rm(list=ls()) setwd("D:/Research/PR 11") data = read.csv("jakselchjam.csv", sep=";") #View(datajakpus) library(dlnm) library(splines) summary(data$rain) crosshujan = crossbasis(data$rain, lag=12, argvar = list(fun="poly"), arglag = list(fun="ns")) #varknots <- equalknots(data$suhu,fun="bs",df=6,degree=2) #lagknots <- logknots(6, 1) #crosssuhu = crossbasis(data$suhu, lag=6, #argvar=list(fun="bs",knots=varknots), #arglag=list(knots=lagknots)) summary(crosshujan) #crossangin = crossbasis(datajakpus$wind, lag =14, argvar = list(fun="lin"), arglag = list(fun="strata")) #summary(crossangin) #rumus = glm(PM ~ crosshujan + datajakpus$wind +ns(month, 2), family = quasipoisson(), datajakpus) data$rain = as.numeric(data$rain) nzmean <- sum(data$rain)/sum(!!data$rain) #datajakpus$wind = as.numeric(datajakpus$wind) data$PM = as.numeric(data$PM) data$suhu = as.numeric(data$suhu) rumus = glm(PM ~ crosshujan + data$suhu + ns(time,2), family = quasipoisson(), data) predhujan = crosspred(crosshujan, rumus, cen=nzmean, by=1, at=0:20, ci.level=0.95, cumul=T) plot(predhujan, xlab="Hourly Precipitation (mm)", zlab="Relative Effect", theta=380, phi=20, lphi=500, main="3D graph of rain effect") ouput<-predhujan[["matRRfit"]]