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 Abstract—During last three decade, many mathematical programming methods have been develop for solving 

optimization problems. However, no single method has been found to be entirely efficient and robust for the wide range of 

engineering optimization problems. Most design application in civil engineering involve selecting values for a set of design 

variables that best describe the behavior and performance of the particular problem while satisfying the requirements and 

specifications imposed by codes of practice. The introduction of Genetic Algorithm (GA) into the field of structural 

optimization has opened new avenues for research because they have been successful applied while traditional methods have 

failed. GAs is efficient and broadly applicable global search procedure based on stochastic approach which relies on 

“survival of the fittest” strategy. GAs are search algorithms that are based on the concepts of natural selection and natural 

genetics. On this research Multi-objective sizing and configuration optimization of the two-dimensional truss has been 

conducted using a genetic algorithm. Some preliminary runs of the GA were conducted to determine the best combinations 

of GA parameters such as population size and probability of mutation so as to get better scaling for rest of the runs. 

Comparing the results from sizing and sizing– configuration optimization, can obtained a significant reduction in the weight 

and deflection. Sizing–configuration optimization produces lighter weight and small displacement than sizing optimization.  

The results were obtained by using a GA with relative ease (computationally) and these results are very competitive 

compared to those obtained from other methods of truss optimization.  
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Abstrak—Selama tiga dekade terakhir, banyak metode pemrograman matematis telah dikembangkan untuk memecahkan 

masalah optimasi. Namun, ada satu metode telah ditemukan yang sepenuhnya efisien dan kuat untuk berbagai masalah teknik 

optimasi. Kebanyakan aplikasi dalam desain teknik sipil melibatkan pemilihan pada satu set variabel desain yang 

menggambarkan perilaku dan kinerja dari masalah tertentu yang memenuhi persyaratan dan spesifikasi tertentu sesuai kode 

kepraktisan. Pengenalan Genetic Algorithm (GA) ke dalam bidang optimasi telah membuka jalan baru untuk penelitian karena 

telah terbukti berhasil diterapkan ketika metode tradisional menemui kegagalan. GA lebih efisien dan luas dalam prosedur 

pencarian secara global yang didasarkan pada pendekatan stokastik yang bergantung pada strategi "survival of the fittest". GA 

merupakan algoritma pencarian yang didasarkan pada konsep seleksi alam dan genetika secara alami. Pada penelitian ini 

Multi-tujuan optimasi dan konfigurasi dari truss dua dimensi dilakukan dengan menggunakan algoritma genetik. Beberapa hal 

dilakukan GA untuk menentukan kombinasi terbaik dari parameter GA seperti ukuran populasi dan probabilitas mutasi, hal ini 

untuk mendapatkan skala yang lebih baik untuk sisa berjalan. Dengan membandingkan hasil dari ukuran dan ukuran-

konfigurasi optimasi, dapat diperoleh dari pengurangan yang signifikan dalam berat badan dan defleksi. Ukuran-konfigurasi 

optimasi menghasilkan bobot yang lebih ringan dan ukuran optimasi perpindahan yang kecil Hasil dengan menggunakan GA 

diperoleh relatif mudah dalam hal komputasi dan hasil ini sangat kompetitif dibandingkan dengan yang diperoleh dari metode 

selain optimasi truss. 
 
Kata Kunci—optimasi truss, algoritma genetika, optimasi multi obyek 
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3I.  INTRODUCTION 

uring last three decade, many mathematical 
programming methods have been develop for 

solving optimization problems [1, 2]. However, no single 

method has been found to be entirely efficient and robust 

for the wide range of engineering optimization problems 

[3]. Most design application in civil engineering involve 

selecting values for a set of design variables that best 

describe the behavior and performance of the particular 

problem while satisfying the requirements and 

specifications imposed by codes of practice. Mathema-

tically these design variables are discrete for most 

practical design problems. However most mathematical 
optimization applications are suited and developed for 

continuous design variables. In discrete optimization 

problems, searching for the global or local optimal 
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solution becomes a difficult task. A few mathematical 

methods have been developed for solving problem in 

discrete optimization. These methods include complete 

enumeration techniques, integer programming, branch 

and bound algorithms, and dynamic programming. All 

these methods use mathematical programming 
techniques. 

The introduction of Genetic Algorithm (GA) into the 

field of structural optimization has opened new avenues 

for research because they have been successful applied 

while traditional methods have failed. GAs is efficient 

and broadly applicable global search procedure based on 

stochastic approach which relies on “survival of the 

fittest” strategy [4]. GAs as search algorithms that are 

based on the concepts of natural selection and natural 

genetics. GAs differ from traditional optimization 

methods in the following aspects: (1) GAs work with a 
coding set of variables and not with the variables 

themselves; (2) GAs operate on population of potential 

solutions rather than improve a single solution; (3) GAs 
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use objective function information without any gradient 

information; (4) GAs use a transition scheme that is 

probabilistic, whereas traditional methods use gradient 

information [3].  

A.  Introduce of Genetic Algorithm 

GAs utilized a strategy that models the mechanism of 

genetic evolution [5]. The core characteristics of GAs are 

based on the principles of survival of the fittest and 

adaptation. The advantages of applying GAs to the 

optimized design of structures include discrete design 

variables, open format for constraint statement, and 

multiple load cases. GAs do not require an explicit 

relationship between the objective function and the 

constraints. Instead, the value of the objective function 
for a set of design variables is adjusted to reflect any 

violation of the constraint. 

GAs operate on a population of design variable sets, 

with each design variable set defining a potential 

solution is called a string. Each string is made up of a 

series of characters, typically binary numbers, repre-

senting the values of the discrete design variables for a 

particular solution. The fitness of each string is 

measurement of performance of the design variables as 

defined by the objective function and the constraint. 

GAs basically consist of a series of three processes: 

coding and decoding design variables into strings, 
evaluating the fitness of each solution string, and 

applying genetic operators to generate the next 

generation of solution strings. The fitness of each string 

is evaluated by performing some type system analysis to 

compute a value of objective function. If the solution 

violates constraints the value of the objective function is 

penalized. 

Most genetic algorithms are variations of simple 

genetic algorithm (SGA) proposed by Goldberg [5]. 

Goldberg’s SGA consists of three basic genetic 

operators: reproduction, crossover, and mutation. The 
reproduction operation in the SGA is the basic engine of 

Darwinian natural selection and survival of the fittest. 

The crossover operation creates variations in the solution 

population by producing new solution strings that 

consistof parts taken from selected parent solution 

strings. The mutation operation introduces random chage 

in the solution population. In a GA, the mutation 

operation can be beneficial in reintroducing diversity in a 

population. 

The objective of the reproduction process is to allow 

the information stored in strings with good fitness values 

to survive into the next generation. Typically, each string 
in the population is assigned a probability of being 

selected as parent string based on the string’s fitness. 

However, reproduction does not change the features of 

parent strings. The next generation of solution strings is 

developed from selected pairs of parent’s strings and the 

application of other explorative operators such as 

crossover and mutation. 

Crossover is a procedure wherein a selected parent 

string is broken into segments and some of these 

segments are exchange with corresponding segments of 

another parent string. The one-point crossover 
implemented in GAs breaks each string of a selected 

parent string set into two segments and interchanges the 

second segment to create two new strings.  

Mutation is usually used as an insurance policy [5]. 

Mutation allows for the possibility that non-existing 

features from both parent strings may be created and 

passed to their children. Without an operator of this type, 

some possibly important regions of the search space may 

never be explored 

B. Structural Optimization 

The optimization of truss structures can be classified 

into three categories depending on what component of 

the structure is used as design variable : sizing 

configuration and topological optimization. In sizing 

optimization of trusses the cross-sectional areas of the 
members are the design variables and the coordinates of 

the nodes and the connectivity between various members 

are fixed. This can be made more practically useful by 

restricting the member areas to pre-specified discrete 

values. In configuration optimization the design 

variables are the nodal coordinates, and in topological 

optimization the number of nodes and the connectivity 

between nodes are the design variables. These 

optimization problems have been discussed separately 

however the most efficient design will be obtained by 

considering all three simultaneously. In general, 

multilevel optimization methods are used in which 
topological optimization is first performed keeping the 

configuration and member sizes fixed. When an optimal 

topology is found, configuration and/or sizing 

optimization is performed on the topology found in the 

previous step. As mentioned earlier this method will not 

provide the most optimal solution as all the three 

problems are not linearly separable. As a result, 

traditional methods of optimization have failed and the 

use of other tools such GAs is gaining popularity in the 

field of structural optimization.  

1. Formulation of Structural Optimization 
The most popular optimization criterion in structural 

design is cost. Typically, cost is a function of the total 

structural weight. Other factors that may be involved in 

estimating the cost of a structure include maintenance 

(related to the total surface area of a steel structure) and 

connection costs. An objective function in terms of the 

properties of both the structures as whole and individual 

structural members can be expressed as: 

 scm pppfF ,,      (1) 

where F is Objective Function, pm is material properties, 

pc is connection characteristics, ps are structural 

characteristics. The general form of structural 

optimization can be expressed as 
minimize   

 scm pppfF ,,      (2) 

g1  0, g2  0,.... gn  0    (3) 

where g1 , g2 , g3 and gn are the constraint functions 
minimize. 

For example, when the structural weight is the only 

term in the objective function and is subjected to stress, 

displacement and fabrication constraints. The 

optimization problem can be expressed as:  
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where e and Le are material density and the length 
element e.  A(ηe) is index of the cross-sectional area of 

the element e dan n is the total number of elements. The 

vector s, d, A contains value of stress, displacement, and 

cross - sectional area. The superscripts refer to the 

prescribed lower and upper boundaries of each 

constraint. 
2. Penalty Function  

To evaluate the performance of fitness of particular 

solution string, the string’s characters are decoded into 

values of the design variables. Using these design 

variables an analysis is performed and a value is 

computed for the objective function. If any constraints 

are violated a penalty is applied to the objective function 

with the value of the objective function. In general there 

are two possibilities to combine objective function with 

penalty function. The first is by adding a penalty 

function with the objective function in equation form as 
follow [5] 

)()()( xxx pfeval      (6) 

Where x is the chromosome f(x) is the objective function 

and p(x) is penalty function. The second form of 

evaluation function is to multiply the penalty function 

with the objective function. So that the evaluation form 

are as follows [5] 

)()()( xxx pfeval       (7) 

Most of the penalty function depends on the parameters 

contained in each problems. So the penalty function 

tends to change according to the existing problems. On 

structural optimization penalty function is commonly 

composed of control the stress of bar and control the 

deformation of each node that exists. Forms of penalty 

functions can be shaped 

   
n
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where, 

C1,C2 = Pinalty Coefisient 

g1i = The function of cross-sectional analysis of 
each elements 

If σallowable > σi than g1i = 0 

σallowable < σ than g1i = σ – σallowable 

g2i = The Function of displacement of analysis of 

each nodal       

If Δallowable > Δ  than g2i = 0 

Δallowable < Δ than g2i = Δ – Δallowable  

n       = number of elements 

II. METHOD 

In the first case as shown in the Figure 1, the structure 

will be optimized weight and nodal deformation of truss 

elements with 15 elements. All elements have a density 

of 7850 kg/m3, Modulus of elasticity of 200 MPa and the 

cross-sectional are the profile provided angle section on 

the market. A vertically downforce of 15 KN is given to 

the vertical direction at node 5. Node 1 and 6 are the 

supports, of which node 1 is roller (having only 

horizontal reaction) and node 6 is a pin support (having 

horizontal and vertical reaction) . There are three type of 

grouping of element A1, A2, A3. The stress of steel 

material used is fy = 240 MPa and fu = 370 MPa.   

A. Fitness Function 

There are two objectives in the current optimization 

problem, minimizing the total weight of the structure and 

the deflection at node 5 (which can be seen will always 

have the highest vertical deflection). The design 

variables considered are the member cross-sectional 

areas and the nodal coordinates of the free nodes. The 
constraints here is that the axial stresses in no member 

should exceed the allowable stress. Since there are two 

objectives a weighting method is used to transform the 

simple GA to a multi-objective solver where a composite 

fitness function of the weighted sum of the objectives is 

assigned to each individual of the population as shown 

below : 

  21 100100 ggLAf
n

i

iix         (8)                    

where 

i and Li    = material density and the length element i.   
Ai  = the cross-sectional area of the element i  

N    = the total number of elements 

g1     = the sum of the penalty function of each 

element of the tensile elements and 
compression elements  

The equation for tensile element 
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if 240max  than slendernessi = 0 

240max  than slendernessi  =  1    

if
ygu FAP  than tensionyieldi = 0 

ygu FAP  than tensionyieldi =  1 

 if   
ueu FAP  than tensionultimatei = 0 

ueu FAP  than tensionultimatei =  1 

 Compression Section 
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Δallowable < Δ than deflectioni = 1 

B. Program and Logic 

The logic of the program flows as shown below:  
1. Generate population of strings. 

2. Map string elements of each string of the population 

to member area or nodal coordinate. This will be 

input to the truss solver.  

3. Run truss solver to obtain maximum vertical 

deflection, total weight and maximum stress.  

4. Calculate the fitness from the maximum deflection 

and total weight.  

5. Perform tournament selection (size 2) without 

replacement.  

6. Perform two-point crossover without replacement 
and simultaneous mutation.  

7. Repeat step 2 to 6 till termination criteria is satisfied. 

C. Parameter Setting  

In order to get a competent GA that scales well, we 
have to get a proper combination of the GA parameters 

i.e. the population size N, probability of mutation pm, and 

probability of crossover pc. In this study, only population 

size and probability of mutation were varied to examine 

their effect on the rate of convergence. Population size of 

the GA should be large enough so that a significant 

amount of the parts that form the optimal solution are 

accounted for somewhere in the population. If 

population size is too small there will be genetic drift 

and the GA will converge to a non-optimal solution. But 

if the population size is too large the computation time 

will be compromised. Figure 2 shows the convergence of 
the GA for population sizes of 10, 20, 100, 500 and 

1000. The other parameters were kept constant for these 

computations, t = 50 pc = 0.8 and pm = 0.07. For 

remaining computations, a population size of 300 was 

decided upon observing the results of Figure 2.Another 

set of experiments were conducted for the following pm 

values: 0, 0.001, 0.01, 0.05, 0.07 and 0.1 (N = 100, pc = 

0.8, t = 100) and the results are shown in Figure 3. From 

Figure 3 it can be seen that when no mutation is 

introduced initially there is high convergence but after 

the initial convergence there is no search for better the 
solutions. Those individuals in the population are the 

same and crossover does not produce anything new. 

Thus, there is a need for diversity which caused about by 

mutation. However the amount of mutation should be 

carefully chosen, though responsible for maintaining the 

local diversity, is also an inherently disruptive force [3] 

as shown in Figure 3 for pm =0.1. From Figure 3. It can 

be seen that pc value between 0.01 and 0.07 provides a 

balance between maintaining diversity and causing 

disruption in the population and for remaining 

computations a pm value of 0.07 was chosen. 

III. RESULTS AND DISCUSSION 

After getting objective function for optimization of 

cantilever truss then the next step is to perform the 

optimization with GA parameters such as the follows, 

the number of population is 50, the number of 

generations is 300, value of crossover probability is 0.8, 

mutation probability is 0.07. The above parameters are 
used for both optimization of cantilever truss. From the 

analysis for sizing optimization the weight of structure is 

61.71 kg and the maximum deformation is 5.9 mm this 

result shows in Table 1 and the convergence of sizing 

optimization shows on Figure. 4. While for the combined 

sizing and configuration optimization can be shown as 

follows. From the analysis for sizing and configuration 

optimization the weight of structure 55.37 kg and the 

maximum deformation 3.7 mm as shown in table 2 and 

the convergence of sizing and configuration optimization 

shows on Figure 5. The optimum shape and the nodals 
coordinate of truss can be seen on Figure 6. 

IV. CONCLUSION 

Multi-objective sizing and configuration optimization 

of the truss shown in Figure 1 has been conducted using 

a genetic algorithm. Some preliminary runs of the GA 

were conducted to determine the best combinations of 

GA parameters such as population size and probability 

of mutation so as to get better scaling for rest of the runs. 
Comparing the results from sizing and sizing– 

configuration optimization, we find there is a significant 

reduction in the weight and deflection. Sizing–

configuration optimization produces lighter weight and 

small displacement than sizing optimization.  The results 

were obtained using a GA with relative ease 

(computationally) and these results are very competitive 

compared to those obtained from other methods of truss 

optimization. Although mathematically obtained under 

optimum conditions, but if applied in the construction 

becomes less prevalent, especially from the aesthetic 
aspects. 
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Figure 1. Truss model with 15 elements 

 

 

 
 

Figure 2. Plot showing convergence of the GA for different population 

size 

 

  
 

Figure 3. Plot showing convergence of the GA for different pm 

(probability mutation) 

 
Figure 4. Sizing optimization convergence with genetic algorithm 

 
 

Figure 5. Sizing and configuration optimization convergence with 

genetic algorithm 
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Figure 6. Nodal coordinate and shape of truss after combined size and configuration optimization 

  
TABLE 1.  

THE RESULT AFTER SIZING OPTIMIZATION 

Group Sectional Area (mm
2
) Weight 

Maximum 

Deformation 

A1 A2 A3 Kg mm 

L 55x55x6 L 40x40x4 L 40x40x5 
61.71 5.90 

631 308 379 

 

TABLE 2.  

THE RESULT AFTER SIZING AND CONFIGURATION 

OPTIMIZATION  

Group Sectional Area (mm
2
) Weight 

Maximum 

Deformation 

A1 A2 A3 Kg mm 

L 55x55x6 L 40x40x4 

L 

40x40x5 55.37 3.70 

631 379 430 
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pm=0.00 

pm=0.001 
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Nodal x y z

1 0 0 0

2 0.9 0 0.2

3 1.6 0 0.5

4 2.6 0 0.9

5 3.6 0 0.8

6 0 0 1

7 1.2 0 1.5

8 2.1 0 1.5

9 2.6 0 1.5


