES BETWEEN REQUIREMENTS

Destination

S
o

u
r
ce

Requirements F01 F02 F03 F04 F05

F01 h c c

F02

F03 c,u h,u

F04 c,u h,u

F05

IPTEK The Journal for Technology and Science, Vol. 29(2), August. 2018. 2088-2033 (pISSN: 0853-4098) 62

that C05 has "c / weak aggregation" relation to

C02, C04, C08,

3. In Table 6 it is known that C02 is not implemented

by any functionality, C04 is implemented by

functionality 1 (F01), C08 is implemented by

Functionality 2 (F02). It denotes F01 has "h (strong

aggregation)"relation to F02.

Detail description of Table 8 is presented in Table 9.

This table represents the dependencies between the

requirements obtained based on the inter-class

dependencies on the class diagram. The weak

aggregation relationship is not included in Table 9

because there is no pair definition about that relation

previously.

Furthermore, the type of dependency used in this

research were adopted from Dahlstedt (2001). It

describes several dependency types within requirements.

Part of those dependencies are described in Table 10.

After analyzing those dependencies between

requirements [12] and diagram class, a number of

dependencies were considered relevant with the

respected case, i.e. class diagram dependencies. The

relevant types are: and, requires, and temporal. The

detail of that pair of requirement and class diagram

dependency is described in Table 11.

Given the result from Table 6 and 7, the requirements

dependency can be derived based on the pre-defined

mapping as shown in Table 11. The results of dependency

mapping requirements based on class diagram

dependencies can be seen in Table 12.

III. RESULTS AND DISCUSSION

The results of the requirements dependencies can be

represented as a graph of requirement dependency model.

Figure 6 shows the requirements dependency graph of the

library system. The dependency graph consists of source

and destination requirements. The graph shows

dependency model between requirements which is

formed in library system case study. The dependency

model obtained from the previous figure was visualized

as a graph. The graph consists of a node of origin,

destination and direction. Node represents requirements

statement, the directed line represents the relation

between source and destination requirements statements.

Then, Table 13 shows that propose method is the smallest

value than the others experts. Proposed method has 0.37.

The higher value is from the third expert, which

agreement value is 0.82.

TABLE 9.

RELATION OF FUNCTIONALITY BASED ON AMONG CLASS RELATION

No. Source Functionality Relation Destination

Functionality

1. F01 strong aggregation F02

2. F03 Uses F01, F02

3. F04 Uses F01, F02

4. F03 strong aggregation F02

5. F04 strong aggregation F02

TABLE 10

REQUIREMENTS DEPENDENCY

Id Type Description

1. and (R1 dan R2) R1 requires R2 to function, dan R2 requires R1 to function

2. requires (R1 requires R2) R1 requires R2 to function, but not vice versa

3. temporal (R1 temporal R2) Either R1 must be implemented before R2 or vice versa

4.
cvalue (R1 CVALUE R2)

R1 affects the value of R2 for a customer. Value can be either

positive or negative.

5. icost (R1 ICOST R2)
R1 affects the cost of implementing R2. Value can be either
positive or negative

6. or (R1 OR R2) Only one of R1 and R2 can be implemented.

TABLE 11

MAPPING REQUIREMENT DEPENDENCY AND CLASS DIAGRAM DEPENDENCY

Id Requirements dependency Diagram class dependency

1. and (r1 and r2) Implements
2. requires (r1 requires r2) strong aggregation

3. temporal (r1 temporal r2) uses, strong aggregation

TABLE 12.

DEPENDENCY OF REQUIREMENTS

No. Source functionality Relation Destination functionality

1. F01 requires, temporal F02
2. F03 temporal F01, F02

3. F04 temporal F01, F02

4. F03 requires, temporal F02
5. F04 requires, temporal F02

IPTEK The Journal for Technology and Science, Vol. 29(2), August. 2018. 2088-2033 (pISSN: 0853-4098) 63

Figure 6. Graph of dependency model requirements

TABLE 13

GWET AC1 RESULT FROM 4 DATASET

 Expert 1 Expert 2 Expert 3
Proposed

Method

Combined

Experts
Average

Expert 1 ////////// 0.27 0.41 0.13 0.60 0.27

Expert 2 0.27 ////////// 0.52 0.43 0.71 0.41

Expert 3 0.41 0.52 ////////// 0.25 0.82 0.40

Proposed

Method
0.13 0.43 0.25 ////////// 0.37 0.27

The purpose of the small scale experimentation

was to answer whether the proposed method was as

reliable as an expert in creating requirements

dependency graph given a set of project artifacts, i.e.

requirements statements and class diagram. In this

research, the questionnaire was disseminated to

three experts. These experts served as annotators.

They annotated every pair of requirements and

classes that were considered as implementation class

of a respected requirements statement. In addition,

annotators also annotated interrelated pairs of

requirement with their dependency types. These

experts have at least working experience in software

requirement engineering or course teaching related

to software engineering.

The reliability of the proposed method is

measured by calculating the level of agreement

between the method and the experts. This level of

agreement calculation was based on the kappa

statistic method, which is Gwet's AC1. The method

was treated as one of the experts whose answers

would be compared against the other human experts.

The result shows that the method has moderate level

of agreement with the three human experts. The

reason is because the expert were able to identify

more dependencies between requirements. This may

be due to the fact that the expert has implicit

knowledge with respect to the domain problem. This

implicit knowledge is unknown to the method.

IV. CONCLUSION

Proposed method can identify a number of

dependency types between requirements. Although

the method was in fair agreement level of

agreement with the human expert, where Gwet’s

Ac1 is 0.37. This is because the method only used

explicit knowledge, i.e. requirements statements

and class diagram, of the respected project. Further

work would be involving more artifact within the

software project. These artifacts, i.e. use case

diagram, sequence diagram, component diagram,

etc., may provide additional dependency

information that can be used by the method to

identify different type of requirements dependency.

V. ACKNOWLEDGEMENT

The authors thank Informatics Department,

Institut Teknologi Sepuluh Nopember who support

this research and Institut Teknologi Del which have

given financial support to the research.

REFERENCES

[1] A. G. Dahlstedt and A. Persson,

“Requirements Interdependencies : State of the

Art and Future Challenges,” Eng. Manag.

Softw. Requir., pp. 95–116, 2005.

[2] M. Widiastuti and D. Siahaan, “Mapping the

Impact of Requirement Changes Using (LT-

RC),” in 4th International Conference

Information & Communication Technology

IPTEK The Journal for Technology and Science, Vol. 29(2), August. 2018. 2088-2033 (pISSN: 0853-4098) 64

and System, 2008, pp. 315–319.

[3] W. Chen, M. Zhang, and H. Li, “Utilizing

Dependency Language Models for Graph-

based Dependency Parsing Models,” Proc.

50th Annu. Meet. Assoc. Comput. Linguist.

(Volume 1 Long Pap., no. July, pp. 213–222,

2012.

[4] M. P. Robillard and G. C. Murphy, “Concern

graphs,” Proc. 24th Int. Conf. Softw. Eng. -

ICSE ’02, p. 406, 2002.

[5] M. De Marneffe and C. D. Manning, “Stanford

typed dependencies manual,” 20090110

Httpnlp Stanford, vol. 40, no. September, pp.

1–22, 2010.

[6] M. Zhang, W. Chen, X. Duan, and R. Zhang,

“Improving graph-based dependency parsing

models with dependency language models,”

IEEE Trans. Audio, Speech Lang. Process.,

vol. 21, no. 11, pp. 2313–2323, 2013.

[7] M. Widiastuti and D. Siahaan, “(Lts-Rc):

Pemodelan Perubahan Kebutuhan Perangkat

Lunak Berdasarkan Labelled Transition

System,” Pros. Semin. Nas. Manaj. Teknol.

VII, p. C-11, 2008.

[8] K. Müller and B. Rumpe, “A Model-Based

Approach to Impact Analysis Using Model

Differencing,” Proc. 8th Int. Work. Softw. Qual.

Maintainab., 2014.

[9] J. Wang and Q. Wang, “Analyzing and

predicting software integration bugs using

network analysis on requirements dependency

network,” Requir. Eng., 2016.

[10] P.-N. Tan, M. Steinbach, and V. Kumar,

Introduction to data mining. 2005.

[11] M. Al-Khiaty and M. Ahmed, “UML Class

Diagrams: Similarity Aspects and Matching,”

Lect. Notes Softw. Eng., vol. 4, no. 1, 2016.

[12] Å. G. Dahlstedt, “Requirements

Interdependencies – a Research Framework,”

no. July, 2001.

