Controllable Core Size of Au@TiO2 through Al(NO3)3 Addition and Its Effects on DSSC Performance

Sangsaka Wira Utama, Nur Fadhilah, Muhammad Husain Haekal, Rozalina Zakaria, Rachmat Hidayat, Doty Dewi Risanti

Abstract


It is known that plasmonic nanoparticles in dye-sensitized solar cells (DSSC) could enhance efficiency through improvement in light absorbance and electron dynamics. Herein we investigated various sizes of AuNP through spontaneous Al(NO3 )3 addition. Core-Shell Au@TiO2 was prepared with various Al(NO3 )3 concentrations of 0.25 mM, 0.5 mM, 0.75 mM and 1 mM. The Au@TiO2 volume fraction of 1% was further added to TiO2 photoanode. Based on the particle size analyzer (PSA) characteristics, the synthesized AuNP’s size was within a range of 34.62 nm – 139.5 nm. The highest efficiency of DSSC was obtained for the sample with the largest AuNP ’s diameter, i.e., 0.0313%, which is about three times higher than pristine DSSC. The increase in efficiency was in accord with Metallic Nanoparticle Boundary Element Method (MNPBEM) simulation, UV-vis spectroscopy, and Incident Photon to Current Conversion Efficiency (IPCE) analysis largest Au core diameter contributes to the strong absorbance and hence the short circuit current

Keywords


Core-Shell; DSSC Performance; Nanoparticle; Photoanode; Plasmonic

Full Text:

Full Text

References


Liu WL, Lin FC, Yang YC, Huang CH, Gwo S, Huang MH, et al. The influence of shell thickness of Au@TiO2 core–shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Nanoscale 2013;5(17):7953–7962. http://dx.doi.org/10.1039/C3NR02800C.

Wan G, Peng X, Zeng M, Yu L, Wang K, Li X, et al. The Preparation of Au@TiO2 Yolk–Shell Nanostructure and its Applications for Degradation and Detection of Methylene Blue. Nanoscale Research Letters 2017;12.

Qi J, Dang X, Hammond PT, Belcher AM. Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells through Metal@Oxide Core–Shell Nanostructure. ACS Nano 2011;5(9):7108–7116. https://doi.org/10.1021/nn201808g.

Crane CC, Wang F, Li J, Tao J, Zhu Y, Chen J. Synthesis of Copper-Silica Core-Shell Nanostructures with Sharp and Stable Localized Surface Plasmon Resonance. Journal of Physical Chemistry C 2017;121(10):5684–5692.

Toudert J, Serna R, Jiménez De Castro M. Exploring the optical potential of nano-bismuth: Tunable surface plasmon resonances in the near ultraviolet-to-near infrared range. Journal of Physical Chemistry C 2012;116(38):20530–20539.

Chen TM, Xu GY, Ren H, Zhang H, Tian ZQ, Li JF. Synthesis of Au@TiO2 core-shell nanoparticles with tunable structures for plasmon-enhanced photocatalysis. Nanoscale Advances 2019;1(11):4522–4528.

Kuddah MSM, Putra MH, Djuhana D. The thickness effect on lspr spectra of au-nanorod coated tio2 and sio2 studied by mnpbem. IOP Conference Series: Materials Science and Engineering 2019;553(1).

Navas J, Fernández-Lorenzo C, Aguilar T, Alcántara R, Martín-Calleja J. Improving open-circuit voltage in DSSCs using Cu-doped TiO2 as a semiconductor. physica status solidi (a) 2012 feb;209(2):378–385. https://doi.org/10.1002/pssa.201127336.

Dhonde M, Sahu K, Murty VVS, Nemala SS, Bhargava P. Surface plasmon resonance effect of Cu nanoparticles in a dye sensitized solar cell. Electrochimica Acta 2017;249:89–95. https://www.sciencedirect.com/science/article/pii/S0013468617316274.

Muduli S, Game O, Dhas V, Vijayamohanan K, Bogle KA, Valanoor N, et al. TiO2–Au plasmonic nanocomposite for enhanced dye-sensitized solar cell (DSSC) performance. Solar Energy 2012;86(5):1428–1434. https://www.sciencedirect.com/science/article/pii/S0038092X12000588.

Gao Y, Fang P, Chen F, Liu Y, Liu Z, Wang D, et al. Enhancement of stability of N-doped TiO2 photocatalysts with Ag loading. Applied Surface Science 2013;265:796–801. https://www.sciencedirect.com/science/article/pii/S0169433212020880.

Lim SP, Pandikumar A, Huang NM, Lim HN. Facile synthesis of Au@TiO2 nanocomposite and its application as a photoanode in dye-sensitized solar cells. RSC Advances 2015;5(55):44398–44407.

Sanad MMS, Shalan AE, Rashad MM, Mahmoud MHH. Plasmonic enhancement of low cost mesoporous Fe2O3-TiO2 loaded with palladium, platinum or silver for dye sensitized solar cells (DSSCs). Applied Surface Science 2015;359:315–322. https://www.sciencedirect.com/science/article/pii/S0169433215025258.

Huang LH, Sun C, Liu YL. Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light. Applied Surface Science 2007;253(17):7029–7035. https://www.sciencedirect.com/science/article/pii/S0169433207002334.

Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, et al. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews 2011 jun;111(6):3669–3712. https://doi.org/10.1021/cr100275d.Utama

Sugawa K, Tahara H, Yamashita A, Otsuki J, Sagara T, Harumoto T, et al. Refractive Index Susceptibility of the Plasmonic Palladium Nanoparticle: Potential as the Third Plasmonic Sensing Material. ACS Nano 2015 feb;9(2):1895–1904. https://doi.org/10.1021/nn506800a.

Ng SA, Razak KA, Cheong KY, Aw KC. Memory properties of Au nanoparticles prepared by tuning HAuCl4 concentration using low-temperature hydrothermal reaction. Thin Solid Films 2016;615:84–90. https://www.sciencedirect.com/science/article/pii/S0040609016301444.

Ng SA, Razak KA, Cheong KY, Aw KC. The effect of Al(NO3)3 concentration on the formation of AuNPs using low temperature hydrothermal reaction for memory application. Sains Malaysiana 2016;45(8):1213–1219.

Mark PR. Forces and Interactions Between Nanoparticles for Controlled Structures. PhD thesis, The State University of New Jersey; 2013.

Zeng S, Yu X, Law WC, Zhang Y, Hu R, Dinh XQ, et al. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sensors and Actuators B: Chemical 2013;176:1128–1133. https://www.sciencedirect.com/science/article/pii/S0925400512009860.

Yoo SM, Rawal SB, Lee JE, Kim J, Ryu HY, Park DW, et al. Size-dependence of plasmonic Au nanoparticles in photocatalytic behavior of Au/TiO2 and Au@SiO2/TiO2. Applied Catalysis A: General 2015;499:47–54. https://www.sciencedirect.com/science/article/pii/S0926860X15002355.

Wang Y, Yang C, Chen A, Pu W, Gong J. Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Applied Catalysis B: Environmental 2019;251:57–65. https://www.sciencedirect.com/science/article/pii/S0926337319302784.

Raznjevic K. Handbook of Thermodynamic Tables and Charts. 2nd ed. Washington: Hemisphere Publishing Corporation;1976.

Wagman DD, Evans W, Parker VB, Halow I, Bailey SM. Selected Values of Chemical Thermodynamic Properties. Tables for the First Thirty-Four Elements in the Standard Order of Arrangement; 1968.

Hohenester U, Trügler A. MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles. Computer Physics Communications 2012;183(2):370–381.

Li Y, Wang H, Feng Q, Zhou G, Wang ZS. Gold nanoparticles inlaid TiO2 photoanodes: A superior candidate for highefficiency dye-sensitized solar cells. Energy and Environmental Science 2013;6(7):2156–2165.

Su C, Liu L, Zhang M, Zhang Y, Shao C. Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. CrystEngComm 2012;14(11):3989–3999. http://dx.doi.org/10.1039/C2CE25161B.

Song L, Lu Z, Zhang Y, Su Q, Li L. Hydrogen-etched TiO2-x as efficient support of gold catalysts for water–gas shift reaction. Catalysts 2018;8(1).

Mantri K, Selvakannan PR, Tardio J, Bhargava SK. Synthesis of very high surface area Au-SBA-15 materials by confinement of gold nanoparticles formation within silica pore walls. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013;429:149–158.

Wu XF, Song HY, Yoon JM, Yu YT, Chen YF. Synthesis of core-shell Au@TiO2nanopartides with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir 2009;25(11):6438–6447.

Yao GY, Liu QL, Zhao ZY. Studied Localized Surface Plasmon Resonance Effects of Au Nanoparticles on TiO2 by FDTD Simulations. Catalysts 2018;8(6):236.

Lim SP, Pandikumar A, Huang NM, Lim HN. Enhanced photovoltaic performance of silver@titania plasmonic photoanode in dye-sensitized solar cells. RSC Advances 2014;4(72):38111–38118.

Lim SP, Pandikumar A, Huang NM, Lim HN, Gu G, Ma TL. Promotional effect of silver nanoparticles on the performance of N-doped TiO2 photoanode-based dye-sensitized solar cells. RSC Advances 2014;4(89):48236–48244.

Dette C, Pérez-Osorio MA, Kley CS, Punke P, Patrick CE, Jacobson P, et al. TiO2anatase with a bandgap in the visible region. Nano Letters 2014;14(11):6533–6538.

Kalathil S, Khan MM, Ansari SA, Lee J, Cho MH. Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale 2013;5(14):6323–6326.

Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, et al. Band gap engineered TiO2nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Journal of Materials Chemistry A 2014;2(3):637–644.

Guo HL, Zhu Q, Wu XL, Jiang YF, Xie X, Xu AW. Oxygen deficient ZnO1-x nanosheets with high visible light photocatalytic activity. Nanoscale 2015;7(16):7216–7223.

Wijanarko A. Pemodelan localized surface plasmon resonance (LSPR) pada nanopartikel perak (Ag) dan emas (Au) menggunakan metode elemen-hingga. PhD thesis, Universitas Indonesia; 2014.

Zhang Q, Chou TP, Russo B, Jenekhe SA, Cao G. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angewandte Chemie - International Edition 2008;47(13):2402–2406.

Wang Q, Butburee T, Wu X, Chen H, Liu G, Wang L. Enhanced Performance of Dye-Sensitized Solar Cells by Doping Au Nanoparticles into Photoanodes: A Size Effect Study. Journal of Materials Chemistry A 2013;1(207890):2–9.




DOI: http://dx.doi.org/10.12962/j20882033.v32i1.7003

Refbacks

  • There are currently no refbacks.


Creative Commons License

IPTEK Journal of Science and Technology by Lembaga Penelitian dan Pengabdian kepada Masyarakat, ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jts.