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AbstractThe bottom shear stress estimation is the most important step to device an input to all the practical sediment 

transport models. In this paper, the modeling of bottom shear stress in a rough turbulent bottom boundary layer under 

irregular waves of experimental result is examined by a new calculation method of bottom shear stress based on 

incorporating velocity and acceleration terms simultaneously. A new acceleration coefficient is proposed to formulate the 

bottom shear stress under irregular waves. The new formula is further examined with a basic harmonic wave cycle 

modified with the phase difference and square of the instantaneous friction velocity incorporating the acceleration effect as 

proposed by the previous researchers. The new method gave the smallest the RMSE value indicating that the new method 

has the best agreement with the bottom shear stress of experimental results. Therefore, it can effectively be utilized in a 

beach evolution model by combining it with the irregular wave transformation model. 
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AbstrakEstimasi tegangan geser dasar merupakan tahapan paling penting yang diperlukan sebagai inputan pada 

kebanyakan model transportasi sedimen. Dalam makalah  ini, pemodelan  tegangan geser dasar dari hasil eksperimen turbulent 

bottom boundary layer melalui dasar kasar untuk gelombang irreguler diuji dengan sebuah metode kalkulasi baru tegangan 

geser dasar yang didasarkan dengan mengkombinasikan efek kecepatan dan percepatan secara bersamaan.  Sebuah  koefisien  

percepatan  baru diusulkan untuk merumuskan tegangan geser dasar pada gelombang irreguler. Formula baru ini diuji  lebih 

lanjut dengan harmonic wave cycle yang dimodifikasi dengan beda fasa seperti diusulkan oleh peneliti terdahulu dan kuadrat 

instantenous friction velocity dengan mengkombinasikan efek percepatan. Metode baru memberikan nilai RMSE terkecil dan 

menunjukkan bahwa metode baru memiliki persetujuan terbaik dengan tegangan geser dasar hasil eksperimen. Oleh karena 

itu, metode baru dapat dimanfaatkan secara efektif dalam model evolusi pantai dengan mengkombinasikan terhadap model 

transformasi gelombang irreguler.  
 

Kata Kuncitegangan geser dasar, gelombang irreguler, dan turbulent bottom boundary layer 

 
I5I. INTRODUCTION 

nvestigations into the bottom shear stress under a 

wave motion have been made by many researchers 

based on various kinds of turbulence model. The  

turbulent  boundary  layer  induced  by  surface  waves  
over  a  rough  bed  has  received much  attention  from  

coastal  engineers  and  oceanographers.  Although  the  

thickness  of the wave  turbulent boundary  layers  is  

quite  small  compared with  the water depth,  it  still 

plays a  very important role in determining  the rate of 

sediment  transport,  the rate of wave energy dissipation,  

and  the  magnitude  of  bottom  shear  stress  associated  

with  large  scale  slowly varying  currents.  Therefore,  a  

quantitative  understanding  of  the  mechanism  of  wave 

induced bottom boundary layers is of primary 

importance  in predicting coastal or continental  shelf  
processes [1]. Moreover, the bottom boundary layer in 

water wave propagation is important, because it 

determines the stress that the water transmits to the 

bottom, which is important in the near shore 

morphodynamics and ecosystems, since bottom shear 

stress is responsible for sediment transport [2-4]. 

Waves in natural coastal environment are essentially 

irregular and the properties in the bottom boundary layer 
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are different from those under purely sinusoidal waves. It 

is therefore, appropriate to study boundary layer 

behavior under irregular waves to achieve the most 

representative estimation of bottom shear stress in 

coastal sediment process. 

A number of models have been developed in order to 

calculate shear stresses under regular waves, most of 

them assuming the current to be slowly varying over a 
wave length, see e.g. in [5]. Studies on the effect of the 

randomness of the wave motion on the bottom friction 

have been made, among these are in [6-8]. Calculations 

of shear stresses under irregular waves plus current using 

Monte Carlo simulations based on parameterized models 

given in [9]. The boundary layer under random waves 

alone, as well as under random waves plus current, has 

been investigated using a dynamic turbulent boundary 

layer model. This is based upon the linearized boundary 

layer equations, with horizontally uniform forcing. The 

turbulence closure is provided by a high Reynolds 

number k  model [10]. 

The wave boundary layer and the bottom friction 

studies associated with sediment movement induced by 

wave motion for irregular waves is very rarely done, 

although there, but they are mostly limited to a smooth 

bed condition for example [11] and [12], which are very 
different from an actual situation on a sea bottom with 

roughness bed. Studies on the bottom shear stress on 

rough bed conditions under irregular waves have been 

carried out through experimental and proposed a new the 

estimation method to determine the bottom shear stress 

[13], but once the results are not so good agreement with 
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the experiment. Recently, also has conducted studies of 

shear stress under irregular waves but more likely to 

emphasize based on the experimental method with 

smooth and rough bed conditions [14]. 

Moreover, for a predictive near-shore morphological 

model, a more efficient approach to calculate the bottom 

shear stress is needed for practical applications rather 

than a more complex approach using a two-phase model 

[15]. The new calculation method of bottom shear stress 

in a rough turbulent bottom boundary layer under 

sawtooth and asymmetric waves have investigated 
previously through incorporating velocity and accele-

ration terms provided form the instantaneous wave 

friction velocity in [16] and [17], respectively. The value 

of acceleration is obtained from the average value of 

calculated from experimental results as well as the 

turbulent boundary layer model results of bottom shear 

stress. 

Bottom shear stress estimation is the most important 

step as an input to all the practical sediment transport 

models. Therefore, the estimated bottom shear stress 

based on the approach used both sinusoidal and non-
linear wave should be evaluated involving with the 

irregularity form effect under irregular wave which is the 

common flow condition on the seabed for shallow and 

intermediate water depths, i.e. in coastal zones and on 

continental shelves. Hereafter it is envisaged that wave 

boundary layers and bottom shear stress behaviors 

influenced by the effect of acceleration in irregular wave 

are different from those in sinusoidal, cnoidal, sawtooth 

and solitary waves.  

The aim of this study is examine the bottom shear 

stress through experiments in an oscillating wind tunnel 
over rough bed under irregular waves by means of Laser 

Doppler Velocimeter (LDV) to measure velocity 

distribution, as well as turbulent boundary layer 

numerical model. Furthermore, a new estimation method 

of the instantaneous bottom shear stress under irregular 

waves based on incorporating both velocity and an 

acceleration term is proposed, so it can be obtained a 

more reliable calculation method to calculate the 

instantaneous bottom shear stress required as input to 

sediment transport model. 

For the 1-D incompressible unsteady flow the equation 

of motion within the boundary layer can be expressed as 
follow, 
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where u is the instantaneous horizontal velocity,   is 

water density, and p is pressure. At the axis of symmetry 

or outside boundary layer u=U, therefore, 
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By introducing the eddy viscosity model, the total 

shear stress for turbulence flow can be expressed as: 
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where 
tv  is the eddy viscosity describing the Reynolds 

stress and v is the kinematic viscosity. Substitution of 

equation (3) into equation (1) gives the simplified 

equation for the turbulent flow motion in the bottom 

boundary layer,  

  



























z

u
vv

z

1

t

U

t

u
t



                     (4) 

For practical computations, turbulent flows are 

commonly computed by the Navier–Stokes equations in 

averaged form. However, the averaging process gives 

rise to the new unknown term representing the transport 

of mean momentum and heat flux by fluctuating 

quantities. In order to determine these quantities, 
turbulence models are required. Two-equation turbulence 

models are complete turbulence models that fall in the 

class of eddy viscosity models (models which are based 

on a turbulent eddy viscosity are called as eddy viscosity 

models). Two transport equations are derived describing 

transport of two scalars, for example the turbulent kinetic 

energy k and its dissipation . The Reynolds stress tensor 

is then computed using an assumption, which relates the 

Reynolds stress tensor to the velocity gradients and an 

eddy viscosity. While in one - equation turbulence 

models (incomplete turbulence model), the transport 

equation is solved for a turbulent quantity (i.e. the 

turbulent kinetic energy, k) and a second turbulent 

quantity is obtained from algebraic expression. In the 

present paper shear stress transport (SST) k- model was 
used to evaluate the new acceleration coefficient, ac, and 

to compare with the experimental data.  

Turbulence models can be used to predict the turbulent 
properties under any wave’s motion. The shear stress 

transport (SST) k- model is one of the two-equation 
turbulence models proposed by [18]. Shear stress 

transport (SST) k-  model is a mixed form of the robust 

formulation of the k- model in the near-wall region, 

with the k- model in the outer part of boundary layer. 

The SST k- model is claimed to be more accurate and 

reliable for wider class of flow than the standard k-  

model as well as the original k- model, including the 
improvement of prediction for adverse pressure gradient 

flow. In the SST k- model the definition of eddy 
viscosity is modified to account for the transport effects 

of the principal turbulent shear stress. The SST k- 

model produces slightly lower eddy viscosities than the 

base line (BSL) k- model on flat for zero pressure 
gradient boundary layers. 

The SST k- model was used to determine some 

unknown quantities in equation (4). The SST k- model 
is a two-equation model that gives results similar to the 

k- model of Wilcox in the inner of boundary layer but 

changes gradually to the Jones-Launder k- model 
towards to the outer boundary layer and the free stream 

velocity. In order to be able to perform the computations 

within one set of equations, the Jones-Launder model 

was first transformed into the k- formulation. The 
blending between the two regions is done by a blending 

function F1 changing gradually from one to zero in the 

desired region. 



 

 

 

 

 

 

IPTEK, The Journal for Technology and Science, Vol. 22, No. 2, May 2011 87 

The functions F1 and (1- F1) are multiplied by the 

original k- model of Wilcox and the transformed k- 
model of Launder, respecttively and both are added 

together. In the near the wall the function  F1 is designed 

to be one for activating the originnal k- model of 
Wilcox, while in the outer region of boundary layer is to 

be zero for activating the k- model of Jones Launder. 

Original k  model: 
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Transformed k  model: 
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Both equations (13) and (14) are multiplied by F1 

whereas both Equations (15) and (16) are multiplied by       
(1- F1)  and then the corresponding equations of each set 

are added together to give the new model known as the 

BSL k- model. The new governing equations of the 
transport equation for turbulent kinetic energy k and the 

dissipation of the turbulent kinetic energy  from the 

SST k- model as mentioned before are, 
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where, σk, 
*
, σ, , and  are model constants, F1 is a 

blending function. 

In the SST k-  model the definition of eddy viscosity 
is modified to account for the transport effects of the 

principal turbulent shear stress. The new definition of 

eddy viscosity is as follows, 
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where F1 is defined as, 
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The SST k- model produces slightly lower eddy 

viscosities than the BSL k- model on flat plate for zero 

pressure gradient boundary layers. In order to recover the 

distribution of the diffusion term constant in the near 

wall the model constants had to be adjusted for Set 1 i.e. 

σk1=0.85, σ1=0.65, 1=0.075 and 1=1/-σk1 K
2/1/2= 

0.469. Set 2 constants remain unchanged. 

In the numerical method, the non-linear governing 

equations of the boundary layer for each turbulence 

models were solved by using a Crank-Nicolson type 

implicit finite-difference scheme. In order to achieve 

better accuracy near the wall, the grid spacing was 

allowed to increase exponentially. In space 100 and in 

time 7200 steps per wave cycle were used. The 
convergence was achieved through two stages, the first 

stage of convergence was based on the dimensionless 

values of u, k and  at every time instant during a wave 
cycle. Second stage of convergence was based on the 

maximum wall shear stress in a wave cycle. The 

convergence limit was set to 1.10-6 for both the stages. 

Full description of the numerical technique, boundary 

conditions and model parameters are provided in [16, 

17]. 

II. METHOD 

The experiments were performed by [13] in wind 

tunnel at Laboratory of Environmental Hydrodynamics 

Tohoku University Japan which has a length of 5 m and 

the height and width of the cross section are 20 cm and 

10 cm, respectively. The dimension of this cross-section 

of wind tunnel has been considered in order to the flow 

velocity was not influence by the sidewall effect. The 

experiments have been carried out in an oscillating wind 

tunnel connected with the piston system with air as the 

working fluid and smoke particles as tracer. This is 

intended to make an easy treatment if it is compared with 
water as the working fluid. 

A schematic diagram of the experimental arrangement 

is shown in Figure 1. The experimental system consists 

of two major components, namely an oscillatory flow 

generation unit and a flow-measuring unit. The 

oscillatory flow generation unit was made up of signal 

control and processing components along with piston 

mechanism. The piston displacement signal has been fed 

into the instrument through a PC. The Bretschneider–

Mitsuyasu spectrum was used to generate an input signal 

in this experiment. Input digital signal has been 
converted to corresponding analog data through a digital-

analog (DA) converter. A servomotor, connected through 

a servomotor driver, was driven by the analog signal. 

The piston mechanism has been mounted on a screw bar, 

which was connected to the servomotor. The feed-back 

on piston displacement, from one instant to the next, has 

been obtained through a potentiometer that compared the 

position of the piston at every instant to that of the input 

signal, and subsequently adjusted the servomotor driver 

for position at the next instant. The measured flow 

velocity record was collected by means of an A/D 

converter with 1/100 s intervals, and the mean velocity 
profile variation was obtained by averaging over 50 

wave cycles. According to [19] at least 50 waves cycles 

are needed to successfully compute statistical quantities 

for turbulent condition. 



 

 

 

 

 

88 IPTEK, The Journal for Technology and Science, Vol. 22, No. 2, May 2011 

The flow measuring unit comprised of a wind tunnel 

and one component LDV for flow measurement. 

Velocity measurements were carried out at 20 points in 

the vertical direction at the center part of the wind tunnel 

by means of LDV. The aluminum balls roughness having 

a diameter of 10 mm (a roughness height, Hr= 10 mm), 

similar used ideas by [20], was pasted over the bottom 

surface of the wind tunnel without spacing along the 

wind tunnel, as shown in Figure 2.  

The randomness in ocean waves is due to the presence 

of numerous component waves of different amplitudes 
and frequencies those are contained in wave spectrum. 

The wave spectrum represents the spreading of wave 

energy over different frequency ranges. In the present 

analysis the spectral density for irregular wave water 

surface elevation, S(f) has been computed using 
Bretschneider-Mitsuyasu spectral density formulation in 

the following equation (15), 

      4
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3/1 03.1exp257.0
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where, H1/3 , and T1/3 are significant wave height and 

period respectively, and f is frequency of component 

waves. 

Applying small amplitude wave theory following 

relationships can be obtained for spectral densities of 

water surface elevation and free stream velocity, as 
shown in equations (16) and (17), 
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Lh

fHU
/2sinh 


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where, SU (f) is spectral density for free stream velocity,   

HU (f) is velocity transfer function, h is water depth, and 

L and  (=2f) are wave length and angular frequency of 
component waves respectively. 

Equation (17) represents that when the frequency of 
component wave is increased, the wave length will also 

increase resulting in a smaller value for velocity transfer 

function. It means that the velocity spectrum is less 

influenced by high frequency component waves than that 

from corresponding water surface elevation. 

Obtained velocity spectrum has been used to generate 

velocity time variation with the approximation that 

irregular waves can be resolved as a sum of infinite 

number of regular wavelets with small amplitudes and 

random phases, as shown in equations (18) and (19), 

    
i

iiUi tfAtU 2cos              (18) 
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where, U (t) is instantaneous free stream velocity, AUi are 

velocity amplitudes of component waves, fi are 

component frequencies, t is time, i are component 

phases and fi are frequency increments between 

successive wave components. 
The definition sketch for irregular wave is given by 

Holthuijsen as shown in Figure 3 [21]. There are two 

possible of the wave heights, namely zero down crossing 

height (measure from a trough to following crest), Hd 

and zero up crossing height (measure from a crest to 

following trough), Hu, and wave periods, Td and Tu. The 

averages are invariant with respect to the choice of up 

crossing versus down crossing: 
uH =

dH  and 
uT =

dT . The 

average zero crossing periods for a record is often 

referred to as 
zT  (=

uT =
dT ). 

Experiments have been carried out only one case under 
irregular waves. The experimental conditions are given 

in Table 1.  

Reynolds number is calculated using equation (20), to 

obtain rough bed turbulent flow was set Re1/3=5.105 to 

reach a fully turbulent regime, and T1/3 = 3.0 s as input 

wave in this experiment.  
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where, U1/3: flow velocity based on parameter of 

significant wave, T1/3: significant wave period, and v : 

kinematics viscosity. Moreover, an experiment with 

Re=5.10
5
 was carried out under sinusoidal wave motion, 

to investigate the effects of irregularity, where the 

Reynold number is defined by equation (21). 

The condition of the actual experiment is plotted in 

flow regime proposed by [21], in Figure 4. Here, a 

horizontal axis is a Reynolds number shown in the 

following equation (7), 


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where, 
wÛ is the maximum of the wave-induced velocity 

just outside the boundary layer, am is the excursion 

length of a water particle under wave motion.  
Here, am/ks is the roughness parameter, ks is the 

Nikuradse’s equivalent roughness defined as ks=30zo, 

which is assumed to be equal to the diameter of the 

roughness element (the aluminum balls diameter of 1 

cm), zo is the roughness height, and S (=U1/3/(ω1/3 yh)) is 

the reciprocal of the Strouhal number, and yh is the 

distance from the wall to the axis of symmetry of the 

measurement section. The diagram is extended to 

irregular wave motion using the Reynolds number and 
angular frequency defined by equation (20) as 

representative quantities. It can be concluded that the 

condition of the present experiment lies in the rough 

turbulent regime according to the Reynolds number 

defined in terms of significant wave. 

However, because of the irregularity of the input 

signal, there are waves with smaller Reynolds numbers. 

Then, the crest phase or the trough phase of the free 

stream velocity is regarded as a half cycle of wave 

motion, and the Reynolds number Rep is defined by 

equation (22) for individual waves. 
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where Up: the maximum velocity during crest or trough 

phases, and Tp: the period of crest or trough phases. 

Furthermore, the shape of waves at the free stream 
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velocity, U in this case is shown in Figure 5. Figure 6 

shows the time-variation of acceleration.  

 

III. RESULTS AND DISCUSSION 

A. Bottom Shear Stress of Experimental Results 

Bottom shear stress is estimated by using the 

logarithmic velocity distribution given in equation (23), 

as follow, 
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where, u is the flow velocity in the boundary layer,   is 

the von Karman's constant (= 0.4), z is the cross-stream 

distance from theoretical bed level (z = y + Δz) (Figure 
2). For a smooth bottom zo = 0, but for rough bottom, the 

elevation of theoretical bed level is not a single value 

above the actual bed surface. The value of zo for the fully 

rough turbulent flow is obtained by extrapolation of the 

logarithmic velocity distribution above the bed to the 

value of z=zo where u vanishes. The temporal variations 

of Δz and zo are obtained from the extrapolation results 

of the logarithmic velocity distribution on the fitting a 

straight line of the logarithmic distribution through a set 

of velocity profile data at the selected phases angle for 

each case. These obtained values of Δz and zo are then 

averaged to get zo=0.09 cm. The bottom roughness, ks 
can be obtained by applying the Nikuradse's equivalent 

roughness in which zo=ks/30. By plotting u against 

ln(z/z0), a straight line is drawn through the experimental 

data, the value of friction velocity, U* can be obtained 

from the slope of this line and bottom shear stress, o can 
then be obtained from equation (24).   

 /*

oU   (24) 

The obtained values of Δz and zo, as the above 

mentioned, has a sufficient accuracy for application of 

logarithmic law in a wide range of velocity profiles near 

the bottom. Figure 7, showing the logarithmic law, has 

been approved within the wide range in the near bottom 
region at the selected phases of velocity profile. Figure 8 

shows the time-variation of bottom shear stress under 

irregular waves.  

B. Calculation Method of Bottom Shear Stress under 

Irregular Waves 

In this paper, a new calculation method is proposed to 

compute the bottom shear stress under irregular waves 

and the existing calculation method as proposed by [12] 

and Nielsen [3, 22] are also given. 

1. A new calculation method of bottom shear stress 

under irregular waves  

The new calculation method of bottom shear stress 

under irregular waves is based on incorporating velocity 

and acceleration terms all at once that is given through 

the instantaneous friction velocity,  tU *   as proposed by 

[16, 17] in equation (25). Both velocity and acceleration 

terms are adopted from the calculation method proposed 

by [22]. The phase difference was determined from an 

empirical formula for practical purposes. The 

instantaneous friction velocity can be expressed as: 
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
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The instantaneous bottom shear stress can be 

calculated proportional to the square of the proposed 

instantaneous friction velocity, as shown in equation 

(26). 

     tUtUto

**                 (26) 

In the new calculation method, a new acceleration 
coefficient, ac is determined empirically from both 

experimental and shear stress transport (SST) k  

numerical model results of bottom shear stress using 

following relationship as shown in equation (27). Here, 

the value of acceleration coefficient, ac = 0.485, is 

obtained from average value of the time variation of 
acceleration coefficient ac(t) calculated from 

experimental result as well as the SST k  numerical 

model results of bottom shear stress, and is using to 

expressed irregularity form effect under irregular wave. 
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where, fw: the wave friction coefficient. The friction 

coefficient proposed by [21] as given in Equation (28) 

can be used for evaluating in equation (25).  to
: the 

instantaneous bottom shear stress, and  : the phase 

difference between free stream velocity and bottom shear 

stress. 



























 100.0

07.853.7exp
o

m

w
z

a
f               (28) 

The phase difference obtained from measured data 

under irregular wave, as well as from a sinusoidal wave 

experiment. The results are shown in Figure 9, in which 

the triangles indicate the estimation by equation (29) for 

individual waves.  

Although the measurements are slightly lower than 
equation (29), this difference is negligible. The 

estimation changes between 20.0 deg. and 25.7 deg. 

With the mean value of 21.3 deg. whereas the use of the 

quantities for significant waves yields 20.4 deg. From 

equation (29), which is very close to the averaged value 

shown earlier. Thus, it is advisable to use constant phase 

difference, which can be obtained from significant wave 

quantities, instead of calculating for individual waves.  
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Figure 10 show the time variation of friction velocity 

from experimental and the new calculation method 
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results incorporating velocity and acceleration terms as 

expressed in equation (25).  

It can be seen that the contribution of acceleration term 

have a good agreement with the time variation of friction 

velocity from experimental.  

2. Comparison with existing calculation methods 

The new calculation method of bottom shear stress 

under irregular waves is examined by the existing 

calculation methods that had been used to examine 

experimental results. Method 1 is proportional to the 

square of the time variation of U(t), that of within a basic 
harmonic wave cycle modified by the phase difference is 

proposed by [12] in equation (32), as follows: 

   tUtUft wo 





2

1





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




 (32) 

Where o (t), the instantaneous bottom shear stress, t, 

time, , the angular frequency, U(t) is the time history of 

free stream velocity,  is phase difference between 
bottom shear stress and free stream velocity and fw is the 

wave friction factor where fw is calculated from equation 

(28). 

Method 2 is proportional to the square of the 

instantaneous wave friction velocity, U*(t) incorporating 

the acceleration effect as proposed by [22] in equations 

(33) and (34), as follow:  
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     tUtUto **   (34) 

This method is based on the assumption that the steady 

flow component is weak (e.g. in a strong undertow, in a 

surf zone, etc.).  

Phase difference equation given in equation (31) is 

used for calculating in Method 1 and Method 2. Friction 

coefficient used in Method 2 is calculated from an 

equation in equation (35) as proposed by Nielsen [5], as 
follows: 
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Correlation between the bottom shear stress of 

experimental result and the calculation results from three 

calculation methods are shown in Figure 11. The new 

method gives the best agreement with the bottom shear 

stress under irregular waves from experimental results 
than others method. While, Method 1 and Method 2 gave 

underestimated value at though part and overestimated 

value at crest part of bottom shear stress from 

experimental results, as show in Figure 11. 

Comparison among the experimental data, SST k -    
turbulence model and calculation methods for bottom 

shear stress estimation under irregular waves are given in 

Figure 12. The new method could predict well the 

bottom shear stress showing the best agreement with the 

experimental results along a wave cycle under irregular 

wave than other methods and SST k -  turbulence 
model. Method 2 has given underestimated and 

overestimated values of the bottom shear stress with the 

experimental data especially value at trough part and 

crest part, respectively. While, SST k -  model and 
method 1 was not so much in a good agreement with the 

experimental results along a wave cycle under irregular 

wave due to was not exclude the velocity and 

acceleration effect in the calculation of the bottom shear 

stress.     

C. Performance of Calculation Methods of Bottom Shear  
Stress 

The calculation method of bottom shear stress can be 

evaluated by the root-mean-square error (RMSE), as 

follows: 
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2
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  (36) 

where, U*cal. is the friction velocity from calculation 

methods. U*exp. is the friction velocity from experimental 

results, N  is the total number of data and i  is index. If 

the calculation method is perfect, it can be indicated that 
the RMSE should be zero. It can be concluded that the 

smaller RMSE is better the performance of the 

calculation methods. The summary of calculation 

method performance of bottom shear stress is shown in 

Table 2. 

As shown in Table 2 that the new method has highest 

performance than others methods with RMSE = 1.95. 

The new Method is better than Method 1 and Method 2. 

The new method gave the smallest the RMSE value 

indicating that the new method has the best agreement 

with the bottom shear stress of experimental results. It 
can be concluded that the new method can be used to 

estimate the bottom shear stress under irregular waves 

and also the phase difference and acceleration coefficient 

that have been defined in equation (31) and ac=0.485 

were sufficient for this calculation. Therefore, the new 

method can be used to calculate the bottom shear stress 

under irregular waves that can be further used to an input 

sediment transport model under rapid acceleration in 

practical application. 

IV. CONCLUSION 

The modeling of bottom shear stress under irregular 
waves has been investigated. The main results are 

summarized as follows:  

1. The new method of estimating bottom shear stress 

under irregular waves has shown the best agreement 

with the experimental data. A new method for 

calculating the instantaneous bottom shear stress 

under irregular waves proposed in this study has a 

sufficient accuracy, so it may be considered as a 

reliable calculation method which is required as input 

to sediment transport model under rapid acceleration 

in a practical application. 

2. The phase difference defined based on significant 
wave is sufficient for this purpose. Furthermore, both 

the phase difference and the acceleration coefficient 

defined in the new method were sufficient for this 

calculation. 
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TABLE 1. 

 EXPERIMENTAL CONDITIONS FOR IRREGULAR WAVES 

Exp. 
U1/3 

(cm/s) 
T1/3     
(s) 

Re am/ks S 

1 392.348 3.0 5.105 69.38 18.73 

TABLE 2.  

THE SUMMARY OF CALCULATION METHOD PERFORMANCE OF BOTTOM 

SHEAR STRESS 

Exp. 
The Root-Mean-Square Error (RMSE) 

Method 1 Method 2 New Method 

Case 1 8.69  3.07 1.95 
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Figure 1. Schematic diagram of experiment system  

 

 

Figure 2. Definition sketch for roughness 

 

Figure 3. Definision sketch for irreguler wave 

 

 

 

Figure 4. Flow regime 

 

              Figure 5. Time-variation of free stream velocity 
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Figure 6. Time-variation of acceleration  

 
Figure 7. Log-fitting to measured velocity profile 

 

 
Figure 8. Time-variation of bottom shear stress of experimental 

results 

 
Figure 9. Phase difference 

 

 

 
 

Figure 10. Time-variation of friction velocity 
 

Figure 11. Correlation between experimental and calculation results of 

bottom shear stress 
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Figure 12. Comparison for bottom shear stress estimation 
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