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for Missile Trajectory Optimization  

with The Terminal Bunt Manoeuvre 
 

S. Subchan 
 

AbstractNumerical solution of constrained nonlinear optimal control problem is an important field in a wide range of 

applications in science and engineering. The real time solution for an optimal control problem is a challenge issue especially 

the state constrained handling. Missile trajectory shaping with terminal bunt manoeuvre with state constaints is addressed. 

The problem can be stated as an optimal control problem in which an objective function is minimised satisfying a series of 

constraints on the trajectory which includes state and control constraints. Numerical solution based on a direct multiple 

shooting is proposed. As an example the method has been implemented to a design of optimal trajectory for a missile where 

the missile must struck the target by vertical dive. The qualitative analysis and physical interpretation of the numerical 

solutions are given.  
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AbstrakPenyelesain numerik permasalahan kendali optimal taklinier dengan kendala adalah area penting dalam berbagai 

terapan sains dan rekayasa. Permasalahan kendali optimal waktu online dimana variabel state terkendala merupakan 

permasalahan yang menarik dan menantang. Dalam Paper ini dibahas pembentukan lintasan peluru kendali dengan manuver 

menghunjam ketika mendekati target dengan kendala pada variabel state.  Permasalahan  lintasan peluru kendali dimodelkan 

sebagai permasalahan kendali optimal dengan fungsi tujuan meminumkan waktu dengan kendala pada variabel state dan 

kendali. Penyelesaian numerik berdasar metoda langsung tembakan beruntun diterapkan untuk permasalahan kendali optimal. 

Sebagai contoh, metoda diterapkan untuk merekayasa lintasan peluru kendali dengan lintasan menghunjam ketika mendekati 

target. Pada paper ini dibahas hasil komputasi dengan penyelesaiannya dianalisis secara kualitatif dan dibahas interpretasi 

fisisnya. 

 

Kata Kunciterminal bunt manoeuvre, trayek missile , direct multiple shooting 

 
 

I. INTRODUCTION
5 

umerical solution of the optimal control problem 

can be categorised into two main approaches. The 

first approach corresponds to the direct method which is 

based on the discretisation of state and/or control 

variables over time, so that a Nonlinear Problem (NLP) 

solver can be used. The second approach corresponds to 

the indirect method. The first step is the formulation of 

the appropriate Two-Point Boundary Value Problem 

(TPBVP) and the second step is solving the TPBVP 

numerically. 

Direct methods are based on the transformation of the 

original optimal control problem into a NLP by 
discretising the state and/or control history and then 

solving the resulting NLP problem. A variety of direct 

methods has been developed and applied for solving an 

optimal control problem. Gradient algorithms were 

proposed by [1] and [2]. A state constrained optimal 

control problem using a gradient algorithm and applied it 

for some problems [3]. [4] Reintroduced the direct 

transcription approach, by discretising the dynamic 

equations using a collocation method. A cubic 

polynomial is used to approximate the state variables and 

linear interpolation for the control variables. The 
collocation scheme was originally used by [5] to solve 

TPBVP. [6] Introduced an approach based on the 

representation of the dynamical system in terms of 
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differential inclusions. This method employs the 

concepts of hodograph space and attainable sets [6-7]. 

The indirect approach for the optimal control problem 

is based on a generalisation of the calculus of variations. 

Necessary conditions for an extremum are derived by 
considering the first variation of the performance index 

with constraints adjoined in the manner of Lagrange. 

Since the setting is infinite-dimensional, the familiar 

Lagrange multipliers are now functions of time, and are 

called co-states in analogy to the system state. While in 

the finite-dimensional case the multipliers are computed 

from algebraic equations, the co-states obey a differential 

equation. The necessary conditions entail both the 

original differential equations of the underlying 

dynamical system and the associated adjoin differential 

equations of the co-states. The end result is a TPBVP 
which is made up of the state and co-states equations 

together with the initial and terminal conditions. The 

approach is called indirect, because the optimal control is 

found by solving the auxiliary TPBVP, rather than by a 

direct focus on the original problem. 

This paper focuses on the direct multiple shooting 

approaches solving an example of the terminal bunt 

shaping problem for a cruise missile with minimum time 

flight. The terminal bunt shaping is a complex 

manoeuvre where the missile must fly as low as possible 

to hide from radar and when it closes to the target the 

missile must climb and then struck the target by vertical 
dive. In this paper the terminal bunt manoeuvre is 

constrained by the normal acceleration constraint which 

is active during the diving manoeuvre. 

N 
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II.  METHOD 

The optimal control problem is solved by numerical 

method using a direct multiple shooting. Direct multiple 

shooting to trajectory optimization is generally based on 

the discretisation of control and/or state variables. The 

basic idea of the direct multiple shooting methods is to 

transform the original optimal  control problem into 

nonlinear programming problem by coupling the control 

parameterisation with a multiple shooting discretisation 

of the state variables [8-10]. The control can be 

approximated by piecewise functions and the state 

variables are approximated at the shooting nodes ti (see 
Figure 1). The initial value x(ti) for the state variables at 

nodes ti  must be guessed. Then in each interval the state 

equations must be integrated individually from ti to ti+1.  

In addition, the continuity conditions (matching 

conditions) must be satisfied which require that on each 

differential node the values x(ti+1) should equal the final 

value of the preceding trajectory. 

Consider now the following boundary value problem. 

          0,  ,,)( f0  txtxrtutxftx      (1) 

Where )t(x is the dynamic system and r is the boundary 

conditions. The basic idea of the multiple shooting is to 

find simultaneously the values 

  n,1,i  ,ii  txs     (2) 

Where Si is the initial value at node i and for the solution 

of the boundary value problems (1) at the discretised 

nodes 

f110 tttt       (3) 

We assume that the discretisation nodes for the control 

parameterisation are the same as for the state 

parameterisation. Suppose ];[ istx  is the solution of the 

initial value problem: 

      1iiii ,  ,   ,,,  tttstxtuxtfx   (4) 

The problem now is to find the vector n,0,1,i ,i s  

such that the function x(t) pieced together, continuously, 

by the following Initial Value Problem (IVP) solutions: 

     
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In addition, the boundary condition      0, f0 txtxr  

must be satisfied by )(tx . Hence, the boundary value 

problem (5) is solved on the whole interval. Consider 

now the following equation  sX : 
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where the unknown variables 
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must be found. The optimal control problem now can be 

rewritten as an NLP problem. 

   i

1

0

 min sJsJ
n
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  (8) 

subject to 

  1-n,0,1,i   sstx 1ii1i   ,0;

      0,0 nsxsxr

 

   (9) 

The path constraints are transformed into vector 

inequality constraints at the multiple shooting nodes. The 

NLP problem result can then be solved by an established 
NLP solver, SNOPT [11].  

III. RESULT AND DISCUSSION 

A. Mathematical Model 

This paper studies the dynamic equations of a point mass 
missile moving in the vertical plane over flat non-

rotating earth. The dynamic equations are taken from 

[12] as follows 

V

g

mV

L

mV

DT 


cos
cossin 


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(10a) 

 sinsincos g
m

L

m

DT
V 


             (10b) 

cosVx 
    

               (10c) 

sinVh                                (10d) 

where t is the actual time, t0 ≤ t ≤ tf with t0 as the initial 

time and tf as the final time. The state variables are the 

flight path angle γ, speed V, horizontal position x and 

altitude h of the missile. The thrust magnitude T and the 

angle of attack α are the two control variables (see 

Figure 2). The aerodynamic forces D and L are functions 

of the altitude h, velocity V and angle of attack α. The 

following relationships have been assumed: 

B. Axial Aerodynamic Force 

The drag D is written in the form 

ref
2

2

1
),,( SVCVhD d                  (11)

32
2

1d AAAC                         (12) 

Note that D is not the drag force. 

C. Normal Aerodynamic Force 

The lift L is written in the form 

ref
2

l
2

1
),,( SVCVhL                   (13) 

21 BBCl                                            (14) 

where   is air density given by    

32
2

1 ChChC                  (15) 

and Srefis the reference area of the missile; m denotes the 

mass and g the gravitational constant, see also Table 1. 

Note that L is not the drag force.  

In addition, constraints are defined as follows: 

 State path constraints 

maxmin VVV                   (16) 

hh min
                 (17) 

 Control path constraint 

maxmin TTT   
                (18) 

 Mixed state and control constraint 

maxmin L
mg

L
L                  (19) 

where 
minL  and 

maxL  are normalized, see Table 2. 
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D. Objective Function  

The problem is to find the trajectory of a generic cruise 

missile from the assigned initial state to a final state with 

the minimum time along the trajectory. The objective 

can be formulated by introducing the performance 

criterion:                                                         

 d 
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t
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                                  (20) 

The computational results of the terminal bunt 

manoeuvre problem are obtained using a direct multiple 

shooting. In this simulation the missile is assumed to be 

launched horizontally from the altitude 30m.)0( h The 

boundary conditions are given as follows: 
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E. Qualitative Analysis 

  The numerical solution based on the direct multiple 

shooting are shown on Figure 3 to 8.  Based on Figure 3 

to 8, an attempt is made to analyse characteristic arcs of 

the trajectory, classify them according to the constraints 

active on them, and suggest physical/mathematical 
explanations for the observed behavior.  

The trajectory is split into two subintervals: level 

climbing and diving. Each of the trajectory arcs 

corresponding to the subintervals is now discussed in 

turn. 

1. First arc: climbing 

The missile must climb eventually in order to achieve 

the final condition of the flight path angle γtf Figure 5 

shows that the missile climbs directly at the beginning of 

launch. The thrust constraint is the only active constraint 

at the beginning of climbing. At the beginning of ascent 

the flight-path angle must increase to facilitate a nose up 

motion. 

During this time, The speed keeps increasing and then 

decreasing while the altitude h increase. While rapid 
climbing is necessary, the missile should also turn over 

to begin its dive as soon as possible, so that the excess of 

altitude (above hmin) is minimised. 

2. Second arc : diving 

At the end of the manoeuvre the missile should hit the 

target with a certain speed Vf. The speed during turnover 

is smaller than final speed Vf so the speed must increase 

and hence the thrust keeps on the maximum value. It 

means th  thrust  ill facilitat  th  missil ’s arrival on th  

target as soon as possible. Thus the thrust is on the 

maximum value overall manoeuvre. 

At the beginning of diving the minimum normal 
acceleration constraints is active and keeps on saturation 

until the missile hits the target (see Figure 6). Obviously, 

the altitude goes down to reach the target (γ < 0 h < 0), 

while the speed goes up to satisfy the terminal speed 
condition Vf. Finally, the missile satisfies the terminal 

condition of the manoeuvre approximately tf after firing.  

IV. CONCLUSION 

The direct method approach based on the direct 

multiple shooting is used to solve the trajectory of 

missile with terminal bunt manoeuvre with state and 

control constraints. The performance of the direct 

multiple shooting is more accurate then the direct 
collocation. Furthermore for the future research the 

indirect method can be used to verify the accuracy of the 

direct multiple shooting, notice there is a pure state 

constraint which is challenging for the indirect method.  

The qualitative analysis shows that the optimal 

trajectory is split into two subintervals. The first arc is 

level climbing. The missile must climb in order to 

achieve the final condition. The thrust keeps on the 

maximum value while the altitude increases to gain 

enough position for diving in the next arc. 

The second arc is diving. The missile must gain the 
power to reach the target therefore the speed increase 

rapidly since the initial diving speed is lower than the 

final speed. The normal acceleration is saturated on the 

minimum value for this arc. 

 
 

Figure 1.  Multiple shooting approach [13] 

 
 

Figure 2.  Definition of missile axes and angles [12] 
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Figure 3.  Flight-path angle versus time histories 

 

 
 

Figure 4. Speed versus time histories 

 
 

Figure 5.  Altitude versus down-range histories 

 
 

Figure 6.  Normal acceleration versus time histories 

 

 
 

Figure 7. Angle of attack versus time histories 

 
 

Figure 8.  Angle of attack versus time histories 

 

 

TABLE 1.   

PHYSICAL MODELLING PARAMETERS 

Quantity Value Unit 

m 1005 kg 

g 9.81 m/s
2 

Sref 0.3376 m
2
 

A1 -1.9431  

A2 -0.1499  

A3 0.2359  

B1 21.9  

B2 0  

C1 3.312 10
-9 

kg m
-5 

C2 -1.142 10
-4 

kg m
-4

 

C3 1.224 kg m
-3
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TABLE 2.  

BOUNDARY CONDITIONS AND CONSTRAINTS 

Quantity Value Unit 

Vmin 200 m/s 

Vmax 310 m/s 

Lmin -4 g
 

Lmin 4 g 

hmin 30 m
 

Tmin 1000 N 

Tmax 6000 N 

TABLE 3.   

PERFORMANCE INDEX FOR THE MINIMUM TIME PROBLEM FOR THE 

CASE OF FINAL SPEED V (TF)=310 M/S 

Method Performance index 

 (sec) 

No of grid 

points 

Direct multiple 

shooting 

40.90257 

 

15 

Direct 

collocation 

40.90780 87 
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