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Abstract Defect in software takes the form of error, bug, fault, or failure. Predicting defect in software helps to improve 

the software quality. It helps developer identifying vulnerability within the software component earlier. Researchers tried to 

enhance the performance of the defect prediction method to manage the project resources better. Previous researches 

applied the method on distinctive project domain. The problem is that a model can only be applied not after it provides 

sufficient software defect historical data of the given project domain.  A model is only relevant for a specific project domain. 

This paper introduces an approach to build a generic model using a merged dataset of various project domains. Each 

dataset has originally different features. All missing value which is produced due to the merging of datasets of varying 

feature numbers should be calculated. We applied Weighted k-Nearest Neighbor (WkNN) and Grey Relational Analysis to 

calculate the missing values of a dataset. After all missing values have been filled in, we applied Naïve Bayes in order to 

classify the selected features. In the experimentation, we exercised on four different feature selection methods to find the 

most relevant features for all datasets. The results on seven empirical datasets indicate that by applying Naïve Bayes on 

selected presented selected by either Information Gain (IG) or Symmetric Uncertainty (SU), the best balance value can be 

obtained.  
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I. INTRODUCTION
1 

oftware defect that may arise during software 

development can be foreseen using the classification 

method. Researchers build a prediction model using 
features extracted from its source code [1]. The features 

cover a wide range of software metrics, such as LOC 

count, Halstead attributes, McCabe attributes, control 

flow attributes, and commentary attributes. 

There are a number of problems exist. First, not all 

metric software features are relevant in classifying 

whether a respected module is defect-prone or defect-

free. Second, not all project domains logged all software 

metrics. Third, there is a significantly fewer number of 

defect-prone modules compare to defect-free modules. 

Finally, existing prediction models project domain 
sensitive. It means that a software defect prediction 

model is suitable only for a specific project domain. 
There have been a number of efforts carried out to 

provide a prior solution. Laradji et al. used Greedy 

Forward Selection (GFS) feature selection method and 

the Ensemble Learning Classification technique [2]. This 

solution uses six datasets from NASA public MDP. It 

resolves the problem related to imbalance data and 

redundant features. Ensemble Learning Classification is 

a method for classifying data. It calculates the mean from 

some other classification techniques. It works well on an 

imbalance dataset. Nonetheless, the prediction model 
built from this solution was designed for a specific 

project. It would be insensitive when it tries to classify 

dataset of a different project.  

Czibula et al. proposed a solution which uses 

Relational Association Rule (DPRAR) for classifying 

defect-prone module [3]. This solution uses three main 

processes. First, the solution pre-processes the dataset. 

The goal is to establish the dependencies between the 

features and the target output. Second, the solution 

calculates the spearman rank correlation coefficients. 

This process basically deletes any feature which is 
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irrelevant in classifying defect-prone module. Finally, 

the solution trains the software defect prediction model. 

It uses a DPRAR algorithm. It focuses on distinguishing 

the relationship between two relevant features. For each 

relevant feature included in the next process, the testing 

process of the prediction model should be exercised per 

project domain. Czibula et al. analyzed the results on 

several accuracy measurements. They are the probability 
of detection (pd), specificity, precision, and area under 

the ROC curve (AUC) area. Just like the aforementioned 

solution, this solution also project domain sensitive. It 

only built specifically for a specific project domain. 

Muhamad et al. improve the previous solution in term 

of accuracy. It used five popular feature selection 

method  [4]. It uses Cluster-Based Classification (CBC)  

for classifying the defect-prone module. The study 

evaluates the solution on seven datasets from NASA 

public MDP. Each datum has a domain. Each domain 

has a number of different features and similar features. A 
feature is a property or characteristic in data which have 

various value, either from one object to another or from 

one time to another. Gain Ratio (GR), Information Gain 

(IG), One-R (OR), Relief-F (RFF) and Symmetric 

Uncertainty (SU) are categorized as five feature selection 

methods. These selection features generate the best 

performance in an information feature combination. This 

combination of method gives the best result rather than 

previous methods in terms of accuracy of software defect 

prediction. Combination of CBC classification and IG 

feature selection perform better compared with other 

combination methods. 
Nevertheless, even though the combination of CBC 

classification and IG feature selection methods gives the 

best result, the combination method is less efficient in 

term of computation complexity. This is because the 

combination method carries out one-on-one processing. 

The process is based on a number of selected features of 

each dataset with various prediction models. Thus, it is 

important to build a prediction model that allows defect-

prone module classification on generic datasets. The 

mode should be insensitive to a specific project domain. 

S 
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This study introduces a new software defect 

prediction model which is insensitive to a project 

domain. The built model was built on generic datasets, 

which have a various number of features. To solve the 

feature differences among merge datasets, this study 

proposes the use of Weighted k-Nearest Neighbor 

(WkNN). The method was used to fill the missing value 

produced as the result of merging the dataset of different 

project domain.  

II. METHOD 

In this paper, we describe the building of software 

defect prediction model in five separated processes. 

Nevertheless, the paper provides the overall view of our 

proposed solution (Figure 1.)   

 

A. Sequence feature selection 

In the first process, the researcher orders the feature 

that has less missing value after reducing redundant data. 

The redundant feature is a feature that has the same value 

and class [5]. The highest redundant feature is PC2. 

B. Weighted k Nearest Neighbor (WkNN)ea 

Nearest Neighbor (NN) is used to identify data points 

that are not yet classified [6]. Distance is evaluated from 

all training to testing data. The lowest distance value is 

called the nearest neighbor. The k-Nearest neighbor has 

some advantages such as easy to learn, resistance to 

noisy training data, effective if the training data is large 

[6]. But the k-Nearest Neighbor (kNN) method has 

memory limitations, complex computing, slowly running 

process and gullible with irrelevant features. This 

technique is easy to implement, but the k value affects 

the result. So T. Bailey and A. K. Jain modified the kNN 

by weighting and named weighted kNN (wkNN). WkNN 

is a method that evaluates the distance based on the value 

of k and the weight of each calculated value. The 

advantage of wkNN is to overcome the limitations of 

kNN by adding weight to each k, using all training 

samples not just k values, and suitable to be implemented 

in all datasets. In general, the weighted kNN process can 

be seen in figure 2. Data are divided into two groups, 

complete and incomplete data. The next step is 
calculating the nearest neighbor that calculate the 

distance of complete and incomplete data. Nearest 

neighbor is obtained by equation (1):  

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥𝑖 , 𝑥𝑗) =  √∑ (𝑥𝑖𝑙 −𝑛
𝑙=1 𝑥𝑗𝑙)

2  (1) 

 

where 𝑥𝑖 is an incomplete instance, and 𝑥𝑗  is a complete 

instance. Each incomplete instance is obtained by 

equation (2): 

 

𝑥𝑖𝑝 =
∑ 𝑥𝑗𝑝

𝑘
𝑗=1

𝑘
     (2) 

 

where 𝑥𝑖𝑝 target instance 𝑋𝑖, p is feature p in instance 𝑋𝑖 

and top k are based on {𝑋1, 𝑋2,…,𝑋𝑘}. According to [7], 

before entering the next process, the data needs to be 

normalized. Normalized is obtained by equation (3): 

 

𝑥𝑖(𝑗) =
𝑥𝑖(𝑗)−𝑚𝑖𝑛𝑖=1

𝑛 [𝑥𝑖(𝑗)]

𝑚𝑎𝑥𝑖=1
𝑛 [𝑥𝑖(𝑗)]−𝑚𝑖𝑛𝑖=1

𝑛 [𝑥𝑖(𝑗)]
.  (3) 

 

 
Figure. 1. Research method. 

 
Figure. 2. Step of weighted kNN 
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Where 𝑥𝑖(𝑗) is data i feature j, 𝑚𝑖𝑛𝑖=1
𝑛 [𝑥𝑖(𝑗)] is the 

minimum value of each feature, and 𝑚𝑎𝑥𝑖=1
𝑛 [𝑥𝑖(𝑗)] is the 

maximum value of each feature. Where 𝑥′
0(𝑗) is feature 

j and shows the greatest value of each feature. Then 

calculate the distance with matrix form as we can see an 

equation (4): 

 

△𝑜𝑖 (𝑗) = 𝑥′
𝑜(𝑗) − 𝑥′

𝑖(𝑗)   (4)  
 

where △𝑜𝑖 (𝑗) is incomplete distance instance, and 

complete instance after normalization and  𝑥′
𝑖(𝑗) is the 

value after normalization. Grey relational coefficient is 

calculated to know the relationship of the ideal and 

actual experimental results as we can see an equation (5):   

 

𝐺𝑅𝐶 𝛾𝑜𝑖(𝑗) =
△𝑚𝑖𝑛+𝜌△𝑚𝑎𝑥

△𝑜𝑖(𝑗)+𝜌△𝑚𝑎𝑥
.   (5) 

 

𝐺𝑅𝐶 𝛾𝑜𝑖(𝑗) is grey relational coefficient,  𝜌 (𝜌 €[0,1]) is 

a commonly defined coefficient 𝜌 = 0.5 [7][8], △𝑚𝑖𝑛 is 

minimum value on △𝑜𝑖 (𝑗) and △𝑚𝑎𝑥 is maximum value 

on △𝑜𝑖 (𝑗). Then grey relational grade is calculated with 
the mean value of grey relational as we can see an 

equation (6): 

 

𝑮𝑹𝑮(𝒀, 𝑿𝒊) =
𝟏

𝒎
∑ 𝑮𝑹𝑪 𝜸𝒐𝒊(𝒋)𝒎

𝒌=𝟏   (6) 

where m is the amount of feature. The higher 𝐺𝑅𝐺(𝑌, 𝑋𝑖) 

the correlation between Y and 𝑋𝑖 is getting stronger. The 

stronger the correlation, the greater the weight gain. In 

most cases, the weight of each nearest neighbor is 

defined as follows (7): 

𝒘𝒋 =
𝟏

𝒅𝒋
,      (7) 

where 𝑑𝑗is distance instance j and target instance i. 

Filling missing value is obtained by equation (8): 

 

𝒙𝒊𝒑 =
∑ 𝒘𝒋𝒙𝒋𝒑

𝒌
𝒋=𝟏

∑ 𝒘𝒋
𝒌
𝒋

,    (8) 

where 𝑥𝑖𝑝 is missing value form 𝑋𝑖 instance 

C. K Cross Fold Validation 

     In this study, ten cross-fold validation is used. 

D. Naïve Bayes Classification 

After filling the missing value, the next step is naïve 

bayes classification. The iteration can stop if the balance 

value n is less than the balance value n-1.   

E. IG, GR, OR, SU, RFF Feature Selection Method 

Some features from the previous step are selected that 

use five feature selection method. The approach of 

feature selection method used in this research filters. The 

filter is a feature selection method based on feature rank 

[5]. 

1) Information Gain 

Information gain is one of the feature selection 

techniques that are able to assess the importance of 
features by measuring class-related [9]. Generally, the 

information gain can change the value of the uncertainty 

of information (entropy) into a measure of the value of 

information to be obtained. The value of information 

gain is obtained by equation (9): 

 

𝐼𝐺(𝐶𝑙𝑎𝑠𝑠|𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝐻(𝐶𝑙𝑎𝑠𝑠) − 𝐻(𝐶𝑙𝑎𝑠𝑠|𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒  (9) 

 

where H is the entropy. It is assumed that A is all 

features and classes dependent on all training. Example 

value (a, y) with 𝑦 ∈ 𝐶𝑙𝑎𝑠𝑠 defines the value of the 

specific instance for the feature 𝑎 ∈ 𝐴, V represents the 

set of features i.e., 𝑉 = {𝑣𝑎𝑙𝑢𝑒(𝑎, 𝑦)|𝑎 ∈ 𝐴 ∩ 𝑦 ∈
𝐶𝑙𝑎𝑠𝑠}. The IG formula on each 𝑎 ∈ 𝐴 feature is defined 

as follows (10): 

 
𝐼𝐺(𝐶𝑙𝑎𝑠𝑠, 𝑎) = 𝐻(𝑐𝑙𝑎𝑠𝑠) −

∑
{𝑦∈𝐶𝑙𝑎𝑠𝑠∨𝑣𝑎𝑙𝑢𝑒(𝑎,𝑦)=𝑣}

|𝐶𝑙𝑎𝑠𝑠|𝑣∈𝑉 𝑥𝐻(𝑦{𝐶𝑙𝑎𝑠𝑠|𝑣𝑎𝑙𝑢𝑒(𝑎, 𝑦) = 𝑣})      (10) 

 

2) Gain Ratio 

Gain ratio modifies the information gain technique by 

taking into account the number of results obtained by the 

feature test condition [10]. The value of the gain ratio is 

obtained by equation (11): 

 

𝐺𝑅(𝐶𝑙𝑎𝑠𝑠, 𝑎) =
𝐼𝐺(𝐶𝑙𝑎𝑠𝑠,𝑎)

𝐻(𝑎)
   (11) 

where 𝐻(𝑎) is obtained by equation (12): 

TABLE 1. 

WEIGHTED KNN USING DIFFERENT K 

A B k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 

19   0.4429 0.4429 0.4429 0.4429 0.4429 0.4429 0.4429 0.4429 0.4429 

20   0.446 0.4437 0.4437 0.4459 0.4459 0.4459 0.4459 0.4459 0.4459 

21 6 0.4425 0.4424 0.4424 0.4443 0.4446 0.4446 0.4446 0.4526 0.4445 

22 7               0.4658 0.4428 

23 15               0.4659   

24 22               0.4806   

25 23               0.4664   

         Notes: A = amount of features, B = number of feature  

 

TABLE II. 

BALANCE VALUE OF IG METHOD 

  

 R1 R2 R3 R4 R5 R6 

feature 12 R1 + feature 22 R2 + feature 1 R3 + feature 21 R4 + feature 24 R5 + feature 18 

Balance value 0.3613 0.4144 0.4544 0.4876 0.4906 0.4905 

 

TABLE III. 

BALANCE VALUE OF SU METHOD 

  

 R1 R2 R3 R4 R5 R6 

feature 22 R1 + feature 12 R2 + feature 24 R3 + feature 21 R4 + feature 1 R5 + feature 18 

Balance value 0.3585 0.4144 0.4282 0.4637 0.4906 0.4905 
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𝐻(𝑎) = − ∑
|{𝑦 ∈ 𝐶𝑙𝑎𝑠𝑠 ∨ 𝑣𝑎𝑙𝑢𝑒(𝑎, 𝑦) = 𝑣}|

|𝐶𝑙𝑎𝑠𝑠|
𝑣∈𝑉

  

𝑥 𝑙𝑜𝑔2
|{𝑦∈𝐶𝑙𝑎𝑠𝑠∨𝑣𝑎𝑙𝑢𝑒(𝑎,𝑦)=𝑣}|

|𝐶𝑙𝑎𝑠𝑠|
               (12) 

         All the notations in the gain ratio formula are 

the same with IG. 

3) One R 

One R is built a feature called one rule for each feature 

in the dataset [5]. Algorithm One-R is defined as follows 

[11]:  

For each feature f, 

For each value v from the domain of  f 

Select an instance set with feature 

f having a value of v 

It is assumed that c is the class 

that has the highest frequency 
Apply "if feature f has value v then 

the class is c" for feature f 

Output rules with the highest classification 

accuracy. 

4) Symmetric Uncertainty 

Symmetric Uncertainty (SU) also compensates the IG 

bias against features with a more different value and 

normalizes the value in range 0 to 1 [10]. The value of 

symmetric uncertainty is obtained by equation (13):  

𝑆𝑈(𝐶𝑙𝑎𝑠𝑠, 𝑎) = 2𝑥
𝐼𝐺(𝐶𝑙𝑎𝑠𝑠,𝑎)

𝐻(𝐶𝑙𝑎𝑠𝑠)+𝐻(𝑎)
             (13) 

The equation is similar to IG and GR. 

5) Relief f  

Relief  F is a feature selection techniques which evaluate 

several times and gives weighted value for each feature 

based on feature ability to differentiate each class and get 

the features which the weighted value fulfill the 

threshold value according to relevan features [11]. The 

Relief F algorithm is shown below: 

 

Input: 
 

a training set D, the number of iteration m, 
the number of nearest neighbors k, the 

number of features n, predefined feature 

weight threshold δ. 

Output: 
 

feature subset S constituted by features 

whose weights are all greater than the 

weight threshold δ. 

Step 1: Let S=∅, set all feature weights W(Ft)=0, t 

= 1,2,…,n.  

Step 2: 

 

For j=1 to m do   

(1) select a sample R from D 

randomly. 
(2) find out k nearest neighbors Hi 

(i = 1,2,…,k) from the same 

class and k nearest neighbors 

Mi(C) (i = 1,2,…,k) from each 

different class C.  

(3) (3) For t=1 to n do 

𝑊(𝐹𝑡) = 𝑊(𝐹𝑡) −

∑
𝑑𝑖𝑓𝑓(𝐹𝑡 ,𝑅,𝐻𝑖)

𝑚𝑘

𝑘
𝑖=1 + ∑𝐶∉𝐶𝑙𝑎𝑠𝑠𝑅

  

Step 3: For t=1 to n do 

If 𝑊(𝐹𝑡)> δ then add feature (𝐹𝑡) to S 

In (1), P(C) is the probability 

distribution of class C , Class(R) is the 

category R belongs to, Mi(C) denotes 

the i Near Miss of R in class C, 

diff(Ft,R1,R2) denotes the difference 

between R1 and R2 on Ft. If Ft is 

discrete: 

𝑑𝑖𝑓𝑓(𝐹𝑡 , 𝑅1, 𝑅2)

= {
0; 𝑅1[𝐹𝑡] = 𝑅2[𝐹𝑡]

1; 𝑅1[𝐹𝑡] ≠ 𝑅2[𝐹𝑡]
 

If Ft continues:  

𝑖𝑓𝑓(𝐹𝑡 , 𝑅1, 𝑅2) =
|𝑅1[𝐹𝑡] − 𝑅2[𝐹𝑡]|

𝑚𝑎𝑥[𝐹𝑡] − 𝑚𝑖𝑛[𝐹𝑡]
 

 

The last step is naïve-bayes classification, and the 

process is the same as the fourth step.III. Results and 

Discussion 

This research is applied in seven NASA public MDP 

datasets, and the total data used is 6293. Then to 

evaluate, ten cross fold validation is implemented. The 

training, which is the process for building the software 

defect prediction model, can be seen in Figure 1. 

Meanwhile, testing is the process from the result of 

training which is classified using Naïve Bayes. Each test 

result on each fold is measured by confusion metrics that 
can be seen in Table IV.  

 

 Probability of detection (pd) means all the successful 

values of the prediction systems in predicting the 

software defect, while the probability of false alarm (pf) 

means misclassification values of prediction systems in 

determining defect-free module as defect module [4]. 

The definition of Balance Value is the value which is 

available in the range of pd and pf. Balance value is 

called to give the best result if it is closer to 1. For 

measuring pd, pf and balance can be shown in equation 
(14), (15) and (16): 

 

pd = 
𝑻𝑷

(𝑻𝑷+𝑭𝑵)
                 (14) 

pf = 
𝑭𝑷

(𝑭𝑷+𝑻𝑵)
                 (15) 

balance = 𝟏 − 
√(𝟎−𝒑𝒇)𝟐+ (𝟏 −𝒑𝒅)𝟐

√𝟐
               (16) 

Balance value after filling the missing value can be 

seen in Table I. Based on Table I, the best of balance 

value is k equal 9, where the balance value is 0.4806. 

The result of our research supports research from Zhu 

and Cheng [8]. This is because the best result of k is 

between 5 and 10 in Normalized Root Mean Square 

Error (NRMSE). After filling the missing value, twenty-

four features in k equal 9 were selected which will be 

used in five features selection methods.  

Based on five features selection methods, the 
combination of Naïve Bayes and IG or SU give the best 

result, which is 0.4906 as shown in Table II and Table 

III. The result of our research, in accordance with [10], 

stated that the equation of IG, GR, SU are similar so that 

they have similar value too. Based on Table II, R1 is the 

first rank which has balance value 0.3585. We do the 

iteration continuously. If the value of Rn is higher than 

TABLE IV. 

CONFUSION MATRIX 

Prediction 
Actual 

Defect Non-defect 

Defect TP FP 

Non-defect FN TN 
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the value of Rn-1, the iteration is done until we get the 

value of Rn is less than the value of Rn-1. Based on 

Table II and Table III, the best value is in the fifth rank 

(R5) so to be processed to testing processes, we have 
five features; R1, R2, R3, R4, and R5. Both data in Table 

II and Table III are processed in the testing processes 

produced the testing value is 0.4959. So, we can 

conclude that using IG or SU have a similar testing value 

at the end of our experiments. 

III. CONCLUSION 

In this research, based on our experiments and 

analysis, Naïve Bayes with Information Gain (IG) and 
Symmetric Uncertainty (SU) feature selection presented 

the best balance value, which is 0.4959.  It is proven that 

not all features are used in this research. In addition, our 

proposed method can also improve the performance of 

software defect prediction with the best result. 
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