

 IPTEK The Journal for Technology and Science, Vol. 29(3), December. 2018. 2088-2033 (pISSN: 0853-4098) 81

Weighted k Nearest Neighbour Using Grey

Relational Analysis to Solve Missing Value

Desepta Isna Ulumi and Daniel Siahaan

Abstract Defect in software takes the form of error, bug, fault, or failure. Predicting defect in software helps to improve

the software quality. It helps developer identifying vulnerability within the software component earlier. Researchers tried to

enhance the performance of the defect prediction method to manage the project resources better. Previous researches

applied the method on distinctive project domain. The problem is that a model can only be applied not after it provides

sufficient software defect historical data of the given project domain. A model is only relevant for a specific project domain.

This paper introduces an approach to build a generic model using a merged dataset of various project domains. Each

dataset has originally different features. All missing value which is produced due to the merging of datasets of varying

feature numbers should be calculated. We applied Weighted k-Nearest Neighbor (WkNN) and Grey Relational Analysis to

calculate the missing values of a dataset. After all missing values have been filled in, we applied Naïve Bayes in order to

classify the selected features. In the experimentation, we exercised on four different feature selection methods to find the

most relevant features for all datasets. The results on seven empirical datasets indicate that by applying Naïve Bayes on

selected presented selected by either Information Gain (IG) or Symmetric Uncertainty (SU), the best balance value can be

obtained.

Keywords Gray relational analysis, naive bayes, software defect, weighted kNN.

I. INTRODUCTION
1

oftware defect that may arise during software

development can be foreseen using the classification

method. Researchers build a prediction model using
features extracted from its source code [1]. The features

cover a wide range of software metrics, such as LOC

count, Halstead attributes, McCabe attributes, control

flow attributes, and commentary attributes.

There are a number of problems exist. First, not all

metric software features are relevant in classifying

whether a respected module is defect-prone or defect-

free. Second, not all project domains logged all software

metrics. Third, there is a significantly fewer number of

defect-prone modules compare to defect-free modules.

Finally, existing prediction models project domain
sensitive. It means that a software defect prediction

model is suitable only for a specific project domain.
There have been a number of efforts carried out to

provide a prior solution. Laradji et al. used Greedy

Forward Selection (GFS) feature selection method and

the Ensemble Learning Classification technique [2]. This

solution uses six datasets from NASA public MDP. It

resolves the problem related to imbalance data and

redundant features. Ensemble Learning Classification is

a method for classifying data. It calculates the mean from

some other classification techniques. It works well on an

imbalance dataset. Nonetheless, the prediction model
built from this solution was designed for a specific

project. It would be insensitive when it tries to classify

dataset of a different project.

Czibula et al. proposed a solution which uses

Relational Association Rule (DPRAR) for classifying

defect-prone module [3]. This solution uses three main

processes. First, the solution pre-processes the dataset.

The goal is to establish the dependencies between the

features and the target output. Second, the solution

calculates the spearman rank correlation coefficients.

This process basically deletes any feature which is

 Desepta Isna Ulumi and Daniel Siahaan are with Departement of

Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111,

Indonesia. E-mail: daniel@if.its.ac.id

irrelevant in classifying defect-prone module. Finally,

the solution trains the software defect prediction model.

It uses a DPRAR algorithm. It focuses on distinguishing

the relationship between two relevant features. For each

relevant feature included in the next process, the testing

process of the prediction model should be exercised per

project domain. Czibula et al. analyzed the results on

several accuracy measurements. They are the probability
of detection (pd), specificity, precision, and area under

the ROC curve (AUC) area. Just like the aforementioned

solution, this solution also project domain sensitive. It

only built specifically for a specific project domain.

Muhamad et al. improve the previous solution in term

of accuracy. It used five popular feature selection

method [4]. It uses Cluster-Based Classification (CBC)

for classifying the defect-prone module. The study

evaluates the solution on seven datasets from NASA

public MDP. Each datum has a domain. Each domain

has a number of different features and similar features. A
feature is a property or characteristic in data which have

various value, either from one object to another or from

one time to another. Gain Ratio (GR), Information Gain

(IG), One-R (OR), Relief-F (RFF) and Symmetric

Uncertainty (SU) are categorized as five feature selection

methods. These selection features generate the best

performance in an information feature combination. This

combination of method gives the best result rather than

previous methods in terms of accuracy of software defect

prediction. Combination of CBC classification and IG

feature selection perform better compared with other

combination methods.
Nevertheless, even though the combination of CBC

classification and IG feature selection methods gives the

best result, the combination method is less efficient in

term of computation complexity. This is because the

combination method carries out one-on-one processing.

The process is based on a number of selected features of

each dataset with various prediction models. Thus, it is

important to build a prediction model that allows defect-

prone module classification on generic datasets. The

mode should be insensitive to a specific project domain.

S

 IPTEK The Journal for Technology and Science, Vol. 29(3), December. 2018. 2088-2033 (pISSN: 0853-4098) 82

This study introduces a new software defect

prediction model which is insensitive to a project

domain. The built model was built on generic datasets,

which have a various number of features. To solve the

feature differences among merge datasets, this study

proposes the use of Weighted k-Nearest Neighbor

(WkNN). The method was used to fill the missing value

produced as the result of merging the dataset of different

project domain.

II. METHOD

In this paper, we describe the building of software

defect prediction model in five separated processes.

Nevertheless, the paper provides the overall view of our

proposed solution (Figure 1.)

A. Sequence feature selection

In the first process, the researcher orders the feature

that has less missing value after reducing redundant data.

The redundant feature is a feature that has the same value

and class [5]. The highest redundant feature is PC2.

B. Weighted k Nearest Neighbor (WkNN)ea

Nearest Neighbor (NN) is used to identify data points

that are not yet classified [6]. Distance is evaluated from

all training to testing data. The lowest distance value is

called the nearest neighbor. The k-Nearest neighbor has

some advantages such as easy to learn, resistance to

noisy training data, effective if the training data is large

[6]. But the k-Nearest Neighbor (kNN) method has

memory limitations, complex computing, slowly running

process and gullible with irrelevant features. This

technique is easy to implement, but the k value affects

the result. So T. Bailey and A. K. Jain modified the kNN

by weighting and named weighted kNN (wkNN). WkNN

is a method that evaluates the distance based on the value

of k and the weight of each calculated value. The

advantage of wkNN is to overcome the limitations of

kNN by adding weight to each k, using all training

samples not just k values, and suitable to be implemented

in all datasets. In general, the weighted kNN process can

be seen in figure 2. Data are divided into two groups,

complete and incomplete data. The next step is
calculating the nearest neighbor that calculate the

distance of complete and incomplete data. Nearest

neighbor is obtained by equation (1):

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖𝑙 −𝑛
𝑙=1 𝑥𝑗𝑙)

2 (1)

where 𝑥𝑖 is an incomplete instance, and 𝑥𝑗 is a complete

instance. Each incomplete instance is obtained by

equation (2):

𝑥𝑖𝑝 =
∑ 𝑥𝑗𝑝

𝑘
𝑗=1

𝑘
 (2)

where 𝑥𝑖𝑝 target instance 𝑋𝑖, p is feature p in instance 𝑋𝑖

and top k are based on {𝑋1, 𝑋2,…,𝑋𝑘}. According to [7],

before entering the next process, the data needs to be

normalized. Normalized is obtained by equation (3):

𝑥𝑖(𝑗) =
𝑥𝑖(𝑗)−𝑚𝑖𝑛𝑖=1

𝑛 [𝑥𝑖(𝑗)]

𝑚𝑎𝑥𝑖=1
𝑛 [𝑥𝑖(𝑗)]−𝑚𝑖𝑛𝑖=1

𝑛 [𝑥𝑖(𝑗)]
. (3)

Figure. 1. Research method.

Figure. 2. Step of weighted kNN

 IPTEK The Journal for Technology and Science, Vol. 29(3), December. 2018. 2088-2033 (pISSN: 0853-4098) 83

Where 𝑥𝑖(𝑗) is data i feature j, 𝑚𝑖𝑛𝑖=1
𝑛 [𝑥𝑖(𝑗)] is the

minimum value of each feature, and 𝑚𝑎𝑥𝑖=1
𝑛 [𝑥𝑖(𝑗)] is the

maximum value of each feature. Where 𝑥′
0(𝑗) is feature

j and shows the greatest value of each feature. Then

calculate the distance with matrix form as we can see an

equation (4):

△𝑜𝑖 (𝑗) = 𝑥′
𝑜(𝑗) − 𝑥′

𝑖(𝑗) (4)

where △𝑜𝑖 (𝑗) is incomplete distance instance, and

complete instance after normalization and 𝑥′
𝑖(𝑗) is the

value after normalization. Grey relational coefficient is

calculated to know the relationship of the ideal and

actual experimental results as we can see an equation (5):

𝐺𝑅𝐶 𝛾𝑜𝑖(𝑗) =
△𝑚𝑖𝑛+𝜌△𝑚𝑎𝑥

△𝑜𝑖(𝑗)+𝜌△𝑚𝑎𝑥
. (5)

𝐺𝑅𝐶 𝛾𝑜𝑖(𝑗) is grey relational coefficient, 𝜌 (𝜌 €[0,1]) is

a commonly defined coefficient 𝜌 = 0.5 [7][8], △𝑚𝑖𝑛 is

minimum value on △𝑜𝑖 (𝑗) and △𝑚𝑎𝑥 is maximum value

on △𝑜𝑖 (𝑗). Then grey relational grade is calculated with
the mean value of grey relational as we can see an

equation (6):

𝑮𝑹𝑮(𝒀, 𝑿𝒊) =
𝟏

𝒎
∑ 𝑮𝑹𝑪 𝜸𝒐𝒊(𝒋)𝒎

𝒌=𝟏 (6)

where m is the amount of feature. The higher 𝐺𝑅𝐺(𝑌, 𝑋𝑖)

the correlation between Y and 𝑋𝑖 is getting stronger. The

stronger the correlation, the greater the weight gain. In

most cases, the weight of each nearest neighbor is

defined as follows (7):

𝒘𝒋 =
𝟏

𝒅𝒋
, (7)

where 𝑑𝑗is distance instance j and target instance i.

Filling missing value is obtained by equation (8):

𝒙𝒊𝒑 =
∑ 𝒘𝒋𝒙𝒋𝒑

𝒌
𝒋=𝟏

∑ 𝒘𝒋
𝒌
𝒋

, (8)

where 𝑥𝑖𝑝 is missing value form 𝑋𝑖 instance

C. K Cross Fold Validation

 In this study, ten cross-fold validation is used.

D. Naïve Bayes Classification

After filling the missing value, the next step is naïve

bayes classification. The iteration can stop if the balance

value n is less than the balance value n-1.

E. IG, GR, OR, SU, RFF Feature Selection Method

Some features from the previous step are selected that

use five feature selection method. The approach of

feature selection method used in this research filters. The

filter is a feature selection method based on feature rank

[5].

1) Information Gain

Information gain is one of the feature selection

techniques that are able to assess the importance of
features by measuring class-related [9]. Generally, the

information gain can change the value of the uncertainty

of information (entropy) into a measure of the value of

information to be obtained. The value of information

gain is obtained by equation (9):

𝐼𝐺(𝐶𝑙𝑎𝑠𝑠|𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝐻(𝐶𝑙𝑎𝑠𝑠) − 𝐻(𝐶𝑙𝑎𝑠𝑠|𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (9)

where H is the entropy. It is assumed that A is all

features and classes dependent on all training. Example

value (a, y) with 𝑦 ∈ 𝐶𝑙𝑎𝑠𝑠 defines the value of the

specific instance for the feature 𝑎 ∈ 𝐴, V represents the

set of features i.e., 𝑉 = {𝑣𝑎𝑙𝑢𝑒(𝑎, 𝑦)|𝑎 ∈ 𝐴 ∩ 𝑦 ∈
𝐶𝑙𝑎𝑠𝑠}. The IG formula on each 𝑎 ∈ 𝐴 feature is defined

as follows (10):

𝐼𝐺(𝐶𝑙𝑎𝑠𝑠, 𝑎) = 𝐻(𝑐𝑙𝑎𝑠𝑠) −

∑
{𝑦∈𝐶𝑙𝑎𝑠𝑠∨𝑣𝑎𝑙𝑢𝑒(𝑎,𝑦)=𝑣}

|𝐶𝑙𝑎𝑠𝑠|𝑣∈𝑉 𝑥𝐻(𝑦{𝐶𝑙𝑎𝑠𝑠|𝑣𝑎𝑙𝑢𝑒(𝑎, 𝑦) = 𝑣}) (10)

2) Gain Ratio

Gain ratio modifies the information gain technique by

taking into account the number of results obtained by the

feature test condition [10]. The value of the gain ratio is

obtained by equation (11):

𝐺𝑅(𝐶𝑙𝑎𝑠𝑠, 𝑎) =
𝐼𝐺(𝐶𝑙𝑎𝑠𝑠,𝑎)

𝐻(𝑎)
 (11)

where 𝐻(𝑎) is obtained by equation (12):

TABLE 1.

WEIGHTED KNN USING DIFFERENT K

A B k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

19 0.4429 0.4429 0.4429 0.4429 0.4429 0.4429 0.4429 0.4429 0.4429

20 0.446 0.4437 0.4437 0.4459 0.4459 0.4459 0.4459 0.4459 0.4459

21 6 0.4425 0.4424 0.4424 0.4443 0.4446 0.4446 0.4446 0.4526 0.4445

22 7 0.4658 0.4428

23 15 0.4659

24 22 0.4806

25 23 0.4664

 Notes: A = amount of features, B = number of feature

TABLE II.

BALANCE VALUE OF IG METHOD

 R1 R2 R3 R4 R5 R6

feature 12 R1 + feature 22 R2 + feature 1 R3 + feature 21 R4 + feature 24 R5 + feature 18

Balance value 0.3613 0.4144 0.4544 0.4876 0.4906 0.4905

TABLE III.

BALANCE VALUE OF SU METHOD

 R1 R2 R3 R4 R5 R6

feature 22 R1 + feature 12 R2 + feature 24 R3 + feature 21 R4 + feature 1 R5 + feature 18

Balance value 0.3585 0.4144 0.4282 0.4637 0.4906 0.4905

 IPTEK The Journal for Technology and Science, Vol. 29(3), December. 2018. 2088-2033 (pISSN: 0853-4098) 84

𝐻(𝑎) = − ∑
|{𝑦 ∈ 𝐶𝑙𝑎𝑠𝑠 ∨ 𝑣𝑎𝑙𝑢𝑒(𝑎, 𝑦) = 𝑣}|

|𝐶𝑙𝑎𝑠𝑠|
𝑣∈𝑉

𝑥 𝑙𝑜𝑔2
|{𝑦∈𝐶𝑙𝑎𝑠𝑠∨𝑣𝑎𝑙𝑢𝑒(𝑎,𝑦)=𝑣}|

|𝐶𝑙𝑎𝑠𝑠|
 (12)

 All the notations in the gain ratio formula are

the same with IG.

3) One R

One R is built a feature called one rule for each feature

in the dataset [5]. Algorithm One-R is defined as follows

[11]:

For each feature f,

For each value v from the domain of f

Select an instance set with feature

f having a value of v

It is assumed that c is the class

that has the highest frequency
Apply "if feature f has value v then

the class is c" for feature f

Output rules with the highest classification

accuracy.

4) Symmetric Uncertainty

Symmetric Uncertainty (SU) also compensates the IG

bias against features with a more different value and

normalizes the value in range 0 to 1 [10]. The value of

symmetric uncertainty is obtained by equation (13):

𝑆𝑈(𝐶𝑙𝑎𝑠𝑠, 𝑎) = 2𝑥
𝐼𝐺(𝐶𝑙𝑎𝑠𝑠,𝑎)

𝐻(𝐶𝑙𝑎𝑠𝑠)+𝐻(𝑎)
 (13)

The equation is similar to IG and GR.

5) Relief f

Relief F is a feature selection techniques which evaluate

several times and gives weighted value for each feature

based on feature ability to differentiate each class and get

the features which the weighted value fulfill the

threshold value according to relevan features [11]. The

Relief F algorithm is shown below:

Input:

a training set D, the number of iteration m,
the number of nearest neighbors k, the

number of features n, predefined feature

weight threshold δ.

Output:

feature subset S constituted by features

whose weights are all greater than the

weight threshold δ.

Step 1: Let S=∅, set all feature weights W(Ft)=0, t

= 1,2,…,n.

Step 2:

For j=1 to m do

(1) select a sample R from D

randomly.
(2) find out k nearest neighbors Hi

(i = 1,2,…,k) from the same

class and k nearest neighbors

Mi(C) (i = 1,2,…,k) from each

different class C.

(3) (3) For t=1 to n do

𝑊(𝐹𝑡) = 𝑊(𝐹𝑡) −

∑
𝑑𝑖𝑓𝑓(𝐹𝑡 ,𝑅,𝐻𝑖)

𝑚𝑘

𝑘
𝑖=1 + ∑𝐶∉𝐶𝑙𝑎𝑠𝑠𝑅

Step 3: For t=1 to n do

If 𝑊(𝐹𝑡)> δ then add feature (𝐹𝑡) to S

In (1), P(C) is the probability

distribution of class C , Class(R) is the

category R belongs to, Mi(C) denotes

the i Near Miss of R in class C,

diff(Ft,R1,R2) denotes the difference

between R1 and R2 on Ft. If Ft is

discrete:

𝑑𝑖𝑓𝑓(𝐹𝑡 , 𝑅1, 𝑅2)

= {
0; 𝑅1[𝐹𝑡] = 𝑅2[𝐹𝑡]

1; 𝑅1[𝐹𝑡] ≠ 𝑅2[𝐹𝑡]

If Ft continues:

𝑖𝑓𝑓(𝐹𝑡 , 𝑅1, 𝑅2) =
|𝑅1[𝐹𝑡] − 𝑅2[𝐹𝑡]|

𝑚𝑎𝑥[𝐹𝑡] − 𝑚𝑖𝑛[𝐹𝑡]

The last step is naïve-bayes classification, and the

process is the same as the fourth step.III. Results and

Discussion

This research is applied in seven NASA public MDP

datasets, and the total data used is 6293. Then to

evaluate, ten cross fold validation is implemented. The

training, which is the process for building the software

defect prediction model, can be seen in Figure 1.

Meanwhile, testing is the process from the result of

training which is classified using Naïve Bayes. Each test

result on each fold is measured by confusion metrics that
can be seen in Table IV.

 Probability of detection (pd) means all the successful

values of the prediction systems in predicting the

software defect, while the probability of false alarm (pf)

means misclassification values of prediction systems in

determining defect-free module as defect module [4].

The definition of Balance Value is the value which is

available in the range of pd and pf. Balance value is

called to give the best result if it is closer to 1. For

measuring pd, pf and balance can be shown in equation
(14), (15) and (16):

pd =
𝑻𝑷

(𝑻𝑷+𝑭𝑵)
 (14)

pf =
𝑭𝑷

(𝑭𝑷+𝑻𝑵)
 (15)

balance = 𝟏 −
√(𝟎−𝒑𝒇)𝟐+ (𝟏 −𝒑𝒅)𝟐

√𝟐
 (16)

Balance value after filling the missing value can be

seen in Table I. Based on Table I, the best of balance

value is k equal 9, where the balance value is 0.4806.

The result of our research supports research from Zhu

and Cheng [8]. This is because the best result of k is

between 5 and 10 in Normalized Root Mean Square

Error (NRMSE). After filling the missing value, twenty-

four features in k equal 9 were selected which will be

used in five features selection methods.

Based on five features selection methods, the
combination of Naïve Bayes and IG or SU give the best

result, which is 0.4906 as shown in Table II and Table

III. The result of our research, in accordance with [10],

stated that the equation of IG, GR, SU are similar so that

they have similar value too. Based on Table II, R1 is the

first rank which has balance value 0.3585. We do the

iteration continuously. If the value of Rn is higher than

TABLE IV.

CONFUSION MATRIX

Prediction
Actual

Defect Non-defect

Defect TP FP

Non-defect FN TN

 IPTEK The Journal for Technology and Science, Vol. 29(3), December. 2018. 2088-2033 (pISSN: 0853-4098) 85

the value of Rn-1, the iteration is done until we get the

value of Rn is less than the value of Rn-1. Based on

Table II and Table III, the best value is in the fifth rank

(R5) so to be processed to testing processes, we have
five features; R1, R2, R3, R4, and R5. Both data in Table

II and Table III are processed in the testing processes

produced the testing value is 0.4959. So, we can

conclude that using IG or SU have a similar testing value

at the end of our experiments.

III. CONCLUSION

In this research, based on our experiments and

analysis, Naïve Bayes with Information Gain (IG) and
Symmetric Uncertainty (SU) feature selection presented

the best balance value, which is 0.4959. It is proven that

not all features are used in this research. In addition, our

proposed method can also improve the performance of

software defect prediction with the best result.

REFERENCES

[1] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on

software defect prediction with a simplified metric set,” vol. 59,

pp. 170–190, 2015.

[2] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect

prediction using ensemble learning on selected features,” Inf.

Softw. Technol., vol. 58, pp. 388–402, 2015.

[3] G. Czibula, Z. Marian, and I. G. Czibula, “Software defect

prediction using relational association rule mining,” Inf. Sci. (Ny).,

vol. 264, pp. 260–278, 2014.

[4] F. P. B. Muhamad, D. O. Siahaan, and C. Fatichah, “Software

Fault Prediction Using Filtering Feature Selection in Cluster-Based

Classification,” IPTEK J. Proc. Ser., vol. 4, no. 1, p. 59, 2018.

[5] F. Pralienka, B. Muhamad, D. O. Siahaan, and C. Fatichah,

“Perbaikan Prediksi Kesalahan Perangkat Lunak Menggunakan

Seleksi Fitur dan Cluster-Based Classification,” J. Nas. Tek.

Elektro dan Teknol. Inf., vol. 6, no. 3, pp. 275–283, 2017.

[6] N. Bhatia and C. Author, “Survey of Nearest Neighbor

Techniques,” IJCSIS) Int. J. Comput. Sci. Inf. Secur., vol. 8, no. 2,

pp. 302–305, 2010.

[7] K. Vatansever and Y. Akgűl, “Performance evaluation of websites

using entropy and grey relational analysis methods: The case of

airline companies,” Decis. Sci. Lett., vol. 7, pp. 119–130, 2018.

[8] M. Zhu and X. Cheng, “Iterative KNN imputation based on GRA

for missing values in TPLMS,” Proc. 2015 4th Int. Conf. Comput.

Sci. Netw. Technol. ICCSNT 2015, no. Iccsnt, pp. 94–99, 2016.

[9] S. A. Putri and Frieyadie, “Combining integreted sampling

technique with feature selection for software defect prediction,”

2017 5th Int. Conf. Cyber IT Serv. Manag. CITSM 2017, pp. 1–6,

2017.

[10] Y. H. Wang and I. C. Wu, “Achieving high and consistent

rendering performance of java AWT/Swing on multiple

platforms,” Softw. - Pract. Exp., vol. 39, no. 7, pp. 701–736, 2009.

[11] J. Novakovic, “The Impact of Feature Selection on the Accuracy

of Naive Bayes Classifier,” 18th Telecommun. Forum TELFOR,

vol. 2, pp. 1113–1116, 2010.

