Controllable Core Size of Au@TiO2 through Al(NO3)3 Addition and Its Effects on DSSC Performance
Abstract
Keywords
Full Text:
Full TextReferences
Liu WL, Lin FC, Yang YC, Huang CH, Gwo S, Huang MH, et al. The influence of shell thickness of Au@TiO2 core–shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Nanoscale 2013;5(17):7953–7962. http://dx.doi.org/10.1039/C3NR02800C.
Wan G, Peng X, Zeng M, Yu L, Wang K, Li X, et al. The Preparation of Au@TiO2 Yolk–Shell Nanostructure and its Applications for Degradation and Detection of Methylene Blue. Nanoscale Research Letters 2017;12.
Qi J, Dang X, Hammond PT, Belcher AM. Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells through Metal@Oxide Core–Shell Nanostructure. ACS Nano 2011;5(9):7108–7116. https://doi.org/10.1021/nn201808g.
Crane CC, Wang F, Li J, Tao J, Zhu Y, Chen J. Synthesis of Copper-Silica Core-Shell Nanostructures with Sharp and Stable Localized Surface Plasmon Resonance. Journal of Physical Chemistry C 2017;121(10):5684–5692.
Toudert J, Serna R, Jiménez De Castro M. Exploring the optical potential of nano-bismuth: Tunable surface plasmon resonances in the near ultraviolet-to-near infrared range. Journal of Physical Chemistry C 2012;116(38):20530–20539.
Chen TM, Xu GY, Ren H, Zhang H, Tian ZQ, Li JF. Synthesis of Au@TiO2 core-shell nanoparticles with tunable structures for plasmon-enhanced photocatalysis. Nanoscale Advances 2019;1(11):4522–4528.
Kuddah MSM, Putra MH, Djuhana D. The thickness effect on lspr spectra of au-nanorod coated tio2 and sio2 studied by mnpbem. IOP Conference Series: Materials Science and Engineering 2019;553(1).
Navas J, Fernández-Lorenzo C, Aguilar T, Alcántara R, Martín-Calleja J. Improving open-circuit voltage in DSSCs using Cu-doped TiO2 as a semiconductor. physica status solidi (a) 2012 feb;209(2):378–385. https://doi.org/10.1002/pssa.201127336.
Dhonde M, Sahu K, Murty VVS, Nemala SS, Bhargava P. Surface plasmon resonance effect of Cu nanoparticles in a dye sensitized solar cell. Electrochimica Acta 2017;249:89–95. https://www.sciencedirect.com/science/article/pii/S0013468617316274.
Muduli S, Game O, Dhas V, Vijayamohanan K, Bogle KA, Valanoor N, et al. TiO2–Au plasmonic nanocomposite for enhanced dye-sensitized solar cell (DSSC) performance. Solar Energy 2012;86(5):1428–1434. https://www.sciencedirect.com/science/article/pii/S0038092X12000588.
Gao Y, Fang P, Chen F, Liu Y, Liu Z, Wang D, et al. Enhancement of stability of N-doped TiO2 photocatalysts with Ag loading. Applied Surface Science 2013;265:796–801. https://www.sciencedirect.com/science/article/pii/S0169433212020880.
Lim SP, Pandikumar A, Huang NM, Lim HN. Facile synthesis of Au@TiO2 nanocomposite and its application as a photoanode in dye-sensitized solar cells. RSC Advances 2015;5(55):44398–44407.
Sanad MMS, Shalan AE, Rashad MM, Mahmoud MHH. Plasmonic enhancement of low cost mesoporous Fe2O3-TiO2 loaded with palladium, platinum or silver for dye sensitized solar cells (DSSCs). Applied Surface Science 2015;359:315–322. https://www.sciencedirect.com/science/article/pii/S0169433215025258.
Huang LH, Sun C, Liu YL. Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light. Applied Surface Science 2007;253(17):7029–7035. https://www.sciencedirect.com/science/article/pii/S0169433207002334.
Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, et al. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews 2011 jun;111(6):3669–3712. https://doi.org/10.1021/cr100275d.Utama
Sugawa K, Tahara H, Yamashita A, Otsuki J, Sagara T, Harumoto T, et al. Refractive Index Susceptibility of the Plasmonic Palladium Nanoparticle: Potential as the Third Plasmonic Sensing Material. ACS Nano 2015 feb;9(2):1895–1904. https://doi.org/10.1021/nn506800a.
Ng SA, Razak KA, Cheong KY, Aw KC. Memory properties of Au nanoparticles prepared by tuning HAuCl4 concentration using low-temperature hydrothermal reaction. Thin Solid Films 2016;615:84–90. https://www.sciencedirect.com/science/article/pii/S0040609016301444.
Ng SA, Razak KA, Cheong KY, Aw KC. The effect of Al(NO3)3 concentration on the formation of AuNPs using low temperature hydrothermal reaction for memory application. Sains Malaysiana 2016;45(8):1213–1219.
Mark PR. Forces and Interactions Between Nanoparticles for Controlled Structures. PhD thesis, The State University of New Jersey; 2013.
Zeng S, Yu X, Law WC, Zhang Y, Hu R, Dinh XQ, et al. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sensors and Actuators B: Chemical 2013;176:1128–1133. https://www.sciencedirect.com/science/article/pii/S0925400512009860.
Yoo SM, Rawal SB, Lee JE, Kim J, Ryu HY, Park DW, et al. Size-dependence of plasmonic Au nanoparticles in photocatalytic behavior of Au/TiO2 and Au@SiO2/TiO2. Applied Catalysis A: General 2015;499:47–54. https://www.sciencedirect.com/science/article/pii/S0926860X15002355.
Wang Y, Yang C, Chen A, Pu W, Gong J. Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Applied Catalysis B: Environmental 2019;251:57–65. https://www.sciencedirect.com/science/article/pii/S0926337319302784.
Raznjevic K. Handbook of Thermodynamic Tables and Charts. 2nd ed. Washington: Hemisphere Publishing Corporation;1976.
Wagman DD, Evans W, Parker VB, Halow I, Bailey SM. Selected Values of Chemical Thermodynamic Properties. Tables for the First Thirty-Four Elements in the Standard Order of Arrangement; 1968.
Hohenester U, Trügler A. MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles. Computer Physics Communications 2012;183(2):370–381.
Li Y, Wang H, Feng Q, Zhou G, Wang ZS. Gold nanoparticles inlaid TiO2 photoanodes: A superior candidate for highefficiency dye-sensitized solar cells. Energy and Environmental Science 2013;6(7):2156–2165.
Su C, Liu L, Zhang M, Zhang Y, Shao C. Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. CrystEngComm 2012;14(11):3989–3999. http://dx.doi.org/10.1039/C2CE25161B.
Song L, Lu Z, Zhang Y, Su Q, Li L. Hydrogen-etched TiO2-x as efficient support of gold catalysts for water–gas shift reaction. Catalysts 2018;8(1).
Mantri K, Selvakannan PR, Tardio J, Bhargava SK. Synthesis of very high surface area Au-SBA-15 materials by confinement of gold nanoparticles formation within silica pore walls. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013;429:149–158.
Wu XF, Song HY, Yoon JM, Yu YT, Chen YF. Synthesis of core-shell Au@TiO2nanopartides with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir 2009;25(11):6438–6447.
Yao GY, Liu QL, Zhao ZY. Studied Localized Surface Plasmon Resonance Effects of Au Nanoparticles on TiO2 by FDTD Simulations. Catalysts 2018;8(6):236.
Lim SP, Pandikumar A, Huang NM, Lim HN. Enhanced photovoltaic performance of silver@titania plasmonic photoanode in dye-sensitized solar cells. RSC Advances 2014;4(72):38111–38118.
Lim SP, Pandikumar A, Huang NM, Lim HN, Gu G, Ma TL. Promotional effect of silver nanoparticles on the performance of N-doped TiO2 photoanode-based dye-sensitized solar cells. RSC Advances 2014;4(89):48236–48244.
Dette C, Pérez-Osorio MA, Kley CS, Punke P, Patrick CE, Jacobson P, et al. TiO2anatase with a bandgap in the visible region. Nano Letters 2014;14(11):6533–6538.
Kalathil S, Khan MM, Ansari SA, Lee J, Cho MH. Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale 2013;5(14):6323–6326.
Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, et al. Band gap engineered TiO2nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Journal of Materials Chemistry A 2014;2(3):637–644.
Guo HL, Zhu Q, Wu XL, Jiang YF, Xie X, Xu AW. Oxygen deficient ZnO1-x nanosheets with high visible light photocatalytic activity. Nanoscale 2015;7(16):7216–7223.
Wijanarko A. Pemodelan localized surface plasmon resonance (LSPR) pada nanopartikel perak (Ag) dan emas (Au) menggunakan metode elemen-hingga. PhD thesis, Universitas Indonesia; 2014.
Zhang Q, Chou TP, Russo B, Jenekhe SA, Cao G. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angewandte Chemie - International Edition 2008;47(13):2402–2406.
Wang Q, Butburee T, Wu X, Chen H, Liu G, Wang L. Enhanced Performance of Dye-Sensitized Solar Cells by Doping Au Nanoparticles into Photoanodes: A Size Effect Study. Journal of Materials Chemistry A 2013;1(207890):2–9.
DOI: http://dx.doi.org/10.12962/j20882033.v32i1.7003
Refbacks
- There are currently no refbacks.
IPTEK Journal of Science and Technology by Lembaga Penelitian dan Pengabdian kepada Masyarakat, ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jts.