
   IPTEK, The Journal for Technology and Science, Vol. 22, No. 4, November 2011 177 

Numerical Modeling  

of Turbulent Bottom Boundary Layer  

over Rough Bed under Irregular Waves 
         

Taufiqur Rachman
1
, Suntoyo

2
, Kriyo Sambodho

2
, Haryo Dwito Armono

2
, and Eko Yusroni

3 

 

AbstractA numerical model of turbulent bottom boundary layer over rough bed under irregular waves is reviewed. The 

turbulence model is based upon Shear Stress Transport (SST) k- model. The non-linear governing equations of the 

boundary layer for each turbulence models were solved by using a Crank-Nicolson type implicit finite-difference scheme. 

Typical the main velocity distribution, turbulence kinetic energy and time series of the bottom shear stress are presented. 

These results are shown to be in generally good agreement with experimental result. The roughness effects in the properties 

of turbulent bottom boundary layer for irregular waves are also presented with several values of the roughness parameter 

(am/ks) from am/ks=5 to am/ks=3122.  The roughness effect tends to decrease the main velocity distribution and to increase the 

turbulent kinetic energy in the inner boundary layer, whereas in the outer boundary layer, the roughness alters the mean 

velocity distribution and the kinetic energy turbulent is relatively unaffected. The effect of bed roughness on the bottom 

shear stress under irregular waves is found that the higher roughness elements increase the magnitude of bottom shear 

stress along wave cycle. And further, the bottom shear stress under irregular waves is examined with the existing 

calculation method and the newly proposed method.  
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AbstrakDitinjau sebuah model numerik turbulent bottom boundary layer melalui dasar kasar pada gelombang irreguler. 

Model turbulen didasarkan pada model Shear Stress Transport (SST) k-. Persamaan-persamaan tidak linier boundary layer 

untuk model turbulen diselesaikan secara numerik dengan menggunakan Crank-Nicolson type implicit finite-difference 

scheme. Disajikan pula tipikal distribusi kecepatan rata-rata, energi kinetik turbulen dan variasi waktu tegangan geser dasar. 

Hasil ini secara umum menunjukkan kesesuaian yang baik dengan hasil eksperimen. Pengaruh kekasaran dalam properti 

turbulent bottom boundary layer untuk gelombang irreguler juga disajikan dengan beberapa nilai parameter kekasaran (am/ks) 

dari am/ks=5 hingga am/ks=3122. Efek kekasaran cenderung menurunkan distribusi kecepatan rata-rata dan meningkatkan 

energi kinetik turbulen di dalam boundary layer, sementara di luar boundary layer, perubahan kekasaran terhadap distribusi 

kecepatan rata-rata dan energi kinetik turbulen relatif tidak terpengaruh. Efek kekasaran pada tegangan geser dasar untuk 

gelombang irreguler menunjukkan bahwa elemen kekasaran lebih tinggi akan meningkatkan besaran tegangan geser dasar 

sepanjang siklus gelombang. Lebih lanjut, tegangan geser dasar pada gelombang irreguler diuji dengan metode perhitungan 

yang ada dan suatu usulan metode baru.  
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I. INTRODUCTION
1 

n understanding of nature of the wave boundary 

layer above the seabed is of fundamental 

importance to coastal engineers and workers in the field 
of sediment transport. A number of experimental studies 

have made new contributions to our understanding of the 

turbulent behavior of oscillatory flow over both smooth 

and rough boundaries [1-4]. From these studies, it is 

clear that turbulence is generated in the vicinity of near-

bed regions either through shear layer instability or the 

turbulence bursting phenomenon.  

One problem encountered in the experimental 

investigation of the wave boundary layer is that it is very 

thin, of the order of 0-5 cm. In the laboratory, it is 

usually difficult to get the boundary layer turbulent in the 
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ordinary. For this reason, the wave boundary layer is 

quite often studied in an oscillatory tunnel where much 

larger near-bed orbital velocities can be obtained. 

Examples of such tunnels are the oscillating water tunnel 

[4-6] and the oscillating wind tunnel [2, 7-8]. Since is 

difficult to make controlled field measurement in this 

thin layer, various analytical and numerical models have 

been developed in recent. These have been concerned 
principally with the determination of the velocity and 

shear stress fields in the oscillatory turbulent boundary 

layer beneath surface waves. The results have been used 

to quantify, e.g. the wave drag coefficient, boundary 

layer thickness and phase lead of the bottom shear stress 

over the oscillating free stream flow [7, 9-10]. These 

results have been in turn to compute energy dissipation 

rates and to estimate sediment transport rates, see e.g. in 

[11-13].   

Investigations on turbulent bottom boundary layers 

over rough bed under irregular waves is very rarely done, 
although there, but they are mostly limited to a smooth 

bed condition for example [7, 8, 14], which are very 

different from an actual situation on a sea bottom with 

roughness bed. Numerical computation of laminar 

boundary layer behavior under irregular waves for plane 

bed condition has been investigated by [7]. Generation of 

A 
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irregular wave show satisfactory result when compared 

with input spectral properties. Model results have been 

compared with experiment data and an excellent 

agreement has been obtained. Moreover, an 
experimental and numerical study has been conducted 

by [10] to investigate the properties of irregular wave 

boundary layers on a rough bottom. The triangular 

elements, similar to those used by [1], were pasted on the 

bottom surface as roughness. It was observe that the 

turbulence might persist under a free-stream Reynolds 

numbers within laminar range. The original version of 

k- model and two versions of two-layer k- models 
have been used to predict the boundary layer properties 

under experimental conditions. It was found that the 

model could reproduce the shear stress variation in time 

quite successfully but the magnitude could not be 

predicted adequately. 
Recently, the wave boundary layers over a stone-

covered bed with a rather small roughness parameter 

have investigated by [15].  The outcomes show that the 

turbulent boundary layer is not extremely sensitive to the 

packing pattern, the packing density, the number of 

layers, or the surface roughness of the roughness 

element. The outcomes further show, the friction factor 

for small values in the range of am/ks=0.6-3.0 is not a 

constant value, which is contrary to suggestions of some 

previous investigators.   

More recently, the characteristics of turbulent boundary 

layer under saw-tooth waves over rough bed through 
laboratory and numerical experiments have presented by 

[12]. A good agreement between numerical and 

experiment data for mean velocity distribution, turbulent 

intensity and bottom shear stress was obtained.   The 

effect of roughness on the turbulent boundary layers 

under asymmetric wave has investigated by [13] using 

the BSL k- turbulence model validated with 

experimental data. The BSL k- model could predict 
well the mean velocity, turbulent intensity and kinetic 

energy, and bottom shear stress for asymmetric waves. 

The boundary layers characteristics for laminar, 

transition and turbulent flow regimes under solitary wave 

are investigated by [16] using two equations of the Base 

Line (BSL) k- turbulent model. The model is examined 
by the linearized boundary layer equations of motion 

velocity profile in the laminar boundary layer in spatial 
variation and which is converted to temporal variation. 

Hydrodynamic conditions were examined subsequently 

and interpreted using methods comprising turbulent 

kinetic energy, velocity profile distribution, bottom shear 

stress, phase difference and friction factor methods. And 

further, a conduit water tunnel with a downstream gate 

has been newly proposed to investigate boundary layer 

characteristics under solitary wave over smooth bed [17]. 

The generation system presented in this study facilitates 

measurements of statistical properties obtained by phase 

ensemble averaging. Validations of the system have been 
done in terms of free stream velocity, single and 

periodical oscillatory motion measurements and also 

time variation of velocity distribution. The critical 

Reynolds number obtained from this study shows good 

agreement with the finding of previous researchers. 

The purpose of this paper is to applied a theory 

describing one of the two-equation turbulence models, 

Shear Stress Transport (SST) k- model, proposed by 

[18] in a rough turbulent boundary layer to compute 

turbulent boundary layer properties through numerical 

methods. The numerical results are verified through 

experimental data by [19]. Typical vertical profiles of 
horizontal velocity, turbulence energy and eddy 

viscosity, and time series of the bottom shear stress are 

presented. The roughness effects in the properties of 

turbulent bottom boundary layer under irregular waves 

are also presented with several values of the roughness 

parameter (am/ks) from am/ks=5 to am/ks=3122. And 

further, the bottom shear stress under irregular waves is 

examined with the existing calculation method by [11, 

14, 20] and the newly proposed method. This study will 

be useful for the practicing engineers in calculating bed 

load sediment transport in coastal environments and 

researchers interested in determining the wave boundary 
layer thickness over rough bed under irregular wave 

motion.  

II. METHOD 

A. Boundary Layer Equation 

For the 1-D incompressible unsteady flow the equation 

of motion within the boundary layer can be expressed as 

follow, 
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where u is the instantaneous horizontal velocity,  is 

water density, and p is pressure. At the axis of symmetry 
or outside boundary layer u=U, therefore, 
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By introducing the eddy viscosity model, the total 

shear stress for turbulence flow can be expressed as: 
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Where vt is the eddy viscosity describing the Reynolds 

stress and v is the kinematic viscosity. Substitution of 

Equation 3 into Equation 1 gives the simplified equation 
for the turbulent flow motion in the bottom boundary 

layer,  
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For practical computations, turbulent flows are 
commonly computed by the Navier–Stokes equations in 

averaged form. However, the averaging process gives 

rise to the new unknown term representing the transport 

of mean momentum and heat flux by fluctuating 

quantities. In order to determine these quantities, 

turbulence models are required. Two-equation turbulence 

models are complete turbulence models that fall in the 

class of eddy viscosity models (models which are based 

on a turbulent eddy viscosity are called as eddy viscosity 

models). Two transport equations are derived describing 

transport of two scalars, for example the turbulent kinetic 

energy k and its dissipation . The Reynolds stress tensor 
is then computed using an assumption, which relates the 
Reynolds stress tensor to the velocity gradients and an 

eddy viscosity. While in one-equation turbulence models 

(incomplete turbulence model), the transport equation is 

solved for a turbulent quantity (i.e. the turbulent kinetic 

energy, k) and a second turbulent quantity is obtained 

from algebraic expression.  
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B. Shear Stress Transport (SST) k-  Model 

Turbulence models can be used to predict the turbulent 
properties under any waves motion. The Shear Stress 

Transport (SST) k- model is one of the two-equation 

turbulence models proposed by [18]. SST k- model is a 

mixed form of the robust formulation of the k- model 

in the near-wall region, with the k- model in the outer 

part of boundary layer. The SST k- model is claimed to 
be more accurate and reliable for wider class of flow 

than the standard k- model as well as the original k- 
model, including the improvement of prediction for 

adverse pressure gradient flow. In the SST k- model the 

definition of eddy viscosity is modified to account for 
the transport effects of the principal turbulent shear 

stress. The SST k- model produces slightly lower eddy 

viscosities than the Base Line (BSL) k- model on flat 
for zero pressure gradient boundary layers.  

SST k- model is one of six two-equation turbulence 
models have been tested against the Direct Numerical 

Simulation (DNS) data for a boundary layer under 

slowly varying 1D oscillatory flow [21]. A detailed 

comparison has been made for mean velocity, turbulent 

kinetic energy, Reynolds stress and bottom shear stress. 

All models tested here perform poorly, however, during 

the deceleration phase. For the friction factor, the WL 

model proves to be superior in the present test case, 

whereas an overall comparison for friction factor, phase 

difference, and boundary layer thickness yields SST as 

the best model among the ones tested here. 

In the present paper Shear Stress Transport (SST) k- 
model was used to evaluate the new acceleration 

coefficient, ac, and to compare with the experimental 

data. The SST k- model was used to determine some 

unknown quantities in Equation 4. The SST k- model is 

a two-equation model that gives results similar to the k- 
model of Wilcox in the inner of boundary layer but 

changes gradually to the Jones-Launder k- model 
towards to the outer boundary layer and the free stream 

velocity. In order to be able to perform the computations 

within one set of equations, the Jones-Launder model 

was first transformed into the k- formulation. The 
blending between the two regions is done by a blending 

function F1 changing gradually from one to zero in the 

desired region. 

The functions F1 and (1- F1) are multiplied by the 

original k- model of Wilcox (1988) and the 

transformed k- model of Jones Launder (1972), 
respectively and both are added together. A blending 

function ensures a smooth transition between the two 

models [22]. In the near the wall the function  F1 is 

designed to be one for activating the original k- model 
of  Wilcox, while in the outer region of boundary layer is 

to be zero for activating the k- model of Jones Launder. 

Original k- model: 
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Transformed k-  model: 
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Both Equations 5 and 6 are multiplied by F1 whereas 

both Equations 7 and 8 are multiplied by (1- F1)  and 

then the corresponding equations of each set are added 

together to give the new model known as the BSL k- 

model. The new governing equations of the transport 
equation for turbulent kinetic energy k and the 

dissipation of the turbulent kinetic energy  from the 

SST k- model as mentioned before are, 
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where, σkw, *, σw,  and are model constants, F1 is a 
blending function. 

In the SST k- model the definition of Eddy viscosity 
is modified to account for the transport effects of the 

principal turbulent shear stress. The new definition of 

eddy viscosity is as follows, 
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where F1 is defined as, 
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The SST k- model produces slightly lower eddy 

viscosities than the BSL k- model on flat plate for zero 
pressure gradient boundary layers. In order to recover the 

distribution of the diffusion term constant in the near 

wall the model constants had to be adjusted for Set 1 i.e. 

k1= 0.85, 1= 0.65, 1 = 0.075 and 1 = 1/
* - k1

2 

/*1/2 = 0.469, while Set 2 (the transformed k- model) 

including k2 = 1.0,  2= 0.856, 2 = 0.0828 and  2 = 

2/
* - k2

2 /*1/2 = 0.4404, where = 0.41 and *= 
0.09 [23]. 

C. Boundary Conditions 

The boundary condition at the wall is no-slip boundary 

condition for velocities and turbulent kinetic energy, i.e. 

at z=0, u=k=0, and at the axis of symmetry of the 

oscillating tunnel, the gradients of velocity, turbulent 

kinetic energy and specific dissipation rate are equal to 

zero, i.e. at z=zh, ∂u/∂u=∂k/∂uz=∂/∂z=0. The k-  

model provides a natural way to incorporate the effects 
of surface roughness through the surface boundary 

condition. The effect of roughness was introduced 

through the wall boundary condition of [24], in which 

this equation was originally recognized by [25], given as 

follow,  

vSU Rw /*                               (15) 



 180 IPTEK, The Journal for Technology and Science, Vol. 22, No. 4, November 2011 

where w is the surface boundary condition of the 

specific dissipation  at the wall in which the turbulent 

kinetic energy k reduces to k=0,  U* =  /o
 is friction 

velocity and the parameter SR is related to the grain-

roughness Reynolds number, ks+= ksU
*/ v, with 

andkfor
k

S S

S

R 25
50

2





















   

25
100




 S

S

R kfor
k

S   (16) 

The instantaneous bottom shear stress can be 

determined using Equation 3, in which the eddy viscosity 
was obtained by solving the transport equation for 

turbulent kinetic energy, k and the dissipation of the 

turbulent kinetic energy  in Equation 11. While, the 
instantaneous value of u(z,t) and v1 can be obtained 

numerically from Equations 1 to 11 with the proper 

boundary conditions.  

D. Numerical Method 

In the numerical method, the non-linear governing 

equations of the boundary layer for each turbulence 

models were solved by using a Crank-Nicolson type 

implicit finite-difference scheme, as shown in Figure 1. 

In order to achieve better accuracy near the wall, the grid 

spacing was allowed to increase exponentially. In space 

100 and in time 7200 steps per wave cycle were used.  

The convergence was achieved through two stages; the 

first stage of convergence was based on the 

dimensionless values of u, k and  at every time instant 
during a wave cycle. Second stage of convergence was 

based on the maximum wall shear stress in a wave cycle. 
The convergence limit was set to 1x10-6 for both the 

stages. Full description of the numerical technique, 

boundary conditions and model parameters are provided 

in [12-13]. 

The dimensionless governing equations, i.e. equation 

of motion (Equation 17), the transport equation of 

turbulent kinetic energy k (Equation 18) and the transport 

equation of the specific dissipation rate  (Equation 19) 
may be expressed in the following form by using a 

Crank-Nicolson type implicit scheme (omitting the 

superscript (*)); 

Equation of motion: 
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Transport equation of turbulent kinetic energy k: 
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Transport equation of the specific dissipation rate  : 
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By considering Figure 1, for any variable ; 
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where, =u,k, the first derivative of any quantity   
may be expressed as; 
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Hereafter, by using the above finite difference scheme all 

the three governing equations for each turbulence model 

may be expressed in a general form as follows, 

413211 iiiiiii AAAA                   (22) 

The coefficients   1,   2,   3 and   4 form the elements 

of a tridiagonal matrix, which may be solved by Gauss 

elimination method. 

E.  Experimental Method of Rough Turbulent Boundary 

Layer 

Rough turbulent flow experiments representative of 

irregular waves were carried out by [19] in an oscillating 

tunnel using air as the working fluid at Laboratory of 

Environmental Hydrodynamics Tohoku University 

Japan. The wind tunnel has a length of 5 m and the 

height and width of the cross section are 20 cm and 10 

cm, respectively. Experimental data has been used for 

comparisons with model results. The flow measuring 
unit comprised of a wind tunnel and one component 

LDV for flow measurement. Velocity measurements 

were carried out at 21 points in the vertical direction at 

the center part of the wind tunnel by means of LDV.  

The aluminum ball elements of roughness, similar idea 

used by [26], pasted over the bottom surface of the wind 

tunnel without spacing along the wind tunnel. The 

aluminum ball elements were chosen in order to the 

roughness elements protrude out of the viscous sub-

layer. The aluminum balls roughness having a diameter 

of 10 mm, as depicted in Figure 2. The balls roughness 
elements also used by [15] in an experimental 

investigation on wave boundary layers over a bed with 

large roughness.  

The input wave parameters specified for computation 

have been carried out only one case under irregular 

waves. Detail of input parameters are presented in Table 

1.  
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Reynolds number is defined using Equation 23, to 

obtain rough bed turbulent flow was set Re1/3=5.0×105 to 

reach a fully turbulent regime. 

3/1

2

3/1
3/1Re



U
   , 

3/1

3/1

2

T


                               (23) 

where, U1/3: the amplitude of flow velocity based on 

parameter of significant wave, T1/3: the significant wave 

period, and  : the kinematics viscosity. 

The spectral density for irregular wave water surface 

elevation, Sη (f) can be computed using Bretschneider-

Mitsuyasu spectral density formulation in the following 

Equation 24, 

      4
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3/1 03.1exp257.0
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 fTfTTHfS
          (24) 

where, H1/3, and T1/3 
are significant wave height and 

period respectively, and f is frequency of component 

waves. Applying small amplitude wave theory following 

relationships can be obtained for spectral densities of 

water surface elevation and free stream velocity, as 

shown in Equation 25, 
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            (25) 

where, SU (f) is spectral density for free stream velocity, 

HU (f)  is velocity transfer function, h is water depth, and 

L and (=2) are wave length and angular frequency of 
component waves respectively. 

Obtained velocity spectrum has been used to generate 

velocity time variation with the approximation that 

irregular waves can be resolved as a sum of infinite 

number of regular wavelets with small amplitudes and 

random phases, as shown in Equations 26 and 27, 

    
i

iiUi tfAtU 2cos                                (26) 

  iUUi ffSA  2                               (27) 

where, U(t) is instantaneous free stream velocity, AVi are 

velocity amplitudes of component waves, fi are 

component frequencies, t is time, i are component 

phases and  
 

are frequency increments between 
successive wave components. 

III. RESULTS AND DISCUSSION 

A. Mean Velocity Distributions 

Experiment data of mean velocity profiles in the rough 

turbulent boundary layer for irregular waves at selected 

phases were compared with the SST k- model for the 
second, fifth and sixth cycles presented in Figures 3, 4 

and 5, respectively. The second and sixth cycles from the 

experimental data irregular waves indicated lower and 

higher of the velocity overshoot while fifth cycle 

indicated higher period of the velocity overshoot. The 

solid line showed the turbulence model prediction results 

by the SST k- model while open and closed rounds 
showed the experimental data of mean velocity profile. 

As depicted in both experimental and the turbulence 

model display that the velocity overshoot is much 

influenced by the effect of acceleration and the 
magnitude of the velocity. The difference of the 

acceleration between the crest and through phases is 

significant. The velocity overshoot at phases of D, E and 

F the all cycles is higher than that at phases of A, B and 

H. The mean velocity close to the bottom increases with 

the increase of the velocity overshoot, corresponding to 

the increase of the acceleration effect at the crest part of 
wave motion. The sixth cycle displays that the mean 

velocity close to the bottom is higher than other cycles. 

As seen in these Figures, a good agreement between 

experimental and the SST k- model has been achieved 
especially at phases of A, B, E and F for second cycle, 

and at phases E, F and H for fifth cycle, and at phases B, 

D, F and H for sixth cycle, when velocity overshooting 

occurs. The irregularity effect at during acceleration and 

deceleration phases along a wave cycle where the 

pressure gradient is very steep in the present irregular 

wave cases, it seems that the turbulence models have 

slight difficulties coping with the flow situation. It can be 

concluded that the SST k- model could predict well the 
mean velocity distribution for irregular waves especially 

during acceleration phases for experimental cases 
considered. The irregularity of the waves affects the 

dynamic properties of turbulent boundary layer.  

After the validation of SST k- model with the 
experimental data, we determined the roughness effects 

by using the SST k- model to simulate irregular wave 
velocity flows with various values of the roughness 

parameter (am/ks), which increase gradually from am/ks 

=5 to am/ks =3122.  

Figure 6 shows the predicted results of the mean 

velocity distribution for Re=5×105 at sixth cycle phases 

D and E. Roughness tends to decrease the mean velocity 

in the inner boundary layer. In the outer boundary layer, 

however, the mean velocity distribution is relatively 

unaffected by the roughness. 

B. Turbulent Intensity and Turbulence Kinetic Energy  

Comparison of the turbulent intensity from 

experimental results for fifth and sixth cycles and the 

SST k- model prediction at selected phases are given in 
Figure 7 and 8. The turbulent intensity or the fluctuating 

velocity in the x-direction u′ from numerical modeling 
can be estimated using Equation 28 that is a relationship 

derived from experimental data for steady flow [27]: 

ku 052.1'   (28) 

where k is the turbulent kinetic energy obtained in the 

turbulence model. 

Comparisons made on the basis of approximation to 
calculate the fluctuating velocity by [27] may not be 

applicable in the whole range of cross-stream dimension 

in the same manner as the assumption of isotropic 

turbulence. In the fact that far from the wall, where the 

flow is practically isotropic, this expression may surely 

better approximation as compared to the region near the 

wall where the flow is essentially non-isotropic. The SST 

k- model can predict very well the turbulent intensity 
across the depth at almost all at phases. But, between far 

and near the wall shows the model slightly overestimates 

the intensity at phases C, F and G (fifth cycle) and at 

phases B, C, D, F, G and H (sixth cycle). Moreover, the 

SST k- model prediction far and near from the bed is 
generally good. However, the prediction model 

qualitatively produces very good indication of the pattern 
of turbulence generation and it mixing.  

Figure 9 shows the predicted results of the turbulence 

kinetic energy, k, for Re=5.00×105 at phases D and E as a 
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function of location. Roughness tends to increase the 

turbulent kinetic energy in the inner boundary layer, in 

other words, the increase of the roughness causes the 

increase of the turbulence kinetic energy in the inner 
boundar layer, while in the outer boundary layer, the 

turbulent kinetic energy is relatively unaffected for all 

roughness cases. It is envisaged that the higher 

roughness yields the higher turbulence kinetic energy 

that will give a big impact on the sediment transport 

keeping it in suspension, especially for settling and pick 

up suspension sediment through turbulence. 

C. Bottom Shear Stress  

1. Logarithmic Profile and Energy Dissipation Methods 

Bottom shear stress from experimental data can be 

estimated by using logarithmic velocity distribution 

given in Equation 29, as follow, 
















oz

zU
u ln

*



 (29) 

where, u is the flow velocity in the boundary layer,   is 

the von Karman's constant (=0.4), z is the cross-stream 

distance from theoretical bed level (z=y+Δz) and zo is the 

characteristic roughness length denoting the value of z at 

which the logarithmic velocity profile predicts a velocity 

of zero. zo can be obtained by applying the Nikuradse's 

equivalent roughness in which zo=ks/30; where ks is the 

bottom roughness. By plotting µ against ln(z/z0), a 

straight line is drawn from log-fitting to measured 

velocity profile through the experimental data, the value 

of friction velocity, U can be obtained from the slope of 

this line and bottom shear stress,0 can then be obtained 

from Equation 30. The obtained values of z and zo as 
the above mentioned have a sufficient accuracy for 

application of logarithmic law in a wide range of 

velocity profile near bottom region. 
** UUo    (30) 

Roughness elements that have the aluminum balls 

shape were used to express the bed roughness in this 

present study. These roughness elements that cause a 
wake behind each roughness element, and the shear 

stress is transmitted to the bottom by the pressure drag 

on the roughness elements. Viscosity becomes irrelevant 

for determining either the velocity distribution or the 

overall drag on the surface. Thus, the velocity 

distribution near a rough bed for steady flow is 

logarithmic.  It may be  therefore  assumed  that  log-law  

can be used  to estimate  the  time  variation  of  bottom  

shear  stress o (t) over  rough  bed  as  shown  by  
previous  studies  i.e. [1]. Hereafter, the bottom shear 

stress for experimental results can be evaluated with that 

of turbulence models. 

Numerical predictions of turbulence model can be used 
to predict the bottom shear stress under irregular wave. 

One of numerical prediction can be using the energy 

dissipation method. The SST k- model was used to 
evaluate the bottom shear stress to compare with the 

experimental data. For a log layer, a local balance 

between production, P and dissipation of turbulent 

kinetic energy,  ( = k) can be used to obtain the 

friction velocity, *U  through the logarithmic velocity 

profile in Equation 29.  

Figure 10 (a) shows the time-variation of bottom shear 

stress under irregular waves comparison among 

experimental results and turbulence models prediction. 

The SST k- model could predict well the bottom shear 

stress showing a good agreement with the experimental 

data along a wave cycle under irregular wave. The SST 

k- model has given the underestimate and overestimate 

values with the experimental data especially at the trough 

part and the crest part of bottom shear stress. It can be 

concluded  that SST k- model can be used  to predict 

well  the bottom  shear  stress  under  irregular waves  

over  rough  beds.  

Figure 10 (b) shows the time histories of the bottom 

shear stress under irregular wave with various values of 

the roughness parameter (am/ks), which increase 

gradually from am/ks =5 to am/ks =3122. The predicted 
results for am/ks =69.38 agree well with the experimental 

data along a wave cycle under irregular wave. The 

increase in roughness increases the magnitude of bottom 

shear stress, which will influence sediment transport. 

2. Comparison with existing calculation approaches 

The bottom shear stress for experimental results under 

irregular waves is examined by the existing calculation 

approaches. There are two existing estimation 

approaches of bottom shear stress for irregular wave 

boundary layers. The maximum bottom shear stress 

(Method 1) within a basic harmonic wave cycle modified 
by the phase difference proposed by [14] is given 

Equation 31, 

   tUtUft wo 





2

1









  (31) 

where  to  is the instantaneous bottom shear stress, t is 

time,  is the angular frequency, U(t) is the time history 

of free stream velocity,  is phase difference between 
bottom shear stress and free stream velocity and fw is the 

wave friction factor where fw is calculated from Equation 

32 as proposed by [28]. 
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Method 2 is proportional to the square of the 

instantaneous wave friction velocity, U*(t), which 

incorporates the acceleration effect proposed by [11] in 

Equations 33 and 34. This approach is based on the 
assumption that the steady flow component is weak (e.g. 

in a strong undertow, in a surf zone, etc.).  
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     tUtUto **   (34) 

The phase difference for calculating in Method 1 and 

Method 2 can be obtained from significant wave 
quantities, instead of calculating for individual waves, as 

given in Equation 37.  
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Friction coefficient used in Method 2 is calculated 

from Equation 38 as proposed by [29], as follows: 
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3. A new calculation approaches 

The first new calculation approach of bottom shear 

stress under irregular waves (Method 3) is based on 

incorporating velocity and acceleration terms all at once 

that is given through the instantaneous friction velocity, 

U*(t) as proposed by [12-13] in Equation 39. Both 

velocity and acceleration terms are adopted from the 

calculation method proposed by [11]. The phase 

difference was determined from an empirical formula for 

practical purposes. The instantaneous friction velocity 

can be expressed as: 

 
 






















t

tUa
tUftU c

w



2/*              (39) 

where, fw: the wave friction coefficient as given in 

Equation 32 can be used for evaluating in Equation 36.  
: the phase difference between free stream velocity and 

bottom shear stress. Phase difference equation given in 

Equation 35 is used for calculating in Method 3.  

 The value of acceleration coefficient, ac is determined 

empirically from both experimental and Shear Stress 

Transport (SST) k- numerical model results of bottom 
shear stress using following relationship as shown in 

Equation (40). 
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Here, the value of acceleration coefficient, ac = 0.485, 

is obtained from average value of the time variation of 

acceleration coefficient ac(t) calculated from 

experimental result as well as the SST k- numerical 
model results of bottom shear stress, and is using to 

expressed irregularity form effect under irregular wave. 

The instantaneous bottom shear stress o(t) can be 
calculated proportional to the square of the proposed 

instantaneous friction velocity, as shown in Equation 41. 

     tUtUto

**                 (41) 

The second new calculation approach of bottom shear 

stress under irregular waves (Method 4) is derived from 

the time–variation of bottom shear stress for an arbitrary 

variation of  U(t) in Equation 42 as proposed by [30]. 
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The value of wave friction coefficient is calculated 

from Equation 43. 
16.0

041.0


 ew Rf                (43) 

Investigation of laminar bottom boundary layer under 

irregular waves as proposed by [31] is constructed the 

time–variation of bottom shear stress in Equation 44.  
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This estimation of bottom shear stress is obtained a 

good agreement with experiment results of laminar 

bottom boundary layer under irregular waves. However, 

this estimation cannot be used to condition for turbulence 

flow was analyzed in this research. The bottom shear 

stress for laminar flow is resulted too small according to 

the value of Reynold number far smaller than the 

turbulence flow. 
The hydrodynamics conditions were observed 

subsequently and interpreted using bottom shear stress, 

phase difference and friction factor for rough bed. The 

wave friction coefficient for rough turbulent is defined as 

follows [32], 
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where am/ks is the roughness parameter, ks can be 

obtained by applying the Nikuradse's equivalent 

roughness in which ks= 2.5 d50,  is frequency angular, 
Ua(t) is the time history of free stream velocity as 

proposed by [12-13] without the wave friction effect. 

Comparison among the experimental data, SST k- 
turbulence model and calculation approaches for bottom 
shear stress estimation under irregular waves are given in 

Figure 11. Method 4 could predict well the bottom shear 

stress showing the best agreement with the experimental 

results along a wave cycle under irregular wave than 

other methods and SST k- turbulence model. SST k- 
turbulence model gave overestimated value at both 

though and crest parts of bottom shear stress from 

experimental results. While Method 1, Method 2 and 

Method 3 have given underestimated and overestimated 

values of the bottom shear stress with the experimental 

data especially value at trough part and crest part, 

respectively. While, SST k- model and Method 1 was 
not so much in a good agreement with the experimental 

results along a wave cycle under irregular wave due to 

was not exclude the velocity and acceleration effect in 
the calculation of the bottom shear stress. 

Further, the calculation approach performance of 

bottom shear stress can be evaluated by the Root-Mean-

Square Error (RMSE), as follows: 
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where, (o(t)/)cal is the bottom shear stress from 

calculation approaches, (o(t)/)exp is the bottom shear 
stress from experimental results, N  is the total number of 

data and i  is index. The calculation approach agreement 

with experimental data when the RMSE is zero. The 

summary of the calculation approach performance of 

bottom shear stress is in perfect performance for bottom 

shear stress can be seen in Table 2. 

As shown in Table 2 that the second new approach of 

estimating bottom shear stress under irregular waves 

(Method 4) has highest performance than others methods 
with RMSE = 1.25. Method 4 gave the smallest the  

RMSE value indicating that it has the best agreement 

with the bottom shear stress of experimental results. It 

can be concluded that Method 4 can be used to estimate 

the bottom shear stress under irregular waves. 
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IV. CONCLUSION 

The predictions of turbulent boundary layer for 

irregular waves over rough beds have been investigated 

by the SST k- turbulence model validated by the 

available experimental data. The SST k- model could 
predict well the mean velocity, turbulent intensity and 

kinetic energy and bottom shear stress for irregular 

waves. The effect of roughness on the turbulent 

boundary layers under irregular waves were also studied 

using the SST k- turbulence model. Roughness tends to 
decrease the mean velocity and to increase the turbulent 

kinetic energy in the inner boundary layer, whereas in 

the outer boundary layer, while the roughness alters the 

turbulent kinetic energy and the mean velocity 

distribution is relatively unaffected. Moreover, the higher 

roughness elements also increase the magnitude of the 

bottom shear stress along wave cycle. 
The second new approach of estimating bottom shear 

stress under irregular waves (Method 4) has shown a 

good agreement with the experimental data and the SST 

k- numerical model. Therefore, method 4 may be 
considered as a reliable calculation method of bottom 

shear stress under irregular waves. 
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Figure 1. Finite difference scheme 
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Figure 2. Definition sketch of roughness 
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Figure 3. Mean velocity profile for the second cycle of  irregular 

waves 
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Figure 4. Mean velocity profile for the fifth cycle of irregular 

waves 
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Figure 5. Mean velocity profile for the sixth cycle of irregular waves  
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Figure 6. Effect of roughness on the mean velocity distributions for the sixth cycle of irregular waves 
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Figure 7. Turbulent intensity comparison of the SST k-ω model prediction and experimental data for the fifth cycle of irregular waves  
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  Figure 8. Turbulent intensity comparison of the SST k-ω model prediction and experimental data for the sixth cycle of irregular waves
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Figure 9. Effect of roughness on the turbulence kinetic energy 

distributions for the sixth cycle of irregular waves 
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Figure 10. (a). Bottom shear stress comparison among 

experimental results and turbulence models prediction , (b). 

Effect of roughness on the bottom shear stress 
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Figure 11. Comparison for bottom shear stress estimation

  

TABLE 1. 

INPUT WAVE PARAMETERS  

Exp. U1/3 (cm/s)  T1/3 (s) 
v           

(cm2/s) 
Re am/ks 

1 392 3.0 0.148 5.0 ×10
5
 69.38 

TABLE 2. 

 THE SUMMARY OF CALCULATION APPROACH PERFORMANCE FOR 

BOTTOM SHEAR STRESS 

Exp. 

The Root-Mean-Square Error (RMSE) 

Method 1 Method 2 Method 3 Method 4 

Case 1 3.79  7.68 1.60 1.25 
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