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AbstractIn this paper, we discuss the notion of max-plus algebra and their properties. We also construct a model of 

predator-prey systems with timed Petri net and analyze the stabilization of the systems. Furthermore, we analyze the 

periodic behavior of the systems. Using the Lyapunov stability theory, we will obtain the sufficient condition for the 

stabilization problem and the periodic duration of the oscillation will be also determined. 
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AbstrakDalam paper ini, dibahas pengertian aljabar max-plus dan sifat-sifatnya. Selanjutnya dengan menggunakan Petri 

net berwaktu dikonstruksi suatu model sistem mangsa-pemangsa dan dianalisa kestabilan serta perilaku periodik sistem. 

Dengan menggunakan kestabilan Lyapunov diperoleh syarat cukup masalah kestabilan dan durasi osilasi dapat ditentukan.  
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I. INTRODUCTION
1 

enerally, the state of systems changes as time 

changes. The state spaces are expected to change at 

every tick of the clock. These kinds of systems are called 

time driven systems. In addition to this ones, there are 

some of them evolve in time by the occurrence of events 

at possible irregular time intervals, i.e. not necessarily 

coinciding with clock ticks.  In this case, the state 

transition is a result of the other harmonic events. This 

kind of systems is called event driven systems [1]. 

Discrete event systems are defined by an event driven 
systems with discrete states. Discrete event systems are 

linear if they are formulated into max plus algebra. In 

this kind of systems, event is more decisive than time 

[2]. Transportation systems, manufacture process, and 

telecommunication network can be analyzed with 

discrete event systems [3]. 

Max plus algebra is the useful approach to represent 

the discrete event systems. This approaching makes us 

possible to determine and analyze various kinds of 

systems properties. Therefore, the model of these ones 

will be linear over max plus algebra. But in conventional 
algebra, it does not a linear. Because of the linearity, we 

can analyze the systems in max plus algebra easier and 

simpler than the conventional systems [3].  

A Petri net is a mathematical modelling tool which can 

be applied to represent the state evolution of the discrete 

event systems. Petri net is called autonomous if every 

transition in this Petri net has at least an input place. This 

means that there is no transition which is enabled 

without any condition.  In other words, autonomous Petri 

net does not have a transition which is always be enabled 

[4]. Timed Petri net is an extension of Petri net. Timed 
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Petri net is a Petri net with state changing time is 

considered. This state changing time is called holding 

times [3].  In this paper, we use the autonomous timed 
Petri net to model the predator-prey systems.  

In the previous research, the predator-prey systems has 

modeled with timed Petri net. This research results a 

model of predator-prey systems which is consistent with 

the real predator-prey behavior in real life [5]. In this 

paper we will modify that one by adding some holding 

times, condition and event. This Model is inspired by the 

timed Petri net model of queuing systems with one 

server that discussed in [3]. 

There are five conditions and four events in this timed 

Petri net model of predator-prey systems. The conditions 

are preys in rest, preys do their activity, predators are 
idle, preys are in danger, and preys are being eaten. And, 

the events are preys finish their resting, preys at threat, 

predators start attacking preys and predators leave the 

preys. There are also five holding times related to each 

condition of the systems. It means that time which is 

spent by a condition to make an event take place is 

considered. This treatment is applied for each condition. 

We will analyze the stabilization and the dynamical 

behavior of the systems. Using the Lyapunov stability 

theory, we will obtain the sufficient condition for the 

stabilization problem and the periodic duration of the 
oscillation will be also determined. As a conclusion, we 

give some notes of the discussion and the future work.  

II. METHOD 

A. Max-Plus Algebra and Some Related Notaion  

We will give a briefly introduction to max plus algebra 

that will be used in the next discussion, more detail  

explanation about max plus algebra can be found in  [6].  

The domain of max plus algebra is the set ℝ = 

ℝ∪{=−∞} where ℝ denotes the set of real number. The 
basic operations in max plus algebra are maximization 

(denoted by ) and addition (denoted by ). For x,y, 

ℝ, we get: 

xy  max {x,y} and xy = x + y 

G 
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The set ℝ with operation maximization and addition 

will be written as ℝmax. For any xℝ satisfy the 
equation bellow, 

x = x = x and x0 = x =  0x    

In the max plus algebra ℝmax, two operations, i.e. 

addition and multiplication, are denoted by  and  

respectively. For two matrices    and   over  ℝma 
   , the 

addition of  the matrices given by: 

[AB]i,j = ai,j  bi.j = max{ai,j,bi,j} 
where i = 1, 2, 3, …, m and  j = 1, 2, 3, …, n. The   

multiplication of two matrices   ℝma 
   

 and   ℝma 
   

 
is given by: 

         


p

k 1

            ma             

Where i = 1, 2, 3, …, m and  j = 1, 2, 3, …, n. There is 

an analogy between  and  and also  and ×. Therefore 

we choose the symbols  and . As in conventional 
algebra, an eigenvalue and a corresponding eigenvector 

of a square matrix of size n×n also exists in max-plus 

algebra, i.e. if we give the equation 

Ax = λx  

then the vector   ℝma 
  and scalar λℝ are respectively 

called an eigenvector and a corresponding eigenvalue of 

the matrix A  with vector   ≠ (,..,)T where sign T 

represents transpose.  

Let be given matrix   ℝma 
   , a directed graph of 

matrix A is denoted by G(A) = (E,V). Graph G(A) has n 

nodes (vertices), the s et  of all nodes of graph G(A) is 

denoted by V. An  arc (edge) from node j to i exists  if ai,j 

≠ , this arc is denoted by (j,i). The set of all arcs of graph 

G(A) is denoted by E. The weight of arc (j,i) is a value of 

ai,j, this one is denoted by  w(j,i) = ai,j. If ai,j =  then arc 

(j,i) does not exist.  A sequence of arc (i1,i2)(i2,i3),...(il-1,il) 

of a graph is called a path. A path is called elementer  if  

its nodes has only one incoming and one outgoing arc.  A 

circuit is a close elementer path, i.e.: 
(i1, i2)(i2, i3),...,(il-1, i1) 

The weight of  a path : p= (i1, i2)(i2, i3),...,(il-1, i1) is 

denoted by w with 
|p|w= (ai2, i1+ai3, i2+

...+ail, il-1) 

The lenght of a path    is the sum of arc in the path p 

and it is denoted by  1. The average weight of a path p 

is the weight of path   divided by the lenght of path p, 
i.e. 

 
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Circuit mean is the average weight of a circuit which 

also acts as the eigenvalue of the matrix A.  An algorithm 
to compute an eigenvalue and a corresponding 

eigenvector of a square matrix A can be found in [7]. 

This algorithm is an iterative algorithm of a linear 

equation of the form: 

X(k+1) = A   (k).k ≥0    (1) 
The periodical property of the system is related to the 

cycle time vector 

   
   

    

 
  

For non negative number M ≥ 0 let be a matrix 

   ℝma 
    with 0 ≤ m ≤ M and      ℝma 

  for M ≤ m 

≤ −1, then  the difference  equation of  th-order will be 

written as follow:                

     

M

m 0
                      (2) 

A difference equation of Mth-order with A0 ≠  can be 
transformed into a difference equation of  1st-order that 

is given by   Equation  1, as follow: 

                     ,    (3) 
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and 
in

i AA 

 0

1

0

*

0
   (5) 

the matrix   is identity matrix. The information about 

this equation can be found in [7]. The Equation 3 that 

satisfies 4 and 5 will be called as the autonomous 
equation. 

B. Petri Net and Timed Petri Net Theory 

We discuss about Petri net, timed Petri net and their 
theory related to the problem discussed in this paper. 

Petri net is a 4-tuple (P, T, A, w), where P is a finite set 

of places, i.e. P = { 1, 2,... m}, T is a finite set of 

transitions, i.e. T = { 1, 2,... n}, A is a set of arcs, i.e. A  

(P×T)∪(T×P) and w is weight function, i.e., 

w:{1,2,3,...}. 
Petri net graph consist of two shapes. Ones are 

rectangles or lines and the others are circles. The 

rectangles and circles respectively represent the 

transition and the place. Mostly, a transition and a place 

can be respectively interpreted as an event and a 

condition such as an event can be occurred.  

A Petri net marking vector is a vector of size n×1, 

where n is the number of place in the petri net. This 

vector is denoted by: 
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where the i-th lement of this vector represents the 

number of token in i-th  place pi. Next, a transition tj is 

said to be enabled if x( i) ≥ w( i, j) for all  i I( j), 

where I( j) = { iP( i, j)A}.  
If a transition is enabled, then this transition can be 

fired. So, there is a token movement in the Petri net 

model of systems.  

There are two kinds of representation matrices of a 

Petri net i.e., the backward and forward incidence 

matrices which are respectively denoted by Ab and Af. 

The elements of Ab and Af are defined by: 

Ab(i,j ≝ w(pi,tj) and Af(i,j) ≝ w(tj,pi) 
where i= 1,2, ...m and j= 1,2, ...n. From the definition of 

backward and forward incidence matrices, we can define 

an incidence matrix   in term of  Ab and Af as follows:  

                    (6) 

So we get the new state after firing the enabled 

transition as follows: 

x([p1,p2,...pn]
T) = x([p1,p2,...pn]

T) + Aej 
where ej represents the firing of  j-th enabled transition. 

A timed Petri net is a 6-tuple (P,T,A,w,M0,S) where M0 

is initial marking vector function, i.e. M0:P{0,1,2,3,...} 
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and S is time structure related to all of the place in Petri 

net. This structure of time called holding time which 

means as the time a token have to spend in a place before 

contributing to the enabling of a transition. More 
discussion about Petri net is given in [8]. 

III. RESULTS AND DISCUSSION 

Consider the equation of the first order difference 

equation of the systems that be given by:  

                               
   (7) 

where    
                         , 

     ℝ  and        
  ℝ ℝ  is a continuous 

function in x(n). There is also a continuous function 

:[0,∞):[0,∞). If (0) = 0 and  is an increasing 

function, then   where   is a class of function. 
There is a Lyapunov function given by: 

            ith        
  ℝ     

 
 

And ∆  = ( +1,x( +1)) –  ( ,x(n)). So, we get the 

result which is given in the following theorem. 

Let ( ,( )) with         
  ℝ     

 
 be a continuous 

function in   and define a function as follows: 

     
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such that this equation satisfies the following conditions: 

1. b(|x|) ≤ v0 (n, x(n)) ≤ a(|x|),a,b K 

2. ∆ ( , (   k≤ ω( , ( )) for      
       ℝ           

where      
  ℝ 

 
ℝ   is a continuous function and 

  is the set of natural number. It is assumed that for 

  ℝ 
 

 we have  ( ,  ) =      ω  ,  ) is a non 

decreasing function in  , with 0 < λ <   are  given,   and 

 (λ) <   , λ,     [0,∞). If  ( +1) =  (     )) with 

 ( 0) =  0     then system in (7) is stable. More 

information about this Theorem can be found in [9]. 

A. Lyapunov Stabilization in Discrete Event Systems 
Modeled by Petri Net 

Let bet    denotes the firing vector at time  , and 

  =[  ( 1),  ( 2),...  (  )  denotes the firing vector 

at time  . So, we get a matrix equation which shows the 

dynamical behavior of systems modeled by Petri net as 

follows:   +1 =    +    . 

If we fire some of enabled transitions   with the 

corresponding firing vectors are  0,1,...  -1 at time  . Then 

we get the following marking vector  ' 
            ith      

   
      (8) 

Equation 8 shows that the marking vector  ' can be 

reached from the other marking vector  .  

The discrete event systems modeled by Petri net has 

the following state   =[  ( 1),  ( 2),...  (  )  

where               
 
         

 
           

  

From this state, we can find the Lyapunov function 

which satisfies the Theorem as follows: 

 ( ,  ) =   
 Φ 

where Φis a vector with the appropriate size with each 

element is positive number. About the proving of this 

function as the Lyapunov one can be found in [9]. Then, 

we get the following proposition. 

1. Proposition 1 

A Petri net is stable if there is   strictly positive vector 

Φ, such that, 

v = eTAT  0 
Moreover, the Petri net which does not satisfy the 

proposition above will be observed whether this Petri net 

is stabilizable. The criteria of a Petri net called as a 

stabilizable is defined in definition bellow. 

2. Definition 

A Petri net is stabilizable if there exist a sequence 

firing vector e such that the system in Equation (8) is 

bounded.          
The definition above can be explained more clearly. In 

order to attain this purpose, we use the following 

proposition. 

3. Proposition 2 
A Petri net is stabilizable if there is a transition firing 

vector e, such that  

∆    ≤    h r       

   

   

                                          

The detail information of those definition and 

propositions is given in [9]. 

B. Timed Petri Net Model and Its Analysis of Predator 

Prey Systems 

In this section, we derive a timed Petri net model of a 

predator-prey system. Then, we analyze its stability and 

find the periodic duration oscillation of this system.  

It is assumed that the predator species only depend on a 

single prey species as its food supply, the prey has 

unlimited food supply, and that there is no threat to the 

pray other than the specific predator. The timed Petri net 

model for predator-prey system is given in Figure 1, 

where the notation of places and transitions are explained 

bellow: 
R : preys are resting 

A : preys are doing their activity 

I : Predators are idle 

D : Preys in danger 

E : Preys are being eaten 

f : Preys finished resting 

t : preys are at threat 

s : predators start attack preys 

d  : predator departs (leaves the prey because has fully    

satisfied) 

 1,2, 3, 4 and  5 are respectively the holding times 

corresponding to place R, A, I, D and E, where    [0,∞), 

i = 1, 2, 3, 4, 5 and  1 >  3. 

From Figure 1, we get the incidence matrix bellow: 
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Furthermore, we have to find the vector Φ such that 

this vector satisfies the condition in Proposition 1. 

Because each element of    is non negative, it is enough 
to show that  

AT  0 

where 0 is a vector with the appropriate size which all of 

its elements are zero. So, we get a vector: 
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
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such that: 

AT = 0 

According to Proposition 1, vector Φ given in (9) 

should be strictly positive. It is shown that the system 

modeled by timed Petri net above is not stable. But the 

system is stabilizable. It can be proved using Proposition 

2. This stabilizable properties can be reached by solving 

the homogenous linear Equation below: 

       h r       

   

   

  

Then we get 
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with       . Based on this vector, we can say that the 

system we discussed is stabilizable.     

Now, we will find the oscillation periodic duration of 

the system. First, we have to find the recurrence equation 

in the max plus algebra.  
From the model of timed Petri net in Figure 1, we can 

derive the equation of the system as follows: 

                                            

                            

                                                  

                                                  

 

where    [0,∞), i = 1,2,3,4,5,   1( ),  2( ),  3(k) and 

 4( ) respectively denotes the time of preys finish their 

resting at period  , the time of preys are threatened at 

period k,  the time of predator starts attack the preys at 

period k, and the time of predator departs at period k.  

These equations can be formed into matrices equation 
below: 

                                                  (10) 

where, 
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From Equation 10, we can determine matrix   
   as 

follows: 

  
      

   
                                                            

       

    
  

 

 
  

 
 

 
 

     

 

  

  

    
  

 

 
  

 
 

 
 

     

 

  

      

    
  

 

 
  

 
 

 
 

     

 

  

  

    
  

 

 
  

 
 

 
 

     

 

  

  

               
  

     

   
     

       
       

 
 

                

             

 

 

Next, the standard autonomous equation of the system 

modeled by timed Petri net is given by: 

                 

where                                    
  and 

    
      

        
  

      
            

    
    

 
                 
                 

      
         

 

        

           

   
  

      
     

     

        

  

The next step to find the oscillation periodic duration 

of the system by calculating the eigen value of the matrix  

Ã. The graph of the matrix Ã is shown in Figure 2, 

From Figure 2, we get the eigenvalue as follows: 

  ma  
    

    
  ma              . 

This result shows that the oscillation periodic duration 

of the system depends on  1 and  3,4, 5.We noted that  1 

>  3 so the predator has enough time to eat the prey. 

This is relevant with the real life.  

Our next step is giving a value to each holding times. 

Let  1=6,  2=2,  3=4,  4=1 and  5=1 

be the holding times of the system. So, the eigen value of 

the matrix Ã is given by, 

λ = max{ 1, 3+ 4+ 5} = max{6,6} = 6. 
This result shows that the oscillation periodic duration 

of the system is equal to 6. This result must be different 
if we choose the other different holding times values. 

IV. CONCLUSION 

In this section we give some notes of discussing 

especially in predator-prey system modeled by timed 

Petri net. The modified model given by: 
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Next we transform the model to get a new model that is 

given by: 

                

where                                    
 and 

    
      

        
  

      
            

    
    

 
                 
                 

      
         

 

        

           

   
  

      
     

     

        

   

 

Then, we get the eigenvalue of Ã as follows: 

  ma  
    

    
  ma              . 
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As we knew that the value of λ is the oscillation 

periodic duration of the system. So we can conclude that 

this oscillation periodic duration of the system depends 

on  1 and  3,  4,  5. In order to the predator has enough 

time to eat the prey this could be  1 > 3. Let,  1=6, 
 2=2,  3=4,  4=1 and  5=1 be the holding times of the 

timed Petri net. So, we get the eigenvalue of the matrix Ã 
as follows: 

λ    a   1, 3 +  4 +  5} = max{6,6} = 6 
According to this result, we conclude that the 

oscillation periodic duration of the system is equal to 6. 

This result also shows that the holding time  2 which is 

corresponding to place   in Figure 2 does not play any 

role in determining the oscillation periodic duration of 

the system.  

For the future work, the discussing can be continued 

for finding out whether it is possible to construct a timed 

Petri net which represents the predator-prey system with 

all of the holding times in each place plays role in 
determining the oscillation periodic duration of the 

system such that the model more realistic than the 

previous one. For more advance studying, the holding 

times can be determinded as the interval values. 
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Figure 1. Timed Petri net model of predator-prey systems

 
Figure 2. The graph of matrix   
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