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Abstract

Noise in a Software Requirements Specification (SRS) is an irrelevant requirements
statement or a non-requirements statement. This can be confusing to the reader
and can have negative repercussions in later stages of software development. This
study proposes a classification model to detect the second type of noise, the non-
requirements statement. The classificationmodel that is built is based on the semantic
features of the non-requirements statement. This research also compares the five
best-supervised machine learning methods to date, which are support vector machine
(SVM), naïve Bayes (NB), random forest (RF), k-nearest neighbor (kNN), and Deci-
sion Tree. This comparison aimed to determine which method can produce the best
non-requirements classification, model. The comparison shows that the best model is
produced by the SVMmethod with an average accuracy of 0.96. The most significant
features in this non-requirement classification model are the requirements state-
ment or non-requirements, id statement, normalized mean value, standard deviation
value, similarity variant value, standard deviation normalization value, maximum
normalized value, similarity variant normalization value, value Bad NN, mean value,
number of sentences, bad VB score, and project id.
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1 INTRODUCTION

The Software Quality Assurance (SQA) process is considered very important to prevent the increase in costs required when
developing software, especially at the requirements specification stage [1, 2]. Meyer emphasized that the Software Requirements
Specification (SRS) process, which uses natural language, has several weaknesses compared to formal languages. Seven common
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mistakes cause these weaknesses that software developers make. Meyer introduced seven errors in software requirements that
usually occur in software requirements specifications [1, 3–6]. The seven sins are noise, silence, overspecification, contradiction,
ambiguity, forward reference, and wishful thinking. Several previous works focus on detecting the presence of seven errors in the
software requirements specification [3, 5–7]. Another work by Enda and Siahaan focuses on correcting ambiguous requirements
statements [4]. However, there have been no prior publications on noise detection in software requirements specifications from
past research. Noise is not only a common problem in signal processing but also in the software requirements specification.

The given facts above are the motivation to research effective ways to detect noise in the software requirements specification.
Noise is one of the types of errors that requirements engineers often make [1]. Noise may appear in the requirements specification
process in Software Requirements Specifications (SRS). Noise occurs when the software developer includes information that
is not relevant to the overall software requirements or includes non-requirements in the requirements specification. This can be
confusing to the reader and can have negative repercussions in later stages of software development.

Noise is divided into two types, which are irrelevant requirements and non-requirement statements. Figure 1 shows the two
types of noise. Irrelevant requirements discuss more topics outside the general topic that is being discussed by all relevant
requirements. Non-requirements statements tend to contain topics that are also contained in the requirement statements from
the same SRS. Although noise in various SRSs has different parts of the spoken order, non-requirement statements tend to have
specific terms (such as project, schedule, object-oriented, and user acceptance).

(a) (b)

FIGURE 1 Illustration of non-requirements statements (a), illustration of irrelevant statements (b).

The existence of noise within software requirements specification could be the effect of the tendency of the engineer to say
more than necessary. In the end, it could exhaust the project resource and thread the success of the project. Therefore, noise in
software requirements specification should be detected and removed as early as possible. Noise detection in previous studies
resulted in an unsatisfactory Kappa coefficient value, which is 0.4426. This is because the method developed in that study only
detects the first type of noise, which is irrelevant requirement statements [8]. The author will improve the previous method by
developing a classification model for detecting the second type of noise, non-requirement statements.

There are several studies on noise or outlier detection from text data. Several studies focus on adapting unsupervised machine
learning to detect noise [9–13]. Another study focused on detecting irregularities in documents using conceptual charts [14]. The
study provides a graphic visualization of the deviations that occur in text data.

This study exercises five well-known representable supervised methods, i.e., Support Vector Machine (SVM), Naïve Bayes
(NB), Random Forest (RF), k-Nearest Neighbor (kNN), and Decision Tree [15–18]. The contribution of this research is to build a
classification model for the non-need statement for waiting for noise.

Furthermore, a classification model will be made based on the results of the best classification method. Thus, the non-
requirements classification modeling is expected to improve the quality of the SRS.
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2 MATERIAL AND METHOD

2.1 Dataset
This study used 648 software requirements statements that were extracted manually from 14 SRS documents. Table 1 shows
the dataset used in this study. Each document refers to a different project from various problem domains [8]. Five annotators
label each requirements statement as requirements, non-requirements, or irrelevant. The label is a value of boolean type. The
annotator will label the statement with 1 (true) in the noise column if and only if it thinks the statement is noise. The annotator
will label the status with 0 (false) in the noise column if and only if it thinks the statement is a relevant requirements statement.

TABLE 1 The requirements specification dataset.

ID Project Name Requirements Non-
Requirements

DA-1 Submit Job 13 0
DA-2 System Administrator 17 0
DA-3 Archive Administrator 39 0
DA-4 SPG Application 6 1
DA-5 System Administrator Staff 33 0
DA-6 Software Development 65 28
DA-7 Display System 106 9
DA-8 Internet Access 64 4
DA-9 Meeting Initiator 33 0
DA-10 Online System 17 0
DA-11 Library System 86 11
DA-12 IMSETY System 70 0
DA-13 Manage Student Information 24 1
DA-14 PHP Project 75 3
Total 648 57

Measuring the reliability between annotators on the non-requirements statement shown by the red diagram in Figure 6, the
average reliability between annotators is 0.87. This shows that the five annotators have a very good level of reliability.

FIGURE 2 Reliability between annotators on a non-requirements statement.

2.2 Development of a Non-Requirements Statement Classification Model
The steps for building a classification model for non-requirements statements can be seen in Figure 2. This step consists of three
main processes: creating a sentence-level feature, a discourse-level feature, and a noise classification model.
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FIGURE 3 Building the classification models.

2.3 Sentences Level Feature Generation
As shown in Figure 3, sentence-level feature generation comprises two main processes, i.e., sentence preprocessing and feature
generation. Sentence processing involves part-of-speech (POS) tagging, lemmatization, stopword removal, and word-POS tag
frequency counter. Based on the study carried out by Hussain [19], we considered seven word-pos tag pairs to be counted, i.e.,
word-MD (modal), word-NN (noun), word-VB (verb), word-RB (adverb), word-JJ (adjective), word-DT (determinant), and
word-other (conjunction, preposition, cardinal, etc.). Since NN tags (e.g., NN, NNS, NNP, and NNPS), we grouped them into
NN tags. The same approach was applied to other POS tags. We maintained a bag of words for each type of POS tag. Each bag of
words contains unique word-POS tags. Based on the seven bags of words, the Semantic-basedWord-POS tags frequency counter
counts the number of word-POS tag occurrences in non-requirement and requirement statements for each type of word-POS tag
pairs.

FIGURE 4 Automatic noise-related sentence-level feature generation.

Sentence-level feature generation involves two main processes, i.e., keyword ranker and feature selection. Keyword ranker uses
the output from the previous process to calculate the strength of discrimination (in terms of likelihood ratio or LR) of each
word-POS tag. LR of a word-POS can be calculated using equation 1. Keyword ranker incrementally orders the results.

LR(word − POS) =
frequency of (word-POS)in Corpus Non-Requirements

frequency of (word-POS)in both corpus
(1)
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2.4 Feature Extraction
The next process was extracting sentence-level and discourse-level features from the training data. This training data was used to
build the classification model for detecting the non-requirement type of noises. Figure 4 and Figure 5 show the process diagram
for extracting sentence-level and discourse-level features, respectively. In sentence-level feature extraction, the frequency counter
process refers to the seven bags of word-POS generated from the previous process. Since the corpus contains a limited number
of vocabularies, we need to extend the scope to handle broader cross-domain projects. We usedWordnet thesaurus to find similar
words given a similarity threshold.

FIGURE 5 Sentence-level feature extraction.

FIGURE 6 Discourse-level feature extraction.

3 RESULTS AND DISCUSSION

3.1 Test Results
The features that have been made in the previous chapter were tested using the weka application. The initial process is cross-
validation of all project IDs. Furthermore, training and testing methods were used in a cycle, namely: the DA-1 project ID was
used as test data, and the DA-2 to DA-14 project IDs were used as training data. DA-2 project IDs are used as test data, and
project IDs DA-1, DA-3 to DA-14 as training data and so on so that DA-14 project IDs are test data and project IDs DA-1
through DA-13 are training data.

Table 2 shows the performance of each classification method in a cross-validation environment. Table 3 shows the performance
of each method in building a classification model for non-requirements statements and testing each dataset. From the training
and testing process, it can be seen that SVM and Random Forest are almost relative inaccurate (with a variance of 0.012 and
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0.011). The accuracy of the kNN and the Decision Tree is below it, with a variance of 0.016. Meanwhile, Naive Bayes has the
highest variance value, which means that its accuracy value is the lowest than the other four methods. These results indicate that
the training model produced by SVM has a higher average accuracy value (0.883) than the other four methods. The classification
model produced by SVM also has the highest average accuracy value (0.910). These results are consistent with research by [15, 20],
wherein in terms of accuracy, SVM can produce better classification results than other classification methods.

TABLE 2 The accuracy of classification models in the training process.

ID SVM Naive Bayes Random
Forest

kNN Decission
Tree

DA-1 0.880 0.712 0.869 0.820 0.847
DA-2 0.880 0.719 0.872 0.815 0.861
DA-3 0.877 0.700 0.865 0.813 0.860
DA-4 0.882 0.707 0.863 0.812 0.855
DA-5 0.880 0.741 0.875 0.834 0.868
DA-6 0.916 0.794 0.904 0.856 0.902
DA-7 0.884 0.731 0.865 0.815 0.865
DA-8 0.884 0.693 0.872 0.822 0.846
DA-9 0.878 0.750 0.863 0.813 0.855
DA-10 0.883 0.705 0.870 0.818 0.856
DA-11 0.881 0.705 0.861 0.827 0.849
DA-12 0.870 0.690 0.851 0.806 0.836
DA-13 0.883 0.713 0.865 0.825 0.865
DA-14 0.883 0.691 0.869 0.839 0.867
� 0.883 0.718 0.869 0.823 0.860

Table 3 also shows statistical information from the classification results of each method. This confirms that, in general, the
classification model produced by SVM has a more stable performance with respect to the population size of the dataset and the
ratio between requirements and non-requirements statements. The precision-recall plot in Figure 7 and the ROC-recall plot in
Figure 8 of eachmethod in two-dimensional space canmeasure the classification ability to distinguish the two possible outcomes.
The classification model that can produce the highest number of results located above the diagonal line is considered the best
model. Two graphical plots show that the classification model produced by SVM has higher potential uses than the others. In
addition, for the variance of classification results among problem domains, this study also showed an insignificant variance for
all methods.

TABLE 3 The accuracy of classification models in the testing process.

ID SVM Naive Bayes Random
Forest

kNN Decission
Tree

DA-1 1,000 0,462 0,923 0,846 0,923
DA-2 1,000 0,529 0,941 0,941 0,941
DA-3 0,974 0,974 0,974 0,974 0,974
DA-4 1,000 0,333 1,000 1,000 1,000
DA-5 0,939 0,121 0,758 0,697 0,606
DA-6 0,585 0,662 0,600 0,646 0,585
DA-7 0,877 0,868 0,877 0,868 0,877
DA-8 0,875 0,813 0,891 0,766 0,875
DA-9 0,970 0,970 0,970 0,970 0,970
DA-10 0,882 0,588 0,824 0,706 0,941
DA-11 0,895 0,616 0,895 0,709 0,884
DA-12 0,986 0,829 0,971 0,900 0,957
DA-13 0,875 0,833 0,875 0,833 0,875
DA-14 0,880 0,507 0,867 0,653 0,827
� 0,910 0,650 0,883 0,822 0,874
�2 0,012 0,062 0,011 0,016 0,016
�X 0,107 0,248 0,105 0,125 0,128
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FIGURE 7 ROC-recall plots of five classification methods.

FIGURE 8 Plot precision-recall of five classification methods.

3.2 SVM Representation
Simple representation of SVM as in equation 3.

minf�i‖f‖
2
k + C

l
∑

i=1
�iyif (xi) ≥ 1 = �i, for all i → �i ≥ 0 (2)
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The variable �i is called the slack variable to measure the error made at point xi, yi). Kernel functions play an important role in
SVM performance. It is based on reproducing the Hilbert Kernel space as in Eq. 4.

K(x, x′) =
(

Φ(x),Φ(x′)
)

(3)

If K is a positively symmetric definite function, which satisfies Mercer’s Rule,

K(x, x′) =
∞
∑

m
amΦm(x) Φm(x′), am ≥ 0 (4)

∫ ∫ K(x, x′) g(x) g(x′) dxdx′ > 0, g ∈ L2 (5)

The polynomial kernel is a popular method for non-linear modeling. The second kernel is usually preferred because it avoids
problems with hessian being zero.

K(x, x′) = (x, x′)d (6)

K(x, x′) = (< x, x′ > +1)d (7)

3.3 Attribute Selection
Attribute selection is made to find out which attribute is the most significant. The attribute evaluator uses InfoGainAttributeEval
and the Ranker lookup method from the weka application. Table 4 explains the title code in Table 5. In Table 5, it can be seen
that all features can affect accuracy (with the greatest variance of 0.0001). From the attributes selection results, it can be seen
that of the nineteen features used to build the model, only eleven features that are considered significant classify non-requirement
statements. The eleven features represent semantic and statistical features.

TABLE 4 Description of the title code on the name of attributes.

Title
Code

Attribute
Name

Information

a maxValNorm Maximum normalized value
b meanValNorm Mean normalized value
c STDValNorm The normalized standard deviation value
d varSMNorm Variant normalization value
e maxVal Maximum value
f meanVal Mean value
g STDVal Standard deviation value
h varSM Variant value
i bad_NN Bad NN value
j bad_VB Bad VB value
k bad_punctuation Other bad value in words

3.4 Pearson Correlation Coefficient
Table 6 shows the correlation between variables after feature selection. Explanation of letters a-k in the top and left side of the
title as described in Table 4.

3.5 Discussion
From the above research results, it can be seen that there is a set of semantic features that can classify requirement statements and
non-requirement statements. Meanwhile, SVM was chosen because it is the best-supervised method for classifying requirement
statements and non-requirement statements.
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TABLE 5 Feature selection results with the treatment of a zero-value feature on every deleted dataset.

ID a b c d e f g h i j k
DA-1 0.072 0.022 0.020 0.021 0.005 0.057 0.075 0.071 0.000 0.010 0.011
DA-2 0.071 0.021 0.019 0.020 0.005 0.056 0.074 0.071 0.000 0.010 0.000
DA-3 0.066 0.020 0.021 0.019 0.005 0.050 0.069 0.065 0.000 0.010 0.013
DA-4 0.071 0.019 0.017 0.018 0.005 0.054 0.075 0.072 0.000 0.010 0.012
DA-5 0.087 0.021 0.019 0.020 0.005 0.060 0.092 0.088 0.000 0.010 0.013
DA-6 0.044 0.000 0.000 0.000 0.006 0.036 0.051 0.047 0.016 0.012 0.015
DA-7 0.064 0.000 0.000 0.019 0.006 0.039 0.071 0.067 0.000 0.012 0.015
DA-8 0.071 0.000 0.019 0.016 0.005 0.050 0.076 0.072 0.000 0.011 0.000
DA-9 0.070 0.021 0.021 0.018 0.005 0.051 0.073 0.070 0.000 0.010 0.013
DA-10 0.073 0.022 0.020 0.021 0.005 0.054 0.072 0.069 0.000 0.010 0.000
DA-11 0.074 0.022 0.021 0.014 0.005 0.058 0.081 0.078 0.000 0.011 0.000
DA-12 0.069 0.020 0.018 0.018 0.005 0.055 0.072 0.069 0.000 0.010 0.000
DA-13 0.064 0.000 0.018 0.016 0.005 0.050 0.069 0.065 0.000 0.010 0.000
DA-14 0.086 0.022 0.023 0.020 0.000 0.067 0.083 0.077 0.000 0.000 0.015
� 0.070 0.015 0.017 0.017 0.005 0.053 0.074 0.070 0.001 0.010 0.008
�2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
�X 0.010 0.010 0.007 0.005 0.001 0.008 0.009 0.009 0.004 0.003 0.007

FIGURE 9 Pearson correlation coefficient.

4 CONCLUSION

The detection of non-requirements statements on the SRS can be done by classifying the statements in the SRS. From the
classification process of five methods, SVM, Naive Bayes, Random Forest, kNN, and Decision Tree, the SVM method is the
best method for detecting non-requirements statements indicated by an average accuracy value of 0.96. Apart from that, from
the precision-recall and ROC-recall plots, the points generated by the SVM method are above the diagonal line compared to
other methods with the x and y axes approaching the value 1.

The features that affect the results of noise detection are maximum normalization value, mean normalization value, standardized
standard deviation value, variant normalization value, maximum value, mean value, standard deviation value, variance value,
bad NN value, bad VB value, and other bad grades. The suggestion that can be given for further development is using other
methods to get a better score. In addition, it is hoped that the development of a classification model in the Naive Bayes method
is expected so that this method can detect non-requirements statements better.
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