Semantic Editing of Traffic Near-Miss and Accident Dataset Using Tune-A-Video
Abstract
Keywords
Full Text:
Full TextReferences
Apostolovski N, Trajanovski N, Chavdar M, Kartalov T, Gerazov B, Ivanovski Z. Deep Learning Based Multimodal Information Fusion for Near-Miss Event Detection in Intelligent Traffic Monitoring Systems. In: Complex Systems: Spanning Control and Computational Cybernetics: Applications: Dedicated to Professor Georgi M. Dimirovski on his Anniversary Springer; 2022.p. 357–388.
Niu Y, Fan Y, Ju X. Critical review on data-driven approaches for learning from accidents: comparative analysis and future research. Safety science 2024;171:106381.
Yang G, Sarkar A, Ridgeway C, Thapa S, Jain S, Miller A. Using Artificial Intelligence/Machine Learning Tools to Analyze Safety, Road Scene, Near-Misses and Crashes. National Surface Transportation Safety Center for Excellence; 2024.
Sohail A, CheemaMA, Ali ME, Toosi AN, Rakha HA. Data-driven approaches for road safety: A comprehensive systematic literature review. Safety science 2023;158:105949.
Azfar T, Li J, Yu H, Cheu RL, Lv Y, Ke R. Deep learning-based computer vision methods for complex traffic environments perception: A review. Data Science for Transportation 2024;6(1):1–27.
Alomar K, Aysel HI, Cai X. Data augmentation in classification and segmentation: A survey and new strategies. Journal of Imaging 2023;9(2):46.
Abdel-Aty M, Wang Z, Zheng O, Abdelraouf A. Advances and applications of computer vision techniques in vehicle trajectory generation and surrogate traffic safety indicators. Accident Analysis & Prevention 2023;191:107191.
Patel AS, Vyas R, Vyas O, Ojha M. A study on video semantics; overview, challenges, and applications. Multimedia Tools and Applications 2022;81(5):6849–6897.
Gao Z, Chen X, Xu J, Yu R, Zhang H, Yang J. Semantically-Enhanced Feature Extraction with CLIP and Transformer Networks for Driver Fatigue Detection. Sensors 2024;24(24):7948.
Muhammad K, Hussain T, Ullah H, Del Ser J, Rezaei M, Kumar N, et al. Vision-based semantic segmentation in scene understanding for autonomous driving: Recent achievements, challenges, and outlooks. IEEE Transactions on Intelligent Transportation Systems 2022;23(12):22694–22715.
Gu J, Fang Y, Skorokhodov I,Wonka P, Du X, Tulyakov S, et al. VIA: A Spatiotemporal Video Adaptation Framework for Global and Local Video Editing. arXiv preprint arXiv:240612831 2024;.
Wu JZ, GeY,Wang X, Lei SW, GuY, ShiY, et al. Tune-a-video: One-shot tuning of image diffusion models for text-to-video generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2023. p. 7623–7633.
Pradana H, Dao MS, Zettsu K. Augmenting ego-vehicle for traffic near-miss and accident classification dataset using manipulating conditional style translation. In: 2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA) Sydney, Australia: IEEE; 2022. p. 1–8.
Uhlig S, Alkhasli I, Schubert F, Tschöpe C, Wolff M. A review of synthetic and augmented training data for machine learning in ultrasonic non-destructive evaluation. Ultrasonics 2023 September;134:107041.
Chen D, Zhu M, Yang H,Wang X,Wang Y. Data-driven Traffic Simulation: A Comprehensive Review. IEEE Transactions on Intelligent Vehicles 2024;9(4):4730–4748. https://ieeexplore.ieee.org/document/10440492.
Razi A, Chen X, Li H, Wang H, Russo B, Chen Y, et al. Deep learning serves traffic safety analysis: A forward-looking review. IET Intelligent Transport Systems 2023;17(1):22–71.
Rocky A, Wu QJ, Zhang W. Review of Accident Detection Methods Using Dashcam Videos for Autonomous Driving Vehicles. IEEE Transactions on Intelligent Transportation Systems 2024;25(8):8356–8374.
Garcea F, Serra A, Lamberti F, Morra L. Data augmentation for medical imaging: A systematic literature review. Computers in Biology and Medicine 2023;152:106391.
Eze C, Crick C. Learning by Watching: A Review of Video-based Learning Approaches for Robot Manipulation. arXiv preprint arXiv:240207127 2024;p. 1–26.
Rabbi ABK, Jeelani I. AI integration in construction safety: Current state, challenges, and future opportunities in text, vision, and audio based applications. Automation in Construction 2024;164:105443.
Wu R, Yang T, Sun L, Zhang Z, Li S, Zhang L. Seesr: Towards semantics-aware real-world image super-resolution. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2024. p. 25456–25467.
Mustapha A, Abdul-Rani AM, Saad N, Mustapha M. Advancements in Traffic Simulation for Enhanced Road Safety: A Review. Simulation Modelling Practice and Theory 2024;p. 103017.
Sun W, Tu RC, Liao J, Tao D. Diffusion model-based video editing: A survey. arXiv preprint arXiv:240707111 2024;p.1–23.
Zhao L, Zhang Z, Nie X, Liu L, Liu S. Cross-Attention and Seamless Replacement of Latent Prompts for High-Definition Image-Driven Video Editing. Electronics 2023;13(1):1–14.
Testolina P, Barbato F, Michieli U, Giordani M, Zanuttigh P, Zorzi M. Selma: Semantic large-scale multimodal acquisitions in variable weather, daytime and viewpoints. IEEE Transactions on Intelligent Transportation Systems 2023;24(7):7012–7024.
Suryanto N, Adiputra AA, Kadiptya AY, Le TTH, Pratama D, Kim Y, et al. Cityscape-Adverse: Benchmarking Robustness of Semantic Segmentation with Realistic Scene Modifications via Diffusion-Based Image Editing. arXiv preprint arXiv:241100425 2024;p. 1–19.
Fang J, Yan D, Qiao J, Xue J, Yu H. DADA: Driver attention prediction in driving accident scenarios. IEEE transactions on intelligent transportation systems 2021;23(6):4959–4971.
DOI: http://dx.doi.org/10.12962/j20882033.v35i3.22186
Refbacks
- There are currently no refbacks.
IPTEK Journal of Science and Technology by Lembaga Penelitian dan Pengabdian kepada Masyarakat, ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jts.